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Abstract 

Current evidence suggests that dietary vitamin E (as α-tocopherol) intake has a beneficial role in preventing 
certain chronic diseases. In contrast, there is no clear evidence for the benefit of α-tocopherol supplements in 
a generally healthy population. Deficiency symptoms are rare and mainly occur due to genetic or other factors 
affecting α-tocopherol absorption and/or metabolism, rather than a low α-tocopherol intake. No qualified 
systematic review was identified by the NNR2023 project for updating the dietary reference values (DRV). 
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Vitamin E is a liposoluble antioxidant that not only 
prevents the propagation of free radicals in mem-
branes and in plasma lipoproteins (1) but also 

exhibits non-antioxidant activities, such as modulation of 
gene expression, inhibition of cell proliferation and regu-
lation of bone mass (2). Although plants make eight dif-
ferent forms of vitamin E, namely four tocopherols (α-, β-, 
γ- and δ) and four tocotrienols (α-, β-, γ- and γ), only α-to-
copherol meets human vitamin E requirements according 
to the US National Academy of Sciences, Engineering, and 
Medicine (NASEM; formerly the Institute of Medicine) 
(3). α-Tocopherol is the only form found to reverse vitamin 
E deficiency symptoms in humans, including neuropathy, 
haemolytic anaemia and the progressive disease ataxia 
with vitamin E deficiency (AVED), which is due to genetic 
defects in the α-tocopherol transfer protein (α-TTP) (3). 

Several studies suggest that besides α-tocopherol, other 
tocopherols and tocotrienols might have important func-
tions and beneficial effects on various chronic disease out-
comes (4, 5). However, as evidence of their importance in 
human health still is limited, the dietary reference values 
are therefore confined to α-tocopherol. 

The naturally occurring α-tocopherol in foods is the 
stereoisomer RRR-α-tocopherol. Synthetic forms of 
α-tocopherol are present in fortified foods. α-Tocopherol 
supplements are sold as esters of  either the natural RRR 
or the synthetic mixture (also known as all-rac-α-to-
copherol) that contains an equal mixture of  eight differ-
ent stereoisomers, of  which four stereoisomers are in the 
2R-stereoisomeric form (RRR-, RSR-, RRS- and RSS-
α-tocopherol) and four are in the 2S-stereoisomeric 
form (SRR- SSR-, SRS- and SSS-α-tocopherol) (6). All 

Popular scientific summary
•  Vitamin E is a fat-soluble antioxidant that protects cell membranes and lipoproteins in plasma from 

oxidative damage.
• Other functions include modulation of gene expression, inhibition of cell proliferation and
 regulation of bone mass.
• There are eight natural forms of vitamin E; only α-tocopherol meets human requirements.
• Foods rich in vitamin E include vegetable oils, fat spreads, nuts, seeds and egg yolk, but cereal
 products also contribute in Nordic and Baltic diets.
• Vitamin E deficiency can be caused by fat malabsorption.
• Animal and observational studies suggest possible beneficial effects on some chronic diseases, but  

the evidence is limited, and clinical trials are lacking.
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of the stereoisomers have equal antioxidative activities, 
but only those with the 2R-configuration (RRR, RSR, 
RRS and RSS) have biologically relevant activities. Due 
to the lower affinity that α-tocopherol transport protein 
(α-TTP) has for 2S-isomers, the relative bioavailability 
of  the synthetic form of  α-tocopherol is suggested to 
be only half  that of  the naturally occurring α-tocoph-
erol (7). This means that only α-tocopherol in foods and 
2R-α-tocopherols in vitamin E preparations contribute 
to vitamin E activity, which traditionally is expressed in 
terms of  α-tocopherol equivalents (α-TE) and includes 
the small amounts of  activity suggested by animal exper-
iments to be provided by other tocopherol. For commer-
cially available α-tocopherol preparations, the following 
conversion factors to α-TE have been suggested: 0.5 for 
all-rac-α-tocopherol, 0.455 for all-rac-α-tocopheryl ace-
tate and 0.91 for RRR-α-tocopheryl acetate (8, 9). In 
older literature, vitamin E activity was expressed as IUs. 
One international unit (IU) is equivalent to 0.67 mg of 
the natural form and 0.45 mg of  the synthetic form of 
the vitamin (10).

Findings from animal or observational studies suggest 
α-tocopherol to be anti-atherosclerotic, anti-cancerogenic, 
anti-allergic, anti-lipidemic, anti-diabetic, antihypertensive, 
anti-inflammatory and anti-obesogenic. On the other hand, 
these results have still to be confirmed by clinical trials in 
people with adequate nutritional status (11).

A global review reported that 82% of mean and median 
data points of α-tocopherol were below the recommended 
daily allowance (RDA) of 15 mg/day set by NASEM. The 
corresponding figure was 61% for the estimated average 

requirement (EAR) of 12 mg/day, across all populations 
aged 14 years and older (12). 

The following scoping review will focus on the current 
α-tocopherol status and requirements in the Nordic and 
Baltic countries.

Methods 
This scoping review follows the protocol developed within 
the NNR2023 project (13). Initially, no qualified system-
atic review was identified by the NNR2023 project (14). 
The literature search was performed in PubMed and 
updated June 28, 2022. The authors individually reviewed 
the results from the initial database search. Firstly, 
authors screened the titles to select abstracts; thereafter, 
abstracts were reviewed to choose potential full-length 
articles to review. Disagreements between authors were 
solved before moving on to the next review step.

The search string below was used to include systematic 
reviews and meta-analyses to select relevant literature 
for vitamin E and health-related outcomes. Articles were 
included if  dietary or supplemental vitamin E with focus 
on α-tocopherol was the exposure of interest and if  the 
outcome was relevant for Nordic and Baltic countries. 
Studies were also considered if  the article focused on rele-
vant subgroups of the population (e.g. pregnant/lactating 
women and children). A flowchart of the literature search 
is presented in Fig. 1. 

Search string
(“vitamin e”[MeSH Terms] OR “vitamin e”[ Title]) AND 
(“2011”[PDAT]: “3000”[PDAT]) AND Humans[Filter] 

Fig. 1. Flow chart for the selection procedure of relevant literature for vitamin E and health-related outcomes in the NNR2022.
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AND (meta-analysis[Filter] OR systematicreview[Filter]) 
AND “humans”[MeSH Terms])

All articles were checked for quality using the NNR-
adjusted AMSTAR2 checklist (13). Although not all 
articles were compliant with the checklist, they could be 
included if  no other reference was available. For most of 
the health outcomes, there were only a limited number 
of systematic reviews and meta-analyses available, which 
were based on randomised controlled trials. Therefore, for 
some of the health outcomes, we additionally searched 
for meta-analyses and systematic reviews or single 
Randomized Controlled Trial (RCT)s using snowballing 
technique and citation search. If  no articles were found 
based on these techniques, a specific search related to the 
outcome was conducted. A  detailed description of the 
quality check is provided in Supplementary Table 1. 

Physiology and metabolism 
The uptake, transport and tissue delivery of α-tocopherol 
involves molecular, biochemical and cellular processes 
that are closely related to overall lipid and lipoprotein 
metabolism (15). The absorption efficiency of α-tocoph-
erol shows large variability with values ranging between 
10 and 79% (2). In the gastrointestinal tract, α-tocoph-
erol requires biliary and pancreatic secretions in order to 
form micelles for subsequent uptake by the intestine (6). 
As α-tocopherol transfers to mixed micelles, the transport 
across the intestinal cell is influenced by several factors, 
which might explain the observed variations regarding 
α-tocopherol absorption efficiency. The presence of fat 
is required for an efficient absorption and the amount 
of  fat provided in the meal determines α-tocopherols 
bio accessibility, as fat facilitates its extraction from the 
food matrix, stimulates biliary secretion and promotes 
micelle formation (16). It is further noteworthy mention-
ing that genetic factors including polymorphisms in genes 
coding for α-tocopherol and lipid intestinal metabolism 
have been associated with a modulation of α-tocopherol 
bioavailability in humans (16). 

Initially, it was thought that α-tocopherol absorption 
occurred only by passive diffusion through the enterocyte 
membrane, but it turned out that several groups of trans-
membrane proteins (i.e. NPC1L1, SR-BI which also are 
involved in the cholesterol transport), play a key role in 
the intestinal absorption of α-tocopherol (11). The two 
absorption mechanisms, that is, protein-mediated absorp-
tion and passive absorption, might be complementary, 
with protein-mediated absorption occurring mainly at 
dietary doses and passive diffusion at pharmacological 
doses (2). After intestinal absorption, α-tocopherol is 
incorporated into chylomicrons via the apolipoprotein 
B pathway (11). Chylomicrons transport α-tocopherol 
from the intestine through the circulation to the liver (17), 
which is the main regulator of the body’s α-tocopherol 

levels as it not only controls α-tocopherol concentrations 
but also appears to be the major site of α-tocopherol 
metabolism and excretion (6, 16). In the liver, out of all 
vitamin E forms, the protein α-TTP preferentially binds 
to α-tocopherol and is responsible for its further transpor-
tation, while the remaining tocochromanols are metabo-
lised and excreted in the bile. Specifically, α-TTP mediates 
the incorporation of α-tocopherol into very low-density 
lipoproteins (VLDL) and supports the secretion of these 
complexes back into the circulation. VLDLs in the blood 
are further catabolised to low (LDL) and high-density 
(HDL) lipoproteins. α-Tocopherol that is delivered into 
LDL lipoproteins is transferred to the tissues, where it 
performs its functions (11). Unlike vitamins A and D, 
α-tocopherol does not accumulate to toxic levels in the 
liver or extrahepatic tissues (17). About 90% of the total 
amount of all vitamin E forms is accumulated in the 
adipose tissue, mainly in adipocyte lipid droplets, and 
consists of two-thirds of α-tocopherol and one-third of 
y-tocopherol (11).

α-Tocopherol is metabolised similarly to xenobiotics. 
It is initially ω-oxidised and thereafter undergoes several 
rounds of β-oxidation. Metabolites are conjugated and 
excreted with bile and urine. As a result of these various 
mechanisms, liver α-tocopherol concentrations are closely 
regulated, and therefore potential adverse α-tocopherol 
effects are limited (6). The rates of α-tocopherol entering 
or leaving the plasma are dependent on absorption, tissue 
delivery and excretion. The apparent half-life of RRR-α-
tocopherol in plasma of normal subjects was found to be 
between 48 h up to 60 h (6).

The main biochemical function of α-tocopherol has 
been suggested to be its antioxidant activity. α-Tocoph-
erol is present in cell membranes. It has a significant pre-
ventive role in the oxidative damage of molecules such as 
DNA or lipids by neutralising free radicals and breaking 
the chain reaction in the oxidation of the polyunsaturated 
fatty acids (11). In addition, several other important bio-
logical functions, including modulation of cell signaling 
and gene expression, have been described (18). α-Tocoph-
erol further modulates the activity of several enzymes. By 
comparing α-tocopherol with other antioxidants, it was 
concluded that cell proliferation inhibition by α-tocoph-
erol was not caused by its antioxidant properties. Instead, 
it seemed to be caused by a non-antioxidant mechanism, 
such as inhibition of the activity of protein kinase C 
(PKC), which is fundamental for α-tocopherol protection 
against inflammation, lipid deposition in aorta, diabetic 
vascular complications and platelet aggregation (19). 
Several possible regulatory pathways have been described 
for α-tocopherol, which can alter the activity of transcrip-
tion factors and induction pathways through enzyme 
modulation, thus with potential to affect gene expres-
sion (11). Although it is unquestionable that the primary 
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mechanism of action of α-tocopherol results from its 
antioxidative role, these other properties require further 
confirmation in in vivo studies (11).

It has further been highlighted that α-tocopherol might 
compete for absorption with other lipid micronutrients 
such as carotenoids, vitamins A, D and K, which, except 
for vitamin A, presumably occur due to common uptake 
pathways involving cholesterol transporters mentioned 
earlier (16).

Assessment of nutrient status 
Dietary intake surveys are a widely used method to assess 
the nutrient status of populations (12). Collected data 
on food consumption is converted to nutrient intake 
through linkage to food composition databases, which 
subsequently generate data on average nutrient intakes 
(20). Limitations of such methods are the possible under-
reporting of food intake and quality differences of food 
composition database used (12).

The determination of a daily nutrient requirement 
depends not only on assessing its function but also on 
defining a biomarker that functions as an indicator of 
inadequacy and captures nutrient intake changes (3). 
Three potential biomarkers have been discussed in the 
literature. In 2000, NASEM chose results from the in 
vitro hydrogen peroxide–induced erythrocyte hemolysis 
test as marker for α-tocopherol status, because increased 
peroxide-induced erythrocyte hemolysis correlated with 
increased erythrocyte fragility in α-tocopherol-deficient 
individuals. Based on this, the EAR for α-tocopherol in 
humans was set on the basis of α-tocopherol depletion 
and repletion studies in men using erythrocyte hemolysis 
as the biomarker. The current RDA of 15 mg α-tocoph-
erol was extrapolated from that value. 

Further acknowledged markers of measuring α-to-
copherol status in clinical and observational studies are 
fasting blood α-tocopherol concentration, measured in 
either plasma or serum (21). It is, however, difficult to 
interpret plasma or serum α-tocopherol concentrations. 
They largely depend on plasma lipid concentrations, 
which are known to increase with age and consequently 
cause an increase in plasma carriers for α-tocopherol, in 
turn leading to higher circulating α-tocopherol concen-
trations (3). Therefore, correction for plasma lipids is 
warranted in subjects with high lipid levels when assess-
ing α-tocopherol status in populations. Moreover, if  both 
plasma lipids and α-tocopherol are abnormally low, then 
correction of circulating α-tocopherol concentrations for 
plasma lipids will yield a value indicating a normal α-to-
copherol:lipid ratio (3). Other factors affecting plasma 
α-tocopherol concentration are gender, lifestyle, genetic 
variation and variation in the absorption, metabolism 
and excretion of α-tocopherol, obesity, metabolic syn-
drome or high levels of oxidative stress (11). Finally, urine 

or plasma α-carbocyethyl hydroxychroman (α-CEHC), 
which is the major metabolite of α-tocopherol following 
supplementation, has been suggested as an alternative 
biomarker of adequate α-tocopherol status. There is, how-
ever, insufficient evidence on its relationship with dietary 
α-tocopherol intake and saturation of body tissues with 
α-tocopherol (11, 22). Further, the methodology is not 
sensitive enough to detect low levels of α-tocopherol, and 
is thus not widely used (11). 

Dietary intakes in the Nordic and Baltic countries 
Relevant food sources of α-tocopherol are vegetable oils, 
vegetable oil-based spreads, nuts, seeds and egg yolk. The 
α-tocopherol content is highest in sunflower oil followed 
by corn and rapeseed oil, olive oil and soybean oil. About 
half  of the α-tocopherol in the diet of Finnish adults was 
provided by cereal, bakery products, fat spreads, oils and 
dressings (23). Among the EPIC study participants from 
the Nordic countries, added fats contributed the most to 
α-tocopherol intake followed by cereal, cereal products 
and cakes (24). Other significant sources were fruits, vege-
tables, fish and shellfish. In the recent dietary surveys from 
the Nordic and Baltic countries (20), the mean dietary 
intake of α-tocopherol among adult populations varied 
between 8.8 and 13.2 mg/day in Nordic countries and 7.8 
and 13.9 mg/day in Baltic countries, with an overall aver-
age intake across countries of 12.2 mg/day. In general, all 
countries reached the NNR2012 levels of recommended 
intakes (RI) of dietary α-tocopherol, which was 10 mg/
day for men and 8 mg/day for women, except Danish 
men and Estonian women. When comparing α-tocoph-
erol intake across age subgroups, levels of RI were met, 
although slightly lower levels were reported for Danish 
men in general, as well as Finnish men in the age group 
65–75 years. When expressed in relation to energy intake, 
dietary intake of α-tocopherol by adults in the Nordic 
countries ranged from 8.5 mg/10 MJ to 16 mg/10 MJ and 
in the Baltic countries from 11 mg/10 MJ to 17 mg/10 MJ. 
During pregnancy, intake of dietary and supplements 
containing α-tocopherol was usually higher (25–27). Age-
specific RI levels for α-tocopherol intake in children were 
generally met, except in Danish and Estonian adolescents 
aged 14–17 years and Estonian females aged 10–13 years. 
No information on children or adolescents was available 
for Iceland and Latvia (20).

Health outcomes relevant for Nordic and Baltic 
countries 

Deficiency
Vitamin E deficiency due to low dietary intake has not 
been described in healthy adults. However, deficiency can 
be caused by prolonged fat malabsorption due to genetic 
defects in lipoprotein transport or in the hepatic α-TTP 
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or fat-malabsorption syndromes, such as cholestatic liver 
disease or cystic fibrosis (3). In adults, clinical symptoms 
of vitamin E deficiency, such as peripheral neuropathy, 
spinocerebellar ataxia and skeletal myopathy have been 
reported at serum α-tocopherol concentrations below 8 
μmol/L (12). Vitamin E deficiency is more frequently found 
in children, likely due to limited stores and rapid growth 
(3). Specifically, premature and very low birth weight 
infants are at risk symptoms such as haemolytic anaemia, 
thrombocytosis and oedema (28). 

Toxicity
The toxicity of natural α-tocopherol is low, due to effi-
cient metabolic control that prevents any excess accumu-
lation of the vitamin in the body. No adverse effects have 
been described from intakes provided by food sources. 
Excess α-tocopherol can cause increased bleeding tenden-
cies, likely as a result of interference with vitamin K (17). 
Further, consumption of high-dose α-tocopherol supple-
ments (≥300 mg/d) may lead to interactions with drugs 
such as aspirin, warfarin, tamoxifen and cyclosporine A 
and may alter their activities (29).

Chronic diseases
Studies investigating the relationship between α-tocoph-
erol and chronic diseases rely either on dietary intake of 
α-tocopherol, mainly measured through a food frequency 
questionnaire, or self-reported supplementation or inter-
ventional supplementation with synthetic or natural 
α-tocopherol. A meta-analysis found that α-tocopherol 
supplementation was related to a reduced risk of myocar-
dial infarction (30). Two meta-analyses focusing on vita-
min E supplementation and stroke found no association 
(31, 32), whereas another meta-analysis concluded that 
those with a high dietary α-tocopherol intake had a 17% 
lower risk of stroke (33). 

There is sparse data on α-tocopherol and its effect on 
diabetes. In persons with type 2 diabetes, α-tocopherol 
supplementation neither improved blood lipid parameters 
(34), nor glycaemic control (35).

Currently, there is no evidence of dietary or supple-
mental α-tocopherol for a protection from overall cancer 
(36–38), nor ovarian- (39), colorectal (38, 40) and breast 
cancer (41), nor prostate cancer risk (42) when consider-
ing findings from meta-analyses. Dietary, but not supple-
mental α-tocopherol, might be related to a lower risk of 
bladder (38, 43), kidney (44), as well as lung (45), uter-
ine (46), oesophageal (47), pancreatic (48, 49) and gastric 
cancer (50). 

There is some evidence that dietary α-tocopherol, but 
not supplemental α-tocopherol, might have protective 
effects on cognitive impairment like Alzheimer’s (51–54) 
and Parkinson’s disease (55). Further, dietary α-tocoph-
erol intake reduced the risk of age-related cataract, but 

no association was found with supplemental α-tocoph-
erol (56–58), neither on the risk of developing age-related 
macular degeneration (59). Moreover, dietary α-tocoph-
erol was related to lower fracture risk (60). Results from 
a number of meta-analyses on all-cause mortality do not 
provide any support for recommending dietary or supple-
mental α-tocopherol (61–64). Although one meta-analysis 
reported no association with mortality with α-tocoph-
erol supplementation ranging from doses of 23–800 IU 
(10–360 mg) in generally healthy individuals (62), another 
meta-analysis reported increased mortality risk at doses 
above the US RDA of 15 mg/day of α-tocopherol includ-
ing trials for primary and secondary prevention (65). 

Requirement and recommended intake 
There is some evidence for dietary α-tocopherol to prevent 
the development of certain chronic diseases, and poten-
tial beneficial effects have been observed already at low 
doses ranging from approximately 2–15 mg/day. However, 
the evidence for α-tocopherol supplementation for the 
prevention of cardiovascular disease and stroke is con-
tradicting and there is no compelling evidence support-
ing an effect of α-tocopherol supplementation on cancer 
risk, other health related outcomes or overall mortality. 
Further, there is no evidence that α-tocopherol is protec-
tive against preeclampsia in women at either low, mod-
erate or high risk (66, 67), nor that it prevents stillbirth, 
neonatal death, preterm birth, preterm or term PROM 
(premature rupture of membranes before labor begins) or 
poor fetal growth. Further research is required to eluci-
date the possible role of α-tocopherol in the prevention of 
placental abruption (66, 68). Taken together, the available 
scientific data suggest that there are no overall benefits 
of prolonged high intakes of supplemental α-tocopherol 
in the general population. Some literature suggests an 
increased risk, especially when including primary and sec-
ondary prevention studies. 

Several studies from Nordic populations reported aver-
age α-tocopherol intakes ranging from 6–14 mg per day 
and related mean serum α-tocopherol concentrations 
between 23–30 μmol/L among adults (12). Only a few cases 
of neurological symptoms with ataxia due to α-tocopherol 
deficiency have been reported in the Nordic countries (69). 
It is not possible to directly assess adequacy of human 
α-tocopherol status from circulating α-tocopherol concen-
trations, but an inadequate status can be determined from 
low values (3). NASEM considered plasma levels below 12 
μmol/L as deficient (7), whereas plasma levels >30 μmol/L 
have shown beneficial health effects (70). Although plasma 
levels in the Nordic countries did not exceed levels found to 
be beneficial, they also do not seem to fall below suggested 
levels of manifest or symptomatic deficiency. Thus, the 
available data indicate that α-tocopherol status is sufficient 
in the Nordic populations. 
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Adults
To establish the average requirements and recommended 
α-tocopherol intakes among adults, the criteria used are the 
relationship between α-tocopherol and PUFA intake. The 
α-tocopherol requirement related to dietary linoleic acid, 
which globally is the major dietary PUFA in humans, has 
been calculated to be 0.4–0.6 mg of RRR-α-tocopherol per 
g of linoleic acid (71). The Scientific Committee on Food 
considered a ratio of 0.4 mg α-TE/g total PUFA to be ade-
quate for adults (72) provided α-tocopherol does not fall 
below 4 mg/d for adult men and 3 mg/d for adult women. 

In 2003, the Scientific Committee on Food proposed an 
upper level of α-tocopherol of 300 mg/d for adults, based 
on effects of increased intakes of α-tocopherol supple-
mentation on the impact of blood clotting (22). In NNR 
2012, the upper intake level of 300 mg/d α-tocopherol as 
supplement, established by the European Food Safety 
Authority (EFSA), was included. However, additional, 
long-term studies are warranted.

Children
The RIs for infants and children are generally based on 
the α-tocopherol content in breast milk and the rela-
tionship between α-tocopherol and linoleic acid or total 
PUFA. Based on EFSA 2014, α-tocopherol  content 
in breast milk is on average 4.6 mg/L (10.6 µmol/L) 
in women who do not take any  supplementation (22). 

Similarly to adults, the Scientific Committee on Food 
considered a ratio of 0.4 mg α-TE/g total PUFA to be 
adequate also for children (72). This ratio was shown to 
maintain normal plasma tocopherol levels in growing 
children (71). 

Pregnancy and lactation
Since there is no evidence for a beneficial effect of α-to-
copherol supplementation during pregnancy and lacta-
tion, the recommendation may be based on a higher intake 
of energy and PUFA during these sensitive periods. The 
RI during lactation should also include the extra require-
ment to cover secretion in breast milk. 

Limitations
Some of the evidence related to chronic diseases pre-
sented in this scoping review relies on findings from 
observational studies, rather than randomised controlled 
trials. α-Tocopherol intake is commonly estimated through 
self-reported FFQs, which are prone to recall bias. Further, 
the effect of α-tocopherol cannot fully be separated from 
other nutritional factors. 
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