Mung bean proteins and peptides: nutritional, functional and bioactive properties

  • Yi-Shen Zhu
  • Sun Shuai
  • Richard FitzGerald
Keywords: nutrition, protein extraction, globulins, functionality, angiotensin, converting enzyme inhibitory activity, trypsin inhibitory activity, anti-fungal activity

Abstract

To date, no extensive literature review exists regarding potential uses of mung bean proteins and peptides. As mung bean has long been widely used as a food source, early studies evaluated mung bean nutritional value against the Food and Agriculture Organization of the United Nations (FAO)/the World Health Organization (WHO) amino acids dietary recommendations. The comparison demonstrated mung bean to be a good protein source, except for deficiencies in sulphur-containing amino acids, methionine and cysteine. Methionine and cysteine residues have been introduced into the 8S globulin through protein engineering technology. Subsequently, purified mung bean proteins and peptides have facilitated the study of their structural and functional properties. Two main types of extraction methods have been reported for isolation of proteins and peptides from mung bean flours, permitting sequencing of major proteins present in mung bean, including albumins and globulins (notably 8S globulin). However, the sequence for albumin deposited in the UniProt database differs from other sequences reported in the literature. Meanwhile, a limited number of reports have revealed other useful bioactivities for proteins and hydrolysed peptides, including angiotensin-converting enzyme inhibitory activity, anti-fungal activity and trypsin inhibitory activity. Consequently, several mung bean hydrolysed peptides have served as effective food additives to prevent proteolysis during storage. Ultimately, further research will reveal other nutritional, functional and bioactive properties of mung bean for uses in diverse applications.

Downloads

Download data is not yet available.

References

  1. Espin JC, Garcia-Conesa MT, Tomas-Barberan FA. Nutraceuticals: facts and fiction. Phytochemistry 2007; 68(22–24): 2986–3008. doi: 10.1016/j.phytochem.2007.09.014. PubMed PMID: 17976666.
  2. 24): 2986–3008. doi: 10.1016/j.phytochem.2007.09.014. PubMed PMID: 17976666.
  3. Del Rosario RR, Flores DM. Functional properties of four types of mung bean flour. J Sci Food Agr 1981; 32(2): 175–80. doi: 10.1002/jsfa.2740320213.

  4. Tang D, Dong Y, Ren H, Li L, He C, et al. A review of phytochemistry, metabolite changes, and medicinal uses of the common food mung bean and its sprouts (Vigna radiata). Chem Central J 2014; 8: 4. doi: 10.1186/1752-153x-8-4. PubMed PMID: WOS:000334627400001.

  5. Dahiya PK, Linnemann AR, Van Boekel MA, Khetarpaul N, Grewal RB, Nout MJ. Mung bean: technological and nutritional potential. Crit Rev Food Sci Nutr 2015; 55(5): 670–88. doi: 10.1080/10408398.2012.671202. PubMed PMID: 24915360.

  6. Itoh T, Garcia RN, Adachi M, Maruyama Y, Tecson-Mendoza EM, Mikami B, et al. Structure of 8Sα globulin, the major seed storage protein of mung bean. Acta Crystallogr D Biol Crystallogr 2006; 62(7): 824–32. doi: 10.1107/s090744490601804x.

  7. Anwar F, Latif S, Przybylski R, Sultana B, Ashraf M. Chemical composition and antioxidant activity of seeds of different cultivars of mung bean. J Food Sci 2007; 72(7): S503–10. doi: 10.1111/j.1750-3841.2007.00462.x. PubMed PMID: 17995664.

  8. Xu XP, Liu H, Tian LH, Dong XB, Shen SH, Qu LQ. Integrated and comparative proteomics of high-oil and high-protein soybean seeds. Food Chem 2015; 172: 105–16. doi: 10.1016/j.foodchem.2014.09.035. PubMed PMID: WOS:000345207200015.

  9. Shevkani K, Singh N, Kaur A, Rana JC. Structural and functional characterization of kidney bean and field pea protein isolates: a comparative study. Food Hydrocolloids 2015; 43: 679–89. doi: 10.1016/j.foodhyd.2014.07.024. PubMed PMID: WOS:000345683500078.

  10. Chen M-X, Zheng S-X, Yang Y-N, Xu C, Liu J-S, Yang W-D, et al. Strong seed-specific protein expression from the Vigna radiata storage protein 8SG alpha promoter in transgenic Arabidopsis seeds. J Biotechnol 2014; 174: 49–56. doi: 10.1016/j.jbiotec.2014.01.027. PubMed PMID: WOS:000333089700010.

  11. Kudre TG, Benjakul S, Kishimura H. Comparative study on chemical compositions and properties of protein isolates from mung bean, black bean and bambara groundnut. J Sci Food Agr 2013; 93(10): 2429–36. doi: 10.1002/jsfa.6052.

  12. Torio MAO, Itoh T, Garcia RN, Maruyama N, Utsumi S, Tecson-Mendoza EM. Introduction of sulfhydryl groups and disulfide linkage to mungbean 8Sα globulin and effects on physicochemical and functional properties. Food Res Int 2012; 45(1): 277–82. doi: 10.1016/j.foodres.2011.10.044.

  13. Thompson LU. Preparation and evaluation of mung bean protein isolates. J Food Sci 1977; 42(1): 202–6. PubMed PMID: ISI:A1977CP78700049; English.

  14. Mubarak AE. Nutritional composition and antinutritional factors of mung bean seeds (Phaseolus aureus) as affected by some home traditional processes. Food Chem 2005; 89(4): 489–95. doi: 10.1016/j.foodchem.2004.01.007. PubMed PMID: WOS:000224329600001.

  15. FAO/WHO. Energy and protein requirements. Report of FAO Nutritional Meeting Series No 52, 1973. Rome: FAO.

  16. FAO/WHO. Protein quality evaluation. Joint FAO/WHO. FAO Food Nutr Paper 1991; 51: 1–66. PubMed PMID: MEDLINE:1817076.

  17. Ericson MC, Chrispeels MJ. Isolation and characterization of glucosamine-containing storage glycoproteins from the cotyledons of phaseolus aureus. Plant Physiol 1973; 52(2): 98–104. doi: 10.1104/pp.52.2.98. PubMed PMID: MEDLINE:16658529.

  18. Bhattacharyya SP, Biswas BB. Purification and characterization of high salt-soluble vicilin from mung bean(Vigna-radiata). Biochem Int 1990; 21(4): 667–75. PubMed PMID: WOS:A1990DX01900010.

  19. Khalil AA. Nutritional improvement of an Egyptian breed of mung bean by probiotic lactobacilli. Afr J Biotechnol 2006; 5(2): 206–12. PubMed PMID: WOS:000235140100026.

  20. Bernardo AEN, Garcia RN, Adachi M, Angeles JGC, Kaga A, Ishimoto M, et al. 8S globulin of mungbean Vigna radiata (L.) wilczek: cloning and characterization of its cDNA isoforms, expression in Escherichia coli, purification, and crystallization of the major recombinant 8S isoform. J Agr Food Chem 2004; 52(9): 2552–60. doi: 10.1021/jf0305938. PubMed PMID: WOS:000221135100021.

  21. Torio MAO, Adachi M, Garcia RN, Prak K, Maruyama N, Utsumi S, et al. Effects of engineered methionine in the 8S alpha globulin of mungbean on its physicochemical and functional properties and potential nutritional quality. Food Res Int 2011; 44(9): 2984–90. doi: 10.1016/j.foodres.2011.07.010. PubMed PMID: WOS:000296798300054.

  22. Keunen K, van Elburg RM, van Bel F, Benders M. Impact of nutrition on brain development and its neuroprotective implications following preterm birth. Pediatr Res 2015; 77(1): 148–55. doi: 10.1038/pr.2014.171. PubMed PMID: WOS:000347672800007.

  23. Florentino RF. Nutritional aspects of eating rice. Philippine J Nutr 1974; 27(4): 129–40. PubMed PMID: 1976:3502; English.

  24. Shewry PR, Napier JA, Tatham AS. Seed storage proteins – Structures and biosynthesis. Plant Cell 1995; 7(7): 945–56. doi: 10.1105/tpc.7.7.945. PubMed PMID: WOS:A1995RM93700014.

  25. Klomklao S, Benjakul S, Kishimura H, Chaijan M. Extraction, purification and properties of trypsin inhibitor from Thai mung bean (Vigna radiata (L.) R. Wilczek). Food Chem 2011; 129(4): 1348–54. doi: 10.1016/j.foodchem.2011.05.029. PubMed PMID: WOS:000294979600004.

  26. Wang SY, Wu JH, Ng TB, Ye XY, Rao PF. A non-specific lipid transfer protein with antifungal and antibacterial activities from the mung bean. Peptides 2004; 25(8): 1235–42. doi: 10.1016/j.peptides.2004.06.004. PubMed PMID: ISI:000223926700002; English.

  27. Gunarti DR, Rahmi H, Sadikin M. Isolation and purification of thiamine binding protein from mung bean. HAYATI J Biosci 2013; 20(1): 1–6. doi: 10.4308/hjb.20.1.1.

  28. Mendoza EMT, Adachi M, Bernardo AEN, Utsumi S. Mungbean [Vigna radiata (L.) Wilczek] globulins: purification and characterization. J Agr Food Chem. 2001; 49(3): 1552–8. doi: 10.1021/Jf001041h. PubMed PMID: ISI:000168967400081; English.

  29. Wang J, Tse YC, Hinz G, Robinson DG, Jiang L. Storage globulins pass through the Golgi apparatus and multivesicular bodies in the absence of dense vesicle formation during early stages of cotyledon development in mung bean. J Exp Bot 2012; 63(3): 1367–80. doi: 10.1093/jxb/err366. PubMed PMID: WOS:000300238400025.

  30. Tang C-H, Sun X. Physicochemical and structural properties of 8S and/or 11S globulins from mungbean [Vigna radiata(L.) Wilczek] with various polypeptide constituents. J Agr Food Chem. 2010; 58(10): 6395–402. doi: 10.1021/jf904254f.

  31. Nielsen H, Engelbrecht J, Brunak S, von Heijne G. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 1997; 10(1): 1–6. doi: 10.1093/protein/10.1.1. PubMed PMID: WOS:A1997WJ04100001.

  32. Yamazaki T, Takaoka M, Katoh E, Hanada K, Sakita M, Sakata K, et al. A possible physiological function and the tertiary structure of a 4-kDa peptide in legumes. Eur J Biochem 2003; 270(6): 1269–1276. doi: 10.1046/j.1432-1033.2003.03489.x. PubMed PMID: ISI:000181549200024; English.

  33. Tang CH, Sun X, Yin SW. Physicochemical, functional and structural properties of vicilin-rich protein isolates from three Phaseolus legumes: effect of heat treatment [Article]. Food Hydrocolloid 2009; 23(7): 1771–8. doi: 10.1016/j.foodhyd.2009.03.008. PubMed PMID: WOS:000267478400018; English.

  34. Liu H, Liu H, Yan L, Cheng X, Kang Y. Functional properties of 8S globulin fractions from 15 mung bean (Vigna radiata (L.) Wilczek) cultivars. Int J Food Sci Technol 2015; 50(5): 1206–14. doi: 10.1111/ijfs.12761.

  35. Tang C-H. Thermal denaturation and gelation of vicilin-rich protein isolates from three Phaseolus legumes: a comparative study. LWT-Food Sci Technol 2008; 41(8): 1380–8. doi: 10.1016/j.lwt.2007.08.025. PubMed PMID: WOS:000256831700004.

  36. Du M, Xie J, Gong B, Xu X, Tang W, Li X, et al. Extraction, physicochemical characteristics and functional properties of Mung bean protein. Food Hydrocolloid 2018; 76(Suppl C): 131–140. doi: https://doi.org/10.1016/j.foodhyd.2017.01.003.

  37. Suppavorasatit I, Lee S-Y, Cadwallader KR. Effect of enzymatic protein deamidation on protein solubility and flavor binding properties of soymilk. J Food Sci 2013; 78(1): C1–C7. doi: 10.1111/j.1750-3841.2012.03012.x.

  38. Damodaran S, Parkin KL, Fennema OR. Fennema’s food chemistry. Boca Raton, FL: CRC Press/Taylor & Francis; 2008.

  39. Brishti FH, Zarei M, Muhammad SKS, Ismail-Fitry MR, Shukri R, Saari N. Evaluation of the functional properties of mung bean protein isolate for development of textured vegetable protein. Int Food Res J 2017; 24(4): 1595.

  40. Butt MS, Batool R. Nutritional and functional properties of some promising legumes protein isolates. Pak J Nutr 2010; 9(4): 373–9. doi: 10.3923/pjn.2010.373.379.

  41. Wright DJ, Hemmant JW. Foaming properties of protein solutions: comparison of large-scale whipping and conductimetric methods. J Sci Food Agr 1987; 41(4): 361–71. doi: 10.1002/jsfa.2740410408.

  42. Tang CH, Chen L, Ma CY. Thermal aggregation, amino acid composition and in vitro digestibility of vicilin-rich protein isolates from three Phaseolus legumes: a comparative study [Article]. Food Chem 2009; 113(4): 957–63. doi: 10.1016/j.foodchem.2008.08.038. PubMed PMID: WOS:000261857100015; English.

  43. Johns CO, Waterman HC. Some proteins from the mung bean, Phaseolus aureus Roxburgh. J Biol Chem 1920; 44: 303–17. PubMed PMID: 1921:6398; language unavailable.

  44. Rahma EH, Dudek S, Mothes R, Gornitz E, Schwenke KD. Physicochemical characterisation of mung bean (Phaseolus aureus) protein isolates. J Sci Food Agr 2000; 80(4): 477–83. PubMed PMID: ISI:000085726100008; English.

  45. El-Adawy TA. Functional properties and nutritional quality of acetylated and succinylated mung bean protein isolate. Food Chem 2000; 70(1): 83–91. PubMed PMID: ISI:000086844300014; English.

  46. Deshpande SS, Campbell CG. Effect of different solvents on protein recovery and neurotoxin and trypsin-inhibitor contents of grass pea(Lathyrus-sativus). J Sci Food Agr 1992; 60(2): 245–9. doi: 10.1002/jsfa.2740600213. PubMed PMID: WOS:A1992KA88300012.

  47. Benjakul S, Visessanguan W, Thummaratwasik P. Isolation and characterization of trypsin inhibitors from some Thai legume seeds. J Food Biochem 2000; 24(2): 107–27. doi: 10.1111/j.1745-4514.2000.tb00689.x. PubMed PMID: WOS:000087229900002.

  48. Klomklao S, Benjakul S, Kishimura H, Osako K, Tanaka M. A heat-stable trypsin inhibitor in adzuki bean (Vigna angularis): effect of extraction media, purification and biochemical characteristics. Int J Food Sci Technol 2010; 45(1): 163–9. doi: 10.1111/j.1365-2621.2009.02117.x. PubMed PMID: WOS:000272655500021.

  49. Kader JC. Lipid-transfer proteins in plants. Annu Rev Plant Phys 1996; 47: 627–54. doi: 10.1146/annurev.arplant.47.1.627. PubMed PMID: ISI:A1996UT11900024; English.

  50. Guang C, Phillips RD. Plant food-derived angiotensin I converting enzyme inhibitory peptides [review]. J Agr Food Chem 2009; 57(12): 5113–20. doi: 10.1021/jf900494d. PubMed PMID: WOS:000267183800001; English.

  51. Aluko RE. Determination of nutritional and bioactive properties of peptides in enzymatic pea, chickpea, and mung bean protein hydrolysates. J Aoac Int 2008; 91(4): 947–56. PubMed PMID: ISI:000258270400033; English.

  52. García MC, Puchalska P, Esteve C, Marina ML. Vegetable foods: a cheap source of proteins and peptides with antihypertensive, antioxidant, and other less occurrence bioactivities. Talanta 2013; 106: 328–49. doi: 10.1016/j.talanta.2012.12.041.

  53. Li GH, Shi YH, Liu H, Le GW. Antihypertensive effect of alcalase generated mung bean protein hydrolysates in spontaneously hypertensive rats. Eur Food Res Technol 2006; 222(5–6): 733–6. doi: 10.1007/s00217-005-0147-2. PubMed PMID: ISI:000235900700035; English.

  54. Liu F, Zhang XB, Lu CM, Zeng XH, Li YJ, Fu DH, et al. Non-specific lipid transfer proteins in plants: presenting new advances and an integrated functional analysis. J Exp Bot 2015; 66(19): 5663–81. doi: 10.1093/jxb/erv313. PubMed PMID: ISI:000362073400003; English.

  55. Li GH, Wan JZ, Le GW, Shi YH. Novel angiotensin I-converting enzyme inhibitory peptides isolated from Alcalase hydrolysate of mung bean protein. J Peptide Sci 2006; 12(8): 509–14. doi: 10.1002/Psc.758. PubMed PMID: ISI:000239879000003; English.

  56. Wu H, Rui X, Li W, Chen X, Jiang M, Dong M. Mung bean (Vigna radiata) as probiotic food through fermentation with Lactobacillus plantarum B1-6. LWT – Food Sci Technol 2015; 63(1): 445–51. doi: 10.1016/j.lwt.2015.03.011.

  57. Mamilla RK, Mishra VK. Effect of germination on antioxidant and ACE inhibitory activities of legumes. LWT – Food Sci Technol 2017; 75(Suppl C): 51–8. doi: 10.1016/j.lwt.2016.08.036.

  58. He H-L, Liu D, Ma C-B. Review on the angiotensin-I-converting enzyme (ACE) inhibitor peptides from marine proteins. Appl Biochem Biotech 2013; 169(3): 738–49. doi: 10.1007/s12010-012-0024-y.

  59. Benjakul S, Karoon S, Suwanno A. Inhibitory effects of legume seed extracts on fish proteinases. J Sci Food Agr 1999; 79(13): 1875–81. doi: 10.1002/(sici)1097-0010(199910)79:13<1875::aid-jsfa447>3.0.co;2-u. PubMed PMID: WOS:000082956500016.

  60. Sun L-C, Yoshida A, Cai Q-F, Liu G-M, Weng L, Tachibana K, et al. Mung bean trypsin inhibitor is effective in suppressing the degradation of myofibrillar proteins in the skeletal muscle of blue scad (Decapterus maruadsi). J Agr Food Chem 2010; 58(24): 12986–92. doi: 10.1021/jf103526e. PubMed PMID: WOS:000285236400057.

  61. Chrispeels MJ, Baumgartner B. Trypsin-inhibitor in mung bean cotyledons-purification, characteristics, subcellular-localization, and metabolism. Plant Physiol 1978; 61(4): 617–23. doi: 10.1104/pp.61.4.617. PubMed PMID: WOS:A1978EY11600030.

  62. Kunitz M. Crystalline soybean trypsin inhibitor: II. General properties. J Gen Physiol 1947; 30(4): 291–310. doi: 10.1085/jgp.30.4.291. PubMed PMID: MEDLINE:19873496; English.

  63. Lorensen E, Prevosto R, Wilson KA. The appearance of new active forms of trypsin-inhibitor in germinating mung bean(Vigna-radiata) seeds. Plant Physiol 1981; 68(1): 88–92. doi: 10.1104/pp.68.1.88. PubMed PMID: WOS:A1981LY62800018.

  64. Wilson KA, Chen JC. Amino-acid-sequence of mung bean trypsin-inhibitor and its modified forms appearing during germination. Plant Physiol 1983; 71(2): 341–9. doi: 10.1104/pp.71.2.341. PubMed PMID: WOS:A1983QD06800022.

  65. Lin KF, Liu YN, Hsu STD, Samuel D, Cheng CS, Bonvin AMJJ, et al. Characterization and structural analyses of nonspecific lipid transfer protein 1 from mung bean. Biochemistry 2005; 44(15): 5703–12. doi: 10.1021/Bi047608v. PubMed PMID: ISI:000228425600015; English.

  66. Ye XY, Ng TB. Mungin, a novel cyclophilin-like antifungal protein from the mung bean. Biochem Biophys Res Commun 2000; 273(3): 1111–15. doi: 10.1006/bbrc.2000.3067. PubMed PMID: ISI:000088363700055; English.

  67. Wang HX, Liu WK, Ng TB, Ooi VEC, Chang ST. Immunomodulatory and antitumor activities of a polysaccharide-peptide complex from a mycelial culture of Tricholoma sp., a local edible mushroom. Life Sci 1995; 57(3): 269–81. doi: 10.1016/0024-3205(95)00270-G.

Published
2018-02-15
How to Cite
Zhu Y.-S., Shuai S., & FitzGerald R. (2018). Mung bean proteins and peptides: nutritional, functional and bioactive properties. Food & Nutrition Research, 62. https://doi.org/10.29219/fnr.v62.1290
Section
Original Articles