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Abstract

Vitamin C has multiple metabolic functions in the body, but the available information on the exact relationship 
between these functions and the intake necessary to maintain them is very limited. However, most attempts to 
objectively measure adequacy of vitamin C status, including, for example, replacement of metabolic turnover, 
chronic disease prevention, urinary excretion, and saturation of immune cells and body compartment, cur-
rently point toward 50 µmol/L as a reasonable target plasma concentration. As a strong correlation between 
body weight and vitamin C status exists, recommended intakes (RIs) for other age groups may be extrapolated 
from the adult RI based on weight. However, as body weights above 70 kg are becoming increasingly common 
– also in the Nordic region – an RI of 140 mg/day for individuals weighing 100 kg or more should be consid-
ered to compensate for the larger volume of distribution. Finally, smoking continues to be a common contrib-
utor to poor vitamin C status; therefore, it is proposed that people who smoke increase their daily vitamin C 
intake by 40 mg/day to compensate for the increased metabolic turnover induced by smoking.

Keywords: vitamin C; ascorbic acid; antioxidants; nutrition recommendations

Received: 03 June 2022; Revised: 29 November 2022; Accepted: 16 October 2023; Published: 28 December 2023

Vitamin C is a ubiquitous water-soluble carbohy-
drate that in spite of its simple and low-molecu-
lar-weight structure is essential for human health 

(1). It is present in most food items in varying amounts 
with the highest concentrations found in fruits and veg-
etables, in particular peppers, kiwi and citrus fruits, and 
many berries (2). In contrast to most living organisms, 
humans and a few other species have lost the ability to pro-
duce vitamin C from glucose, hence making it an essential 
nutrient. Prolonged and severe vitamin C deficiency leads 
to the ultimately mortal condition scurvy, and while this 
may be prevented by ingestion of even small amounts of 
vitamin C per day (3), the exact dose is being debated (4).

Vitamin C exists in two forms, L-ascorbic acid and 
L-dehydroascorbic acid, both of  which have antiscor-
butic properties as most cells readily convert dehy-
droascorbic acid into the biologically active reduced 
form, ascorbic acid (5). A vast literature has emerged 
showing that ascorbic acid is an exceptional biological 
antioxidant capable of  scavenging reactive oxygen and 
nitrogen species (6), but also that it functions as a spe-
cific cofactor for numerous mono-, di-, and mixed-func-
tion oxygenases involved in, for example, the formation 
of  connective tissue, synthesis of  neurotransmitters, and 
epigenetic control of  gene expression just to mention a 
few (7, 8).

Popular scientific summary
•  Vitamin C (ascorbic acid) is a water-soluble vitamin with multiple roles in the body as an antioxi-

dant and a cofactor for various biochemical processes.
•  The major sources of vitamin C in the diet are fresh berries, fruits, and vegetables.
•  Plasma concentrations of vitamin C of 50 µmol/L or higher are considered adequate.
•  Individual vitamin C status can be influenced by several lifestyle-related and biological factors, such 

as diet, sex, genetics, body weight, and smoking habits.
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Besides variation in diet composition, produce qual-
ity and preparation, as well as the potential use of  for-
tified food items or supplements, several biological and 
lifestyle-associated factors are known to influence indi-
vidual vitamin C status (2, 9). Examples are gender, gen-
otype, body weight, pregnancy, lactation, and smoking 
habits (10).

The mechanisms governing the absorption, distribution, 
and excretion of vitamin C are very complex and mark-
edly different from those being used to account for uptake 
and elimination kinetics of the majority of other small 
molecules (11). Unfortunately, this has been overlooked in 
many larger studies in the literature giving rise to mislead-
ing interpretations and unwarranted generalizations (12). 
Consequently, a critical eye is necessary to deduce the 
information required to propose evidence-based recom-
mendations from the available literature on vitamin C. At 
the same time, plasma vitamin C status can be considered 
a biomarker of fruit and vegetable intake, and its poten-
tial health benefit may therefore be difficult to isolate from 
that of a diet rich in these food items (13). The aim of 
this scoping review is to describe the totality of evidence 
for the role of vitamin C for health-related outcomes as 
a basis for setting and updating dietary reference values 
(DRVs) for the Nordic Nutrition Recommendations 2023 
(Box 1).

Methods
This review follows the protocol developed within the 
NNR2023 (14). The sources of evidence used in the scop-
ing review follow the eligibility criteria described previ-
ously (15). One qualified systematic review on wholegrains, 
vegetables, and fruit and the risk of cancer (16), which 
include an assessment of vitamin C-containing foods, 
was identified by the NNR2023 project (17). However, 
this report did not present continuous vitamin C dose-re-
sponse data and was therefore not considered relevant 
for the current review. Official reports published by the 
European Food Safety Association (EFSA) (18, 19) and 
the National Academy of Sciences, Engineering, and 

Medicine (NASEM) in the United States (former Institute 
of Medicine [IOM]) (20) were also consulted.

The literature search for this scoping review was per-
formed on August 01, 2022 in Medline. Due to the over-
whelming number of vitamin C-related publications, 
the literature search was limited to systematic reviews/
meta-analyses with the term ‘vitamin C’, or related 
terminology in the title, using the search string: (vita-
min C[Title] OR vitamins C[Title] OR ascorbate[Title] 
OR ascorbic acid[Title]) AND (2011:3000[pdat]) AND 
(meta-analysis[Filter] OR systematicreview[Filter]) AND 
English[Filter]. An additional search was carried out to 
capture vitamin C-related articles which used the term 
‘antioxidant/s’ in the title and ‘vitamin C’ or related ter-
minology in the abstract, using the search string: (antioxi-
dant[Title] OR antioxidants[Title]) AND (vitamin C[Title/
Abstract] OR vitamins C[Title/Abstract] OR ascor-
bate[Title/Abstract] OR ascorbic acid[Title/Abstract]) 
AND (2011:3000[pdat]) AND (meta-analysis[Filter] OR 
systematic review[Filter]) AND English[Filter]. A com-
parable search to this was carried out by substituting the 
terms ‘micronutrient/s’ for ‘antioxidant/s’. Other reports 
(e.g. those with meta-analysis in the title, but missed using 
the meta-analysis filter) were found through additional 
related searches.

The above search strategies generated a total of 257 sys-
tematic reviews/meta-analyses once duplicates and unre-
lated papers had been removed (Fig. 1). The papers were 
categorized into topics based on title and keywords: these 
included cardiovascular health, metabolic health, cancer 
prevention, immune health, cognitive and mental health, 
total mortality, and other conditions (e.g. bone health, 
periodontal health, eye health, and fertility). Categories 
that were not considered further included combination 
therapies, use of high-dose intravenous vitamin C, critical 
care (e.g. sepsis, COVID-19, burns), surgery, postoperative 
atrial fibrillation, complex regional pain syndrome, exer-
cise outcomes, and treatment of various other diseases. 
Within each included category, the most up-to-date or 
the most comprehensive (e.g. dose vs. risk) meta-analyses 

•  This paper is one of  many scoping reviews commissioned as part of  the Nordic Nutrition Recommendations 2023 
(NNR2023) project (14).

•  The papers are included in the extended NNR2023 report but, for transparency, these scoping reviews are also 
published in Food & Nutrition Research.

•  The scoping reviews have been peer-reviewed by independent experts in the research field according to the stan-
dard procedures of  the journal.

•  The scoping reviews have also been subjected to public consultations (see report to be published by the NNR2023 
project).

•  The NNR2023 committee has served as the editorial board.
•  While these papers are a main fundament, the NNR2023 committee has the sole responsibility for setting dietary 

reference values in the NNR2023 project.

Box 1. Background papers for Nordic Nutrition Recommendations 2023
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were selected. Meta-analyses of dose-response observa-
tional studies were only included if  they provided detailed 
dose-response data from which estimates of linear depar-
ture and maximum effect threshold values for vitamin C 
intakes and circulating concentrations could be derived. 
Meta-analyses of randomized controlled trials (RCTs) 
were only included if  they reported vitamin C as the only 
intervention or vitamin C monotherapy as a subgroup. 
Publication quality was assessed using the modified 
AMSTAR2-NNR, a critical appraisal tool for systematic 
reviews that include randomized or non-randomized stud-
ies and/or observational studies (14, 21). Meta-analyses 
that scored low or critically low using AMSTAR2-NNR 
were excluded. Note that AMSTAR2-NNR assess the 
quality of the published meta-analysis, not the quality of 
the included studies.

The selection process resulted in 8 dose-response 
meta-analyses of  observational studies (Table 1) and 12 
meta-analyses of  RCTs (Table 2) covering cardiovascu-
lar health, blood pressure, cardiometabolic risk factors, 
cancer prevention, immune health, neurological and 
mental health, and total mortality. The RCTs included in 

the selected meta-analyses primarily comprised vitamin 
C doses >200 mg/day. As such, these meta-analyses were 
not able to directly contribute to health-related adjust-
ments to the DRVs, but have provided supportive evi-
dence of  vitamin C’s health effects. Combining detailed 
dose versus concentration data with supportive evidence 
from the dose/concentration versus risk meta-analyses 
have led to the suggested change in the DRVs as detailed 
below.

Physiology
Much of the present knowledge on vitamin C functions 
and behavior under physiological conditions has been 
realized through laboratory and experimental animal 
studies. In particular, useful experimental models have 
included isolated human cells (42–46), the gulonolactone 
oxidase (GULO) knockout mouse, genetically modified 
not to produce vitamin C (47), and the guinea pig, as this 
species is among the very few that, like humans, naturally 
lacks the ability to biosynthesize ascorbic acid (48–50).

L-Ascorbic acid is a low-molecular-weight electron 
donor that has the capacity to reduce any biologically 

Fig. 1. Search strategy to identify relevant meta-analyses for inclusion.
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relevant oxidant species as well as regenerate other anti-
oxidants, such as vitamin E, from their oxidized forms 
(6, 51). It is normally present in relatively large concen-
trations and provides antioxidant protection in body flu-
ids such as plasma, semen, and cerebrospinal fluid, where 
antioxidant enzymes are not present, as well as in sev-
eral immune and various other cell types (52). Moreover, 
ascorbic acid provides reducing equivalents improving 
non-haem iron uptake and is necessary for maximal 
activity of  many oxygenase-type enzymes containing 
metal-ion catalytic sites involved in a wide variety of 
metabolic pathways including, for example, mature tri-
ple-helix collagen formation, catecholamine neurotrans-
mission, mitochondrial function, cholesterol elimination, 
endothelial function, peptide hormone function, and epi-
genetic regulation (7, 8).

Due to its low pKa value of 4.2, the ionized form, 
ascorbate, is the predominant form constituting >99.9% 
at physiological pH. Providing electrons either as anti-
oxidant or enzyme cofactor oxidizes ascorbate to dehy-
droascorbic acid; however, the oxidized form is rapidly 
transported into cells through concentration gradi-
ent-driven glucose transporters (GLUT) and efficiently 
reduced back to ascorbate intracellularly and thus ‘recy-
cled’ by most cell types in the body (53) (Fig. 2).

The absorption, distribution, metabolism, and excre-
tion of vitamin C differ substantially from that of most 
other low-molecular-weight compounds in that it is highly 
dose-dependent, tissue-specific, and regulated by vitamin 
C status per se (11). Transport of vitamin C across mem-
branes is governed by active and saturable sodium-de-
pendent vitamin C co-transporters (SVCTs) that are 
energy-dependent membrane-spanning enzymes respon-
sible for building up the considerable vitamin C concen-
tration gradients observed between body compartments 
(54). Thus, some organs such as the brain have vitamin 
C concentrations up to 10 mM superseding that of other 
important cellular antioxidants including glutathione  
(50, 55). SVCT forms and expression differ between tis-
sues resulting in a highly diverse distribution pattern with 
specific tissues getting priority over others (56, 57). This is 
particularly observed during periods of deficiency, where 
selective retention of vitamin C occurs in, for example, 
the brain and adrenal glands, which indicates important 

functions for the vitamin in these organs, whereas other 
tissues such as liver are depleted as rapidly as plasma (48, 
50, 58).

When the body experiences an inadequate intake of 
vitamin C, selective mechanisms for retaining ascorbate 
are activated. The kidneys have an inducible SVCT in the 
proximal tubules capable of efficiently reabsorbing ascor-
bate from the urine (54). This dynamic process limits the 
loss of vitamin C through the urine to almost zero during 
deficiency, while reabsorption is completely shut down 
during conditions of high vitamin C intake, thereby effi-
ciently excreting surplus amounts (59). Also, the intestinal 
SVCT has the ability to vary vitamin C uptake with avail-
ability, thus helping to keep the vitamin C status of the 
body within a relatively narrow homeostatic range (60). 
As absorption, distribution, and excretion of vitamin C 
are tightly controlled by the active SVCTs, this opens the 
possibility of genetic polymorphisms playing a role in 
vitamin C homeostasis between subpopulations. Indeed, 
several genetic variants have been identified that appear 
to result in an either higher or lower homeostatic set point 
(61). However, the dose versus concentration data accu-
mulated so far do not allow for specific conclusions with 
regard to the potential health perspectives of having the 
various genotypes.

Vitamin C pharmacokinetics in healthy people
Collectively, the above mechanisms result in a maximal 
achievable steady-state fasting plasma vitamin C concen-
tration of approximately 70–80 µmol/L in healthy people 
(Fig. 3). Supplementation with multiple daily supraphys-
iological doses may transiently drive up the plasma con-
centration, but it will quickly revert once multiple daily 
dosing is stopped (62). Pharmacokinetic studies have 
revealed that in healthy young men and women, doses less 
than about 60 mg/day are quantitatively absorbed (63). 
From 60 mg/day, some vitamin C excretion is observed 
and it gradually increases with increasing doses. The 
steady-state plasma concentration continues to increase 
to the maximal 70–80 µmol/L reached at intakes of about 
400–500 mg/day in healthy individuals (63). At higher 
supraphysiological doses, excess vitamin C is quantita-
tively excreted through the urine with a half-life of about 
2 h (64).

Fig. 2. Chemical structures of ascorbic acid, ascorbyl free radical, and dehydroascorbic acid.
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Impact of body weight
Body weight and volume appear to be determining factors 
for the dose versus concentration relationship of vitamin C 
(65, 66). The difference observed between men and women 
regarding their plasma status resulting from a comparable 
dietary intake seems to result primarily from differences in 
size and body composition rather than gender per se (67). 
Moreover, an inverse correlation between body weight 
and vitamin C status has been observed in both men and 
women. Likewise, pregnancy is also associated with a 
declining vitamin C status of the mother (10). Interestingly, 
this decline may also be partly explained by the increasing 
body weight occurring during pregnancy per se rather than 
solely by a preferential allocation of vitamin C to the fetus.

In line with global trends, the prevalence of obesity and 
overweight continues to increase in the Nordic and Baltic 
countries, with the prevalence of obesity ranging from 15 to 
30% and the prevalence of overweight ranging from 24 to 

53% for adult females and males (68). Large epidemiologi-
cal studies, including the US NHANES (69), the Canadian 
Health Measures Survey (70), the UK EPIC-Norfolk study 
(71), and the French SU.VI.MAX baseline (72), have all 
indicated inverse correlations between body weight or body 
mass index (BMI) and vitamin C status, supporting a vol-
umetric dilution effect (67). This premise has been further 
supported by an intervention study by Block et al. (66), in 
which attenuated vitamin C status was observed in over-
weight and obese people, despite comparable dietary intake 
to people of normal weight. In response, the authors pro-
posed that vitamin C recommendations should be based 
on a ‘dose per kg body weight’ or in terms of ‘desirable 
plasma concentrations’. Recent reanalysis of the Block 
study data (66), in combination with the Levine pharmaco-
kinetic study data (59), suggests that an additional 10 mg/
day of vitamin C may be required for every additional 10 
kg of body weight within the range of 60–90 kg (Fig. 4) 
(65). Obesity may increase vitamin C requirements further 
due to elevated inflammation and oxidative stress (73). In 
fact, analysis of ‘real-world’ NHANES data indicated that 
people in the heavier tertile had a twofold higher require-
ment for vitamin C than those in the lighter tertile to reach 
adequate circulating concentrations of the vitamin (Fig. 5)  
(74). This corresponded to >20 mg/day of vitamin C 
required for every additional 10 kg in weight gain.

Impact of smoking
Smoking continues to be relatively common in the Nordic 
and Baltic countries with a prevalence ranging from 10 
to 44% for adult females and males (75). Both active and 
passive smoking are known to increase oxidative stress 
and enhance the utilization of  vitamin C (76–81). As 
such, smokers have higher requirements for the vitamin 
than non-smokers due to a higher metabolic loss (11, 82, 
83). In support of  this, numerous observational studies 
(including NHANES, the Canadian Health Measures 

Fig. 3. Plasma ascorbate concentrations in healthy volun-
teers as a function of daily dose. Figure from (65); Creative 
Commons Attribution (CC BY) license (https://creativecom-
mons.org/licenses/by/4.0/).

Fig. 4. Decreasing plasma ascorbate concentrations with increasing body weight (A) and increasing vitamin C requirements 
with increasing body weight (B). The dashed line represents extrapolation of the weight data points. Figure from (65); Creative 
Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
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Survey, EPIC-Norfolk, and the French POLA study 
and SU.VI.MAX baseline) have reported lower vitamin 
C status and a higher prevalence of  deficiency in smok-
ers relative to non-smokers (70, 72, 84–86). In addition, 
smokers generally have a lower dietary intake of  vita-
min C, further contributing to a poor vitamin C status 
(79, 87). Some authorities have considered these factors 
with higher vitamin C recommendations for smokers 
comprising additional intakes of  20–80 mg/day over the 
DRV for adults in these countries (10). However, it is 
likely that smokers need substantially more vitamin C 
than these recommendations to fully compensate for the 
effect of  smoking on plasma vitamin C status (79, 82). 
In confirmation of  this premise, analysis of  NHANES 
2017/2018 data indicated that smokers had a twofold 
higher requirement for vitamin C than non-smokers to 
reach adequate circulating concentrations of  the vita-
min (Fig 6) (74).

Deficiency
Plasma vitamin C deficiency (concentrations ≤11 µmol/L) 
indicates that tissues will also be depleted as there is a 
close relationship between plasma and tissue values (88). 
Deficiency affects the pharmacokinetic profile of plasma 
vitamin C in that, following supplementation, plasma 
vitamin C values will not increase until the tissues are no 
longer depleted, due to preferential uptake of the vitamin 
into depleted tissues (11, 48, 50). Vitamin C deficiency is 
relatively uncommon in European countries (89). Two 
population studies on vitamin C status have been car-
ried out in Finland: one in North Karelia (1992–2002) 

in >1,600 adults aged 25–64 years (90, 91) and one in 
Eastern Finland (1984–1989) in >1,600 men aged 42–65 
years (92). The mean vitamin C status for men ranged 
from 37 to 48 µmol/L, with a prevalence of deficiency of 
2.2–5.7% (90–92). Vitamin C deficiency is a risk factor for 
clinical scurvy, which, although rare, is still observed in 
individuals in high-income countries.

Toxicity
Vitamin C, being a small water-soluble molecule, is readily 
filtered by the kidneys; therefore, any excess not required 
by the body is readily excreted in urine (11). Thus, vitamin 
C has no known upper limit (UL) for toxicity, although 
some authorities have set ULs of 1–2 g/day (10). Adverse 
side effects are mostly related to gastrointestinal distur-
bance due to unabsorbed vitamin C from high gram doses 
passing through the gastrointestinal tract (93). The evi-
dence for a role of oral vitamin C in kidney stone forma-
tion is currently poor and contradictory (93).

Assessment of nutrient status
Vitamin C intakes correlate with plasma ascorbate con-
centrations to a certain extent. However, intake is not an 
ideal proxy for in vivo ascorbate status for a number of 
reasons, including inherent inaccuracies in intake assess-
ments and the non-linear nature of the dose-concentra-
tion relationship (12, 59). Furthermore, numerous factors 
can influence vitamin C status irrespective of dietary 
intake (2). As such, the most commonly used marker 
of vitamin C status is plasma ascorbate concentrations. 
As vitamin C is not protein bound, free ascorbate can 

Fig. 5. Analysis of NHANES 2017/2018 data indicated a 
twofold higher requirement for vitamin C for the heavier ter-
tile (n = 930) relative to the lighter tertile (n = 932). Sigmoidal 
(four-parameter logistic) curves with asymmetrical 95% con-
fidence intervals were fitted to dose-concentration data to 
estimate the vitamin C intakes required to reach ‘adequate’ 
serum vitamin C concentrations of 50 µmol/L (dashed line). 
Figure from (74); Creative Commons Attribution (CC BY) 
license (https://creativecommons.org/licenses/by/4.0/).

Fig. 6. Analysis of NHANES 2017/2018 data indicated 
a twofold higher requirement for vitamin C for smokers 
(n  =  681) relative to non-smokers (n = 2,068). Sigmoidal 
(four-parameter logistic) curves with asymmetrical 95% con-
fidence intervals were fitted to dose-concentration data to 
estimate the vitamin C intakes required to reach ‘adequate’ 
serum vitamin C concentrations of 50 µmol/L (dashed line). 
Figure from (74); Creative Commons Attribution (CC BY) 
license (https://creativecommons.org/licenses/by/4.0/).
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be readily measured in plasma that has been acidified 
to remove protein, with the preferred assessment meth-
odology being high-performance liquid chromatography 
with electrochemical detection (94). As increased urinary 
ascorbate excretion occurs when plasma concentrations 
have reached the urinary reabsorption threshold (59), 
urinary ascorbate can potentially be used as a proxy for 
‘adequate’ plasma concentration.

Ascorbate is actively accumulated by circulating leuko-
cytes in a dose-dependent manner up to doses of ~100 
mg/day (59, 95). Leukocyte ascorbate content correlates 
with plasma concentrations up to saturating concentra-
tions (88). As such, these cells are often used as a proxy 
for body tissue ascorbate status due to ease of isolation. 
Near saturation of neutrophil ascorbate status was used 
by the IOM to inform their most recent increase in vita-
min C recommendations (20). Nevertheless, different tis-
sues accumulate vitamin C to variable extents based on 
their requirements (96). For example, although muscle 
biopsy is possible and muscle ascorbate status appears 
to correlate with intake and plasma concentrations (88), 
this is an invasive procedure and muscle ascorbate con-
centrations are relatively low compared with other tissues 
with higher vitamin C requirements, such as the adrenal 
and pituitary glands (96). It is noteworthy that the Km 
of ascorbate-dependent dioxygenases (i.e. the concen-
tration of ascorbate that permits the enzyme to achieve 
half  Vmax) ranges between 180 and 300 µmol/L (97, 98), 
which is indicative of intracellular requirements.

To date, there is no definitive biomarker for vitamin C 
functional requirements. In 1991, Levine and co-work-
ers (99) explored the possibility of determining vitamin 
C requirements via assessing the in vitro conversion of 
tyrosine to norepinephrine, which comprises vitamin 
C-dependent steps. In these experiments, adrenal medulla 
chromaffin cells in culture were incubated with increas-
ing concentrations of ascorbate, and a dose-dependent 
increase in norepinephrine generation was observed up 
to 1 mmol/L ascorbate. The extracellular scavenging of 
neutrophil-derived superoxide radicals by increasing con-
centrations of ascorbate was used by the IOM as evidence 
of vitamin C’s antioxidant scavenging effects (20). A 
dose-dependent scavenging effect was observed for con-
centrations of up to ~120 µmol/L ascorbate with neutro-
phils (1 × 106/mL) activated in vitro (100). However, it has 
not been possible to translate these in vitro findings into 
in vivo vitamin C requirements.

The use of leukocytes as surrogates to assess vitamin 
C-dependent epigenetic modifications may in future pro-
vide useful information around dietary requirements (10). 
In preliminary studies, positive correlations were observed 
between vitamin C status and vitamin C-dependent epi-
genetic marks in leukocyte DNA, whereby participants 
with plasma vitamin C concentrations >40 µmol/L 

exhibited higher concentrations of these epigenetic marks 
than those with plasma concentrations <20 µmol/L 
(101). As such, more research in this area appears war-
ranted. Vitamin C’s well-known cofactor role in collagen 
cross-linking has also been proposed as a potential func-
tional test for adequacy of vitamin C status (102). In this 
research, urinary excretion of specific cross-link ratios 
was higher in children with higher vitamin C intakes. A 
supplementation study (100 mg/day of vitamin C for 7 
weeks in children with low baseline intakes) did not, how-
ever, alter the cross-link ratio. This may have been due to 
the supplementation period being insufficient as collagen 
can have a long turnover in some tissues.

In the absence of definitive functional assays for vita-
min C requirement, and the difficulty in obtaining tissue 
ascorbate concentrations, plasma ascorbate concentra-
tions are currently used to define sufficiency. At present, 
the most widely accepted plasma ascorbate thresholds 
are ≤11 µmol/L for deficiency, ≤23 µmol/L for hypovita-
minosis C, ≥50 µmol/L for adequate, and ≥70 µmol/L for 
saturating status. A plasma ascorbate concentration of 
50 µmol/L equates to an intake of approximately 100 mg/
day (59); this has been used by the EFSA and DACH to 
help establish their dietary recommendations for vitamin 
C (18, 103).

Dietary intake in Nordic and Baltic Countries
The major sources of vitamin C in the diet are fresh fruit and 
vegetables, specifically guava, kiwifruit, citrus, strawberries, 
chili pepper, kale, and other brassica (2). Potatoes have a rela-
tively low content of vitamin C; however, due to the generally 
large quantities consumed, these can be an important source 
of the vitamin (104). Additionally, the vitamin C content of 
fresh fruit and vegetables can vary by season and careful 
food preparation is required to avoid further loss of the vita-
min (105, 106). Low dietary intake of fruit and vegetables 
will have a detrimental effect on vitamin C status, which has 
been observed in people on restricted diets. It should also be 
noted that vitamin C content can vary dramatically between 
different fruit and vegetables (2); therefore, consumption of 
a variety of fruit and vegetables is encouraged. Poor dietary 
sources of vitamin C include grains, legumes, nuts, seeds and 
animal products; meat (other than liver), eggs, and milk (2). 
According to Nordic and Baltic national dietary surveys, the 
average dietary intake of vitamin C is in the range of 93–115 
mg/day in the Nordic countries and 72–132 mg/day in the 
Baltic countries (107).

Health outcomes of relevance to Nordic and Baltic 
countries

Cardiovascular health
Two recent dose-response meta-analyses of observational 
studies have indicated that higher vitamin C intakes 
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(10–13 studies) and circulating concentrations (4–6 stud-
ies) are associated with a lower risk of coronary heart 
disease, stroke, and cardiovascular disease (22) and a 
lower risk of cardiovascular disease mortality (23). Dose-
response and concentration-dependence thresholds were 
estimated from the linear deviation and maximum effect 
points on dose-response curves (Table 1). Doses of ~85–
110 mg/day were associated with linear risk reduction 
of these conditions and doses of ~175–200 mg/day were 
associated with maximal reduction in risk for coronary 
heart disease, stroke, and cardiovascular disease mortality 
(with up to ~440 mg/day being associated with increased 
risk reduction for cardiovascular disease). Concentration-
dependence curves indicated that plasma vitamin C con-
centrations of ~35–60 µmol/L were associated with linear 
risk reduction and concentrations of ~60–95 µmol/L (i.e. 
saturating circulating concentrations) were associated 
with maximal risk reduction for these conditions. Of note, 
circulating concentrations were more strongly correlated 
with risk reduction than dietary intakes (22, 23).

A Cochrane meta-analysis of RCTs for the primary pre-
vention of cardiovascular disease identified only one eli-
gible study (the Physicians’ Health Study II), comprising 
>14,600 participants supplemented with 500 mg/day vita-
min C for up to 8 years, in which no effect of supplemen-
tation was seen on cardiovascular disease events (Table 2) 
(30), noting the limitations of vitamin C supplementation 
RCTs discussed below. An earlier meta-analysis assessing 
44 RCTs of vitamin C intervention (doses ≥90 mg/day) on 
endothelial function reported dose-dependent enhance-
ment in endothelial function, with effects being larger for 
those with atherosclerosis (31).

Blood pressure
No dose-response meta-analyses assessing associations 
between vitamin C intake or circulating concentrations 
and blood pressure were identified. Three meta-analyses 
of RCTs that assessed vitamin C supplementation (doses 
≥300 or ≥500 mg/day) for reduction of blood pressure 
were identified; one of these comprised 15 monotherapy 
RCTs of various cohorts (34), one 8 RCTs of hypertensive 
participants (33), and the other 8 RCTs of participants 
with type 2 diabetes (32). Significant decreases in systolic 
blood pressure were observed in all three meta-analyses, 
and decreases in diastolic blood pressure in participants 
with hypertension and diabetes (Table 2). The effect sizes 
were larger in participants with hypertension and diabetes.

Cardiometabolic risk factors
Meta-analyses of  RCTs have indicated that vitamin C 
supplementation can improve cardiometabolic risk factor 
markers (e.g. lipid profiles, glycaemic control, C-reactive 
protein; Table 2). Two meta-analyses assessed lipid levels 
following supplementation with vitamin C (doses ≥125 

mg/day) in 40 RCTs comprising mixed cohorts (37) and 
28 RCTs of  people with type 2 diabetes (32). The larg-
est effects were observed in groups with elevated base-
line lipids, type 2 diabetes, and lower baseline vitamin 
C concentrations. Similarly, meta-analyses have assessed 
the effects of  vitamin C intervention (doses ≥70 or ≥200 
mg/day) on glycaemic control biomarkers and showed 
decreased fasting glucose and HbA1c in participants 
with type 2 diabetes (32, 36). Effects on glucose were 
greater with higher baseline glucose and higher BMI. 
However, an earlier meta-analysis of  three RCTs did not 
find an effect of  vitamin C supplementation (≥800 mg/
day) on reported or estimated insulin resistance in par-
ticipants with type 2 diabetes (35). A final meta-analysis 
of  12 RCTs indicated vitamin C supplementation (doses 
≥200 mg/day) decreased C-reactive protein concentra-
tions, particularly in those with elevated C-reactive pro-
tein at baseline (38).

Cancer prevention
Dose-response meta-analyses have indicated decreased 
total cancer risk (22) and decreased risk of cancers at spe-
cific sites (e.g. esophageal, gastric, prostate, and cervical) 
with increasing vitamin C intake or status (24–27). Aune 
et al. (22) assessed nine dietary intake studies and six 
studies reporting circulating concentrations which indi-
cated dietary intakes of ~110–170 mg/day and circulating 
concentrations of ~40–95 µmol/L provided linear to max-
imum protection, respectively, against total cancer risk 
(Table 1). The other dose-response meta-analyses indi-
cated that vitamin C intakes of ~80–380 mg/day provided 
linear to maximal risk reduction, respectively, for cancers 
at specific sites (24–27). One meta-analysis comprising 
RCTs assessing vitamin C supplementation for cancer pre-
vention (39) identified two studies (the Physicians’ Health 
Study II and the Women’s Antioxidant Cardiovascular 
Study). These, however, showed no effect on total cancer 
incidence of supplementation with 500 mg/day of vitamin 
C (Table 2), once again noting the limitations of vitamin 
C supplementation RCTs discussed below.

Immune health
No dose-response meta-analyses assessing associations 
between vitamin C intake or circulating concentrations 
and infection risk were identified. A recent meta-analysis 
assessing vitamin C supplementation for acute respiratory 
tract infections indicated only a small risk reduction in 
the general population (40) (Table 2). However, enhanced 
risk reduction was observed in males relative to females 
and in populations from middle-income countries relative 
to those from high-income countries (40); both of these 
subgroups tend to present with lower vitamin C status at 
baseline (89). Vitamin C supplementation was also shown 
to reduce the duration of the common cold.

http://dx.doi.org/10.29219/fnr.v67.10300


Citation: Food & Nutrition Research 2023, 67: 10300 - http://dx.doi.org/10.29219/fnr.v67.10300 13
(page number not for citation purpose)

A scoping review for Nordic Nutrition Recommendations 2023

Neurological and mental health
There is as yet limited evidence from meta-analyses that 
vitamin C has an effect on neurological and mental health. 
A dose-response meta-analysis comprising 12 dietary 
intake studies showed limited association of vitamin C 
intake with Parkinson disease (28), other than at the high-
est intake of ~265 mg/day (Table 1). A meta-analysis of 
10 RCTs showed no effect of vitamin C supplementation 
(doses ≥100 mg/day) on mood status in adults (41), apart 
from a small effect in the group of participants with sub-
clinical depression (i.e. those not prescribed anti-depres-
sants; Table 2).

Total mortality
Dose-response meta-analyses of up to 16 observational 
studies have indicated that vitamin C intakes of ~80–185 
mg/day are associated with linear to maximal decreases, 
respectively, in all-cause mortality risk (22, 29). Circulating 
concentrations of vitamin C (~35–95 µmol/L) from up 
to eight studies were associated with linear and maxi-
mal decreases, respectively, in mortality risk (Table 1). 
No meta-analyses of RCTs investigating vitamin C as a 
monotherapy for all-cause mortality were identified.

Requirement and recommended intakes
As outlined earlier, a substantial body of epidemiological 
studies and associated dose-response meta-analyses have 
shown an inverse relationship between the plasma con-
centration of vitamin C and risk of major diseases such 
as coronary heart disease, stroke, and cancer as well as 
all-cause mortality. In parallel, a number of the random-
ized controlled trials in the meta-analyses outline earlier 
have shown little or no health benefit of supplementa-
tion to healthy individuals who already have adequate 
or saturated vitamin C levels (in contrast to those at risk 
of vitamin C insufficiency, e.g. hypertensive or diabetic). 
The essence of these apparently contradictory results is 

illustrated in Fig. 7 showing that the relative risk of cor-
onary heart disease gradually declines for intakes up to 
about 175 mg/day (typically obtained mainly by dietary 
intake among healthy individuals), while the relationship 
remains unchanged for higher intakes (mostly resulting 
from concurrent supplementation) (Fig. 7A; [22]). At the 
same time, an approximately linear relationship is found 
between increasing plasma concentrations within the 
physiologically achievable range and decreasing relative 
risk of coronary heart disease (Fig. 7B). Therefore, besides 
revealing a stronger correlation between plasma vitamin 
C status and disease risk than for vitamin C intake, these 
data may also explain why many intervention studies with 
vitamin C have little impact in the general population. 

Collectively,  the meta-analyses suggest that a plasma 
concentration of about 50 µmol/L is necessary to achieve 
a mean risk reduction of 30% in morbidity and mortal-
ity from chronic diseases (Table 1). The intake necessary 
to maintain a plasma concentration of 50 µmol/L is also 
sufficient to replace metabolic turnover of vitamin C as 
calculated by experiments with radiolabelled vitamin C 
(108). New evidence suggests that the urinary threshold 
for vitamin C is approximately 50 µmol/L in healthy indi-
viduals (109), thus providing additional support for the 
target level already regarded as ‘adequate’ by, for exam-
ple, EFSA (18). Finally, based on pharmacokinetic data, a 
plasma concentration of at least 50 µmol/L is required to 
saturate immune cells (95) and muscle tissue (88).

Consequently, a plasma concentration of 50 µmol/L 
should be chosen as the basis for calculation of the aver-
age requirement (AR). Pharmacokinetic studies in men 
and women suggest that ingestion of approximately 90 mg 
vitamin C/day will result in a plasma concentration of 
50 µmol/L. EFSA reached the same value in their most 
recent recommendation by calculating the amount neces-
sary to compensate for metabolic losses of 50 mg/day with 
an estimated uptake efficiency of 80% and a 25% urinary 

Fig. 7. Coronary heart disease risk relative to vitamin C dietary intake (A) and blood concentrations (B): dose-response analyses. 
Similar trends were observed for stroke and cardiovascular disease. Solid lines represent best-fitting cubic spline and dashed lines 
95% CI. Reproduced from (22); Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/4.0/).
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excretion. Thus, with an AR of 90 mg/day and assuming a 
10% CV, a recommended intake (RI) of 110 mg/day can be 
expected to provide 95% of the population with adequate 
vitamin C concentrations based on a 70 kg body weight.

Infants
There is insufficient data to set an AR for infants (aged 
<2 years). Previous recommendations by various health 
authorities have been based on estimated intakes from 
human milk or the intake known to prevent scurvy with 
an ample margin of safety. These recommendations range 
from 20 to 55 mg/day. Based on these considerations and 
allowing a conservative safety margin, while considering 
the very high plasma concentrations seen in newborns 
that may indicate a higher requirement but at least show 
that higher steady-state levels are normal in infants, the 
RI is suggested to be set at 30 mg/day.

Children and adolescents
There is insufficient data to set an AR for children and ado-
lescents. Previous recommendations have been calculated 
from the adult AR using isometric scaling based on body 
weight or by applying estimated growth rates. Here, RIs are 
obtained by isometric scaling assuming a CV of 10% and 
are rounded to the nearest 5 mg. Suggested recommenda-
tions are 30 mg/day (2–5 years), 45 mg/day (6–9 years), 60 
mg/day (10–13 years), and 90 mg/day (14–17 years).

Adults
The suggested AR for adults is based on the intake necessary 
for a 70 kg individual to obtain a plasma concentration of 
about 50 µmol/L, that is, an AR of 90 mg/day. Assuming a 
CV of 10% results in an RI of 110 mg/day for both men and 
women with a bodyweight of 70 kg. As discussed earlier in 
the section on the impact of body weight, there is consider-
able evidence suggesting that women achieve slightly higher 
plasma concentrations compared to men from the same 
intake (89), but also that this discrepancy is mainly due to 
difference in volume of distribution and can be accounted 
for by correcting for difference in weight (67). Indeed, the 
authorities that have implemented different recommenda-
tions for men and women have all derived their recommen-
dations for women from that for men based on the weight 
difference (10). Calculations based on controlled dose versus 
concentration studies as well as steady-state pharmacokinet-
ics (65) suggest that 10 mg/day per 10 kg body weight should 
be added/subtracted to obtain the vitamin C necessary to 
achieve the target plasma concentration of 50 µmol/L with a 
probability of 95% within the range of a normal body mass 
calculated from a 70 kg/110 mg/day starting point.

Elderly
There are insufficient data to set an AR for elderly. Studies 
have produced mixed results trying to determine if  aging 

per se is associated with lower vitamin C status, lower 
intake of vitamin C or a changed relationship due to 
altered volume of distribution.

Pregnancy
There is insufficient data to set an AR for pregnant women. 
However, consistent evidence suggests that plasma vita-
min C decreases gradually throughout pregnancy presum-
ably due to selective uptake by the fetus and the increased 
total volume of distribution. Most authorities have arbi-
trarily estimated that an additional intake of 10 mg/day 
is warranted, and this is consistent with the weight-based 
approach mentioned earlier. Thus, suggested additional 
recommended vitamin C intake during pregnancy is +10 
mg/day.

Lactation
Lactation actively removes vitamin C from the mother. 
Mean concentrations of vitamin C in milk range from 35 
to 90 mg/L and an average of 40 mg/day has been esti-
mated to be excreted through milk. Assuming an absorp-
tion efficiency of 80% and a CV of 10%, this results in 
suggested additional RI of +60 mg/day for breastfeeding 
women.

Large or overweight individuals
While the inverse relationship between body weight and 
vitamin C plasma concentration is well established and 
used actively in the estimation of RIs for women and 
children (10), health authorities have so far not derived 
specific recommendations for people with higher body 
weight than the reference value of 70 kg. However, with 
the increasing prevalence of both overweight and obesity 
reaching pandemic proportions, it appears appropriate 
from a consistent health perspective to recommend an 
additional intake of vitamin C with increased weight. 
Estimations based on controlled dose versus concentra-
tion studies as well as pharmacokinetic evaluations (65) 
suggest that an additional 10 mg/day of vitamin C should 
be added for each 10 kg weight gain from 70 to 100 kg 
in order to maintain a similar plasma concentration. 
Furthermore, NHANES data suggest an AR of 140 mg/
day for heavier people (74). Thus, for a person weighing 
100 kg or more, the additional RI is +30 mg/day.

Smoking
Tobacco smoking has consistently been shown to result 
in lower vitamin C status. Consequently, some authori-
ties have tried to estimate an additional requirement for 
smokers based on increased metabolic loss of vitamin C 
or the increased intake necessary to compensate for the 
difference observed between smokers and non-smok-
ers. This has resulted in the recommendations of an 
additional intake of 20–80 mg/day in several European 
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countries and the United States. As factors other than 
increased metabolic loss are known to contribute to 
the lower vitamin C status observed in smokers, it was 
decided to base the additional AR for smokers solely on 
calculations on increased vitamin C turnover. Based on 
radiolabelled tracer studies in smokers and non-smokers 
(83, 108), respectively, an additional AR was suggested to 
be +35 mg/day. Assuming a CV of 10%, this results in a 
suggested additional RI for smokers of +40 mg/day.

Data gaps for future research
A severe limitation in the estimations of  ARs for vita-
min C is the limited availability of  dose-response data 
from controlled studies with solid clinical endpoints. 
However, such studies are extremely difficult and expen-
sive to conduct, and reliable biomarkers of  response, 
as an alternative approach, have so far not been iden-
tified. Such data, if  available, would provide a more 
thorough scientific background for choosing a relevant 
target plasma concentration. While RCTs constitute the 
best available tool to establish causality when looking 
at efficacy of  drugs, these may have serious limitations 
when applied to micronutrients because of  the inher-
ent problems in establishing an appropriate and indeed 
relevant control group. As such, while many RCTs have 
been conducted, these largely suffer from various design 
problems, for example, studying the effects of  supple-
mentation in individuals already ingesting adequate 
amounts of  vitamin C and in many cases also concur-
rent supplements in the placebo group. Finally, the often 
relatively short intervention period severely limits the 
ability of  controlled trials to predict lifelong effects of 
vitamin C status. This increases the dependency on pro-
spective studies in which bias and confounding is very 
difficult if  not impossible to avoid. Indeed, multiple 
possible confounders have been identified for vitamin 
C including, for example, smoking, fruit and vegetable 
intake, body weight, sex, along with several other demo-
graphic, dietary, lifestyle, and anthropometric variables. 
One major difficulty is that the relationships between the 
confounders and the vitamin C intake/plasma vitamin C 
are relatively linear for some but not for others, making 
proper adjustments complicated. Also, the difficulties in 
translating food frequency questionnaire information 
into the appropriately corresponding vitamin C intake 
equivalent have been documented, suggesting that stud-
ies reporting measured fasted plasma concentrations are 
far more reliable when attempting to establish a dose-re-
sponse relationship (12).

In relation to disease endpoints, it has become clear 
from the multitude of studies demonstrating low vita-
min C concentrations in sick compared to healthy indi-
viduals that the dose versus concentration relationship 
changes significantly with chronic disease, suggesting that 

subclinical disease may also constitute a major potential 
confounder. Well-designed RCTs with a focus on peo-
ple with low dietary intake and the correspondingly low 
baseline plasma concentrations of vitamin C and also 
investigations into the potential for supplementation to 
improve health for people with high risk of vitamin C 
deficiency would provide a better rationale for setting 
ARs. However, as mentioned earlier, maintaining already 
good health requires considerably less vitamin C per day 
than achieving normalization of vitamin C status for an 
already sick individual. Thus, the predefined research 
question needs to be better integrated into the design and 
dose selection, where, for example, establishing the dose 
versus concentration relationship for healthy individuals 
in various subpopulations presumably requires relatively 
small doses in the 50–200 mg/day range and, for exam-
ple, preventing disease (progression) in high-risk individ-
uals with poor vitamin C status may require significantly 
higher doses in the 500–2,000 mg/day range. Moreover, 
detailed dose-concentration estimates for various subpop-
ulations would also provide an opportunity to validate 
the isometric scaling approach used for estimating RIs for 
women, children, and adolescents.
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