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Abstract

Background: Abnormalities in fatty acid metabolism and membrane fatty acid composition play a part in

a wide range of neurodevelopmental and psychiatric disorders. Altered fatty acid homeostasis as a result

of insufficient dietary supplementation, genetic defects, the function of enzymes involved in their metabolism,

or mitochondrial dysfunction contributes to the development of autism.

Objective: This study evaluates the association of altered brain lipid composition and neurotoxicity related to

autism spectrum disorders in propionic acid (PA)�treated rats.

Design: Forty-eight young male western albino rats were used in this study. They were grouped into six equal

groups with eight rats in each. The first group received only phosphate buffered saline (control group). The

second group received a neurotoxic dose of buffered PA (250 mg/kg body weight/day for 3 consecutive days).

The third and fourth groups were intoxicated with PA as described above followed by treatment with either

coenzyme Q (4.5 mg/kg body weight) or melatonin (10 mg/kg body weight) for 1 week (therapeutically treated

groups). The fifth and sixth groups were administered both compounds for 1 week prior to PA (protected

groups). Methyl esters of fatty acid were extracted with hexane, and the fatty acid composition of the extract

was analyzed on a gas chromatography.

Results: The obtained data proved that fatty acids are altered in brain tissue of PA-treated rats. All saturated

fatty acids were increased while all unsaturated fatty acids were significantly decreased in the PA-treated

group and relatively ameliorated in the pre�post melatonin and coenzyme Q groups.

Conclusions: Melatonin and coenzyme Q were effective in restoring normal level of most of the impaired fatty

acids in PA-intoxicated rats which could help suggest both as supplements to ameliorate the autistic features

induced in rat pups.
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T
he development of animal models of autism is one

approach that could help identifying the mechanism

by which autism develops in humans and testing the

potency of selected supplements to ameliorate the impaired

biomarkers related to it (1). Given the complexity of autism

and its etiology, different approaches were developed to

induce autistic features in rodents (1, 2). Our rodent model

with autistic features was developed through orally adminis-

tered neurotoxic dose of propionic acid (PA) (2). PA can

change both brain and behavior in the laboratory rat in a

manner that is consistent with symptoms of human autism

spectrum disorder (ASD) (3). Thus, this model was designed

to confirm the role of gut�brain axis in the etiology

of autism, as orally administered PA was effective in in-

ducing persistent brain toxicity and autistic features in rat

pups (2).

The brain tissue of patients with autism show subtle

developmental abnormalities, specifically in those areas

concerned with language, facial expression, movement,

and social behavior (3). Fatty acids are heterogeneous

molecules that serve many roles, from providing cell

structure to energy storage for cell signaling. The brain

is one of the most lipid-enriched tissues in the human

body, constituting 60% of dry weight (4). Over 20% of

the dry weight of the brain is made up of polyunsatu-

rated fatty acids, primarily docosahexaenoic acid and
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arachidonic acid, which are derived from essential fatty

acids. Those fatty acids are concentrated in the neuronal

membranous phospholipids, in the myelin sheath (5).

Infants’ brains are small and undeveloped at birth and

must incorporate fatty acids and cholesterol into the

brain from circulation for it to develop properly (5). Some

recent studies have suggested that fatty acid deficiency

may be involved in autistic spectrum disorder (6). Also,

there is growing evidence that fatty acid metabolism

and abnormal membrane fatty acid composition may

contribute to neurodevelopmental and psychiatric disor-

ders (7). Reduced levels of polyunsaturated fatty acids

have been associated with some childhood mental dis-

orders, such as attention deficit hyperactivity disorder in

boys (8, 9), severe deficits in reading, spelling, and

auditory memory (5, 7), as well as dyslexia and develop-

mental coordination disorder (10). Also, children with

ASD have been shown to present significantly higher

phospholipase A2 activity (11). In fact, evidence suggests

that the instability observed in fatty acid levels may be

caused by an increase in phospholipases A2 activity,

perhaps in association with the high oxidative stress

found in these patients (12). Recently, El-Ansary et al.

(13) evaluated fatty acid profile in the plasma of 26

autistic children and 26 age-matched healthy children.

The authors found increased levels of most saturated fatty

acids, except for PA (due to high influx to brain), and

reduced levels of most polyunsaturated fatty acids.

Several studies have shown a significant link between

autism and mitochondrial problems. Additionally, autistic

children’s with mitochondrial dysfunction are more likely

to have deficits in their ability to produce cellular energy

due to abnormal fatty acid metabolism (14�17). Many

recent studies have reported that nutritional supplements

and/or antioxidants may be beneficial in some children

with ASD who have mitochondrial dysfunction.

Reduced coenzyme Q10 as a component of the mito-

chondrial respiratory chain is effective by itself in reducing

reactive oxygen species or by regenerating tocopherol

as fat-soluble vitamin known to be lower in autistic

patients (18). Decreased coenzyme Q10 concentration

is associated with ASDs (19�21). On the contrary,

insomnia as dysregulation of the melatonin pathway has

been observed in many individuals with autism compared

to typically developing controls. Treatment with coenzyme

Q10, the only lipid antioxidant that is synthesized in

mammals by all cells, has been reported to result in

significant improvements in ASD symptoms in children

(22, 23). Recently, another study reported improvements

in children with ASDs using melatonin, although it was

not reported if the children had concomitant mitochon-

drial dysfunction (24, 25).

Collectively, these studies suggest altered lipid metabo-

lism may occur in ASDs. The brain tissue of PA-treated

rats shows a number of ASD-linked neurochemical

changes, including innate neuroinflammation, increased

oxidative stress, glutathione depletion, and altered

phospholipid/acyl carnitine profiles (1, 26). In this con-

text, PA rodent model were used to examine whether

there is any evidence for alterations in brain lipids

associated with the occurrence of ASD. Pre�post treat-

ments of coenzyme Q10 and melatonin supplement were

also performed to determine if they play any role in

altering brain lipid composition.

Methods

Animals

Male western albino rats (45�60 g, approximately 21 days

old) were obtained from pharmacy college animal house

at King Saud University and acclimated in our labora-

tory with standard conditions of temperature, 12-h dark/

light cycle and were given free access to tap water and

standard laboratory chow. After 1 week, the rats were

divided into six groups (eight rats in each group), namely

the control group in which animals were fed normal diet

during the experimental period; second, the PA-treated

rats that received 250 mg/kg body weight/day for 3 days,

in order to induce autistic features. The third and fourth

groups were treated with low dose of either coenzyme

Q (4.5 mg/kg body weight) (27) or melatonin (10 mg/kg

body weight) (28) for 1 week after being intoxicated

with the PA as described above (therapeutically treated

groups). The fifth and sixth groups were treated with

either coenzyme Q or melatonin for 1 week followed by

PA intoxication (protected groups).

Rats were housed in an air-conditioned animal room

and maintained at 21918C. They were given free access

to diets and water. PA, melatonin, or coenzyme Q was

orally dosed to rat pups using gastric tube.

Tissue preparation

At the end of the feeding trials, the rats were killed by

decapitation. The brains were quickly removed from the

skull and dissected on ice into small pieces and homogenized

in 10 times w/v bi-distilled water. Samples were stored at

�808C until the fatty acid analysis was performed.

Ethics approval and consent

This work was approved by the Ethical Committee of

Science College at King Saud University (approval no.

8/25/220358).

Fatty acid analyses

Brain homogenate (200 ml) lipids were extracted in the

presence of internal standards and fatty acid methylated

using 3N methanolic HCL in sealed vials under nitrogen

and incubated at 1008C for 45 min. The methyl esters of

free fatty acids were extracted with hexane, and the fatty

acid composition of the extract was analyzed on a gas

chromatography (Hewlett-Packard 5890 series II plus,
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HP analytical Direct, Wilmington, DE), equipped with a

flame ionization detector and a 30 m�0.25 mm�0.25 mm

capillary column (Omegawax 250# 2-4136, Supelco). The

helium gas flow rate was 1.2 ml/min, with a split/flow

ratio of 50:1. Oven temperature was held at 2058C.

The injector and detector temperatures were 2608C and

2628C, respectively. Two internal standards, C15:0 and

C23:0 were added during analysis. Fatty acids were iden-

tified via comparison of retention times with authentic

standards (29).

Statistical analysis

The data were analyzed using the statistical package for

the social sciences (SPSS, Chicago, IL, USA). The results

were expressed as mean9standard error of the mean

(SEM). All statistical comparisons between the control

and PA-treated rat groups were performed using the one-

way analysis of variance (ANOVA) test complemented

with the Dunnett’s test for multiple comparisons.

Significance was assigned at the level of PB0.05.

Results

Tables 1 and 2 show the alterations in the saturated and

unsaturated fatty acid profiles after PA treatment and

pre�post treatment with coenzyme Q10 and melatonin,

respectively. The data in Table 1 shows remarkable

elevation of all saturated fatty acids in the PA-treated

animals compared to control, while all unsaturated fatty

acids were significantly decreased in the PA-treated brain

homogenates group and relatively ameliorated in the

pre�post melatonin and coenzyme Q10 groups.

Discussion

This study examined the effects of pre�post treatment

with coenzyme Q10 and melatonin on the fatty acid

composition of brain regions in PA-induced biochemical

persistent autistic features in rat pups. Saturated fatty

acid levels were higher in PA-treated group when

compared with normal controls, in contrast to unsatu-

rated fatty acids. In addition, PA pre- or post-treatment

Table 1. Mean9SD together with the independent t-test for saturated fatty acid composition of brain tissue (Pg/ml) between neurointoxicated,

protected, and therapeutically treated rat pups compared to healthy control

Saturated fatty acids Control PA Melatonin�PPA PA�Melatonin CoQ�PA PA�CoQ

Acetic 0.5290.06 0.6790.05 0.6090.05 0.5890.04 0.6390.03 0.6590.05

0.001 0.013 ns 0.004 0.002

Propionic 1.2390.16 1.9790.36 1.6390.09 1.5190.10 1.5690.11 1.6490.06

0.001 0.001 0.001 0.001 0.001

Butyric 0.5490.13 0.8990.09 0.8290.05 0.8490.08 0.8290.13 0.8990.12

0.001 0.001 0.001 0.002 0.001

Valeric 0.1390.02 0.2290.02 0.2190.02 0.2190.02 0.2190.03 0.2490.03

0.001 0.001 0.001 0.001 0.001

Hexanoic 1.7390.20 1.9690.12 1.8490.17 1.8590.12 1.7490.13 1.7990.19

0.019 ns ns ns ns

Caprylic 1.4790.19 2.2290.14 2.0690.12 2.1090.13 1.8890.10 2.0590.22

0.001 0.001 0.001 0.001 0.001

Decanoic 1.2190.16 1.7590.14 1.6290.16 1.4890.12 1.4190.11 1.5390.06

0.001 0.001 0.002 0.024 0.001

Lauric 1.0190.21 1.6590.12 1.6390.15 1.8490.14 1.8090.12 1.8090.12

0.001 0.001 0.001 0.001 0.001

Myristic 1.2090.13 1.4290.12 1.2090.12 1.2090.10 1.2090.11 1.2990.09

0.003 ns ns ns ns

Palmitic 0.7690.11 1.0790.10 1.0290.12 1.0190.09 1.0090.19 1.1090.15

0.001 0.001 0.001 0.027 0.001

Heptadecanoic 0.9690.17 1.3890.12 1.3090.14 1.1790.10 1.2390.14 1.3190.15

0.001 0.001 0.010 0.007 0.001

Stearic 1.1690.20 1.5990.13 1.3990.13 1.3590.11 1.2490.13 1.3290.10

0.001 0.013 0.032 ns ns

Arachidic 0.4590.12 0.4890.05 0.4790.05 0.5490.06 0.5790.03 0.6190.04

ns ns ns 0.019 0.005

Behenic 0.3190.05 0.5090.03 0.4890.05 0.5690.03 0.6490.02 0.6790.04

0.001 0.001 0.001 0.001 0.001

Lignoceric 0.2590.03 0.3890.03 0.3890.04 0.4590.03 0.5190.02 0.5790.06

0.001 0.001 0.001 0.001 0.001
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with coenzyme Q10 and melatonin induced satisfactory

improvement of fatty acid levels in brain tissue. PA with

other saturated fatty acids, such as acetate and butyrate,

are found in the gut, each of which are major metabolic

products of enteric bacteria, following fermentation of

dietary carbohydrates and some amino acids (30, 31).

PA and its related short-chain fatty acids are capable of

gaining access to the brain and inducing widespread

effects on central nervous system function (32), including

the impairment of neurotransmitter synthesis and release,

calcium influx, intracellular pH maintenance, lipid me-

tabolism, mitochondrial function, gap-junction depen-

dent intercellular gating, immune activation, and gene

expression, which have been proposed to contribute to

the behaviors and biochemical findings observed in the

PA animal model and autisms (26). In fact, compared

to other fatty acids, PA was previously reported to cross

the blood�brain barrier with a brain uptake index of

43.53 and a low Km value of 2.03 (33) which is enough to

facilitate the penetration of PA into the brain cell, which

could explain the elevation of PA in the brain homo-

genates of the PA treated rats. The significantly higher

level of acetic acid could be related to the gastrointestinal

inflammation as one of the most common clinical

presentation of autism. It is well known that acetic

acid�induced colitis is a well-established model (34),

whereby acetate ions cause massive intracellular acidifi-

cation resulting in injury of epithelial cells and inflam-

matory response (35).

Butyric acid is the main energy substrate for the

colonocytes and is metabolized by the cells in preference

to glucose or glutamine, accounting for 70% of the

total energy demand of the colonic mucosa. This special

fatty acid is also extensively used by the brain for the

production of GABA (g-aminobutyric acid), the natural

calming agent that helps turn off stress reactions of brain.

GABA does not penetrate the blood-brain barrier; it

is synthesized in the brain only. In a recent study by

El-Ansary et al. (36), a significant decrease in GABA was

observed in rats treated with PA, which may relate to the

increase in butyric acid level in the brain homogenates of

the PA-treated rats in this work.

The high level of valeric acid in the PA-treated group

could be related to the increase of a-keto-b-methyl valeric

acid, which is a substrate for a-ketoglutarate dehydro-

genase complex (mitochondrial enzyme complex for

ATP synthesis via TCA cycle). In a study by Huang

et al. (37), a-keto-b-methyl valeric acid was found to

inhibit a-ketoglutarate dehydrogenase complex resulting

in mitochondrial dysfunction and neuronal degeneration

(38). Thus, a-keto-b-methyl valeric acid exposure may

activate cellular events similar to those in neurodegenra-

tive processes in PA-treated group in our study.

Stearic acid is very essential for the brain development

as it is incorporated in myelin and synaptosomal lipids.

Also, some of its part is actively metabolized into acetate,

which in turn is used for cholesterol synthesis (39). In

the current study, a high level of stearic acid was found in

PA-treated group when compared with normal control,

which may be the reason that this important saturated

fatty acid, when taken up by the brain through blood�
brain barrier, is not further metabolized and utilized

in brain; the reason may be the neurotoxic effect of PA

(1, 26).

Table 2. Mean9SD together with the independent t-test for unsaturated fatty acid composition of brain tissue (Pg/ml) between

neurointoxicated, protected, and therapeutically treated rat pups compared to healthy control.

Unsaturated fatty acids Control PA Melatonin�PA PA�Melatonin CoQ�PA PA�CoQ

a-Linolenic 0.4190.07 0.3190.02 0.3190.03 0.3790.02 0.4290.03 0.4690.03

0.004 0.002 ns ns ns

Stearidonic 0.2090.04 0.4590.04 0.4190.04 0.3890.03 0.4090.03 0.4690.04

0.001 0.001 0.001 0.001 0.001

Linoleic 0.2990.05 0.4790.04 0.5290.05 0.5790.05 0.5790.11 0.6390.09

0.001 0.001 0.001 0.001 0.001

g-Linolenic 0.4390.06 0.1490.01 0.1790.02 0.1890.01 0.2290.02 0.2490.04

0.001 0.001 0.001 0.001 0.001

Oleic 0.7490.09 0.6290.04 0.5790.05 0.5290.03 0.5190.05 0.5090.05

0.004 0.001 0.001 0.001 0.001

Eicosapentaenoic 0.4390.04 0.3790.03 0.4290.03 0.3290.03 0.3890.04 0.3990.05

0.006 ns 0.001 0.031 ns

Arachidonic 0.3890.04 0.3190.03 0.4390.04 0.3790.04 0.3890.04 0.4290.03

0.001 ns ns ns ns

Docosahexaenoic 0.6490.07 0.5390.05 0.6490.06 0.5190.04 0.5290.08 0.5490.09

0.001 ns 0.001 0.006 0.029
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Although glucose is the only fuel in the brain and

fatty acids are not an energy source, mitochondria in the

brain have the ability to oxidize saturated fatty acids. The

b-oxidation process of the fatty acids in the brain may

play a role in regulating lipid metabolism. Normally, in

the brain, medium-chain fatty acids are scarcely incor-

porated into the lipids but mainly metabolized into

glutamate and glutamine (40), whereas long-chain fatty

acids such as palmitate are incorporated into the lipid

fraction or became water-soluble materials, probably

via the b-oxidation process (41, 42). The high levels of

saturated fatty acids found in the PA-treated group in our

findings may be mitochondrial dysfunction, resulting in

accumulation of these acids in brain tissue (43).

Elevated levels of saturated fatty acids have been

reported in the red blood cells (11, 44) and plasma (45)

of several autistic patients. These findings were accom-

panied by a concomitant decrease in total monounsatu-

rates, particularly, 18:1n9 fatty acid. A decline in the

level of this fatty acid along with several other mono-

unsaturates has also been observed in bloods drawn from

patients with autism (44, 46, 47).

Low levels of eicosapentaenoic acid and docosahex-

aenoic acid were observed in the group of autistic

children, which is consistent with the evidence of altered

lipid metabolism in neuropsychiatric disorders (48). It has

been proposed that such imbalance is related to changes

in the structure and function of cell membrane phospho-

lipids. In particular, the levels of eicosapentaenoic acid

have been associated with the production of eicosanoids,

which have anti-inflammatory, antithrombotic, and

vasodilator properties (15).

PA infusion resulted in decreased levels of total

monounsaturates and total omega 6 (n-6) fatty acids

(48). Omega-3 supplementation has been associated with

better results in behavioral assessment scales applied to

autistic children (49). In recent research, there is growing

interest on the potential roles of the omega-3 polyunsa-

turated fatty acid docosahexaenoic acid and precursor

eicosapentaenoic acid with regard to the brain structure,

function, and mental health in human beings (50, 51). In

fact, docosahexaenoic acid is particularly concentrated

at neural synapses, sites of neurotransmitter signaling.

Omega-6 PUFA arachidonic acid is also abundant in

the brain, reflecting a key role in brain structure and

function. Linoleic, an essential fatty acid, is used in

the biosynthesis of arachidonic acid. Abnormalities in

fatty acid metabolism may result in a decreased level of

arachidonic acid with an increase in linoleic (52). This

may be the reason for low level of arachidonic acid and

high level of linoleic in the PA-treated group. Likewise,

the arachidonic acid precursor, g-linolenic acid, and

docosahexaenoic acid precursor, eicosapentaenoic acid,

are all considered to play key roles in brain functioning,

especially via the synthesis of eicosanoids (51).

Based on the observation of the present study, the

recorded depletion for most polyunsaturated fatty acid

could perhaps be attributed to the brain abnormalities

in PA-intoxicated rats and suggests that dietary supple-

mentation with high polyunsaturated fatty acid could

be suggested as a treatment strategy. This suggestion

is consistent with the recent work of El-Ansary et al.

(53), which proved the potential protective effect of

omega-3 against PA-induced neurotoxicity. The stearido-

nic acid concentration tends to be low normally because

it is formed slowly by the desaturation of a-linolenic,

catalyzed by d-6-desaturase, and is then quickly elon-

gated to other metabolites (54). High level of stearidonic

acid in all PA-treated groups may again be due to

neurotoxicity, resulting in the improper metabolism of

stearidonic acid, as abnormalities in the metabolism of

essential fatty acid or/and their long-chain polyunsatu-

rated metabolites are often reported in autism (15).

Melatonin and coenzyme Q10 restore the fatty acid

levels in brain tissue of PA-treated rats to levels proximate

to those in healthy control rats as shown in Tables 1

and 2. Melatonin has multiple actions as a regulator

of antioxidant enzymes, radical scavenger, and antagonist

of mitochondrial radical formation. Melatonin has the

ability to interact directly with the electron transport

chain by increasing the electron flow and reducing

electron leakage, thus increasing the survival of neurons

under enhanced oxidative stress (55). Coenzyme Q10

is responsible for energy generation through the mito-

chondrial respiratory chain and increases fatty acid

oxidation through the AMP-activated protein kinase

(AMPK) pathway (56). AMPK is an important regulator

of energy balance. AMPK stimulates catabolic pathways,

including glucose and fatty acid oxidation (57�59), while

simultaneously reducing anabolic pathways (cholesterol,

fatty acid, and triacylglycerol synthesis) (60). Various

studies indicate that the neurotoxicity related to mito-

chondrial dysfunction may be ameliorated by coenzyme

Q10 (61).

Conclusions

To sum up, though this study shows evidence of the

efficacy of melatonin and coenzyme Q in ameliorating

most of the impaired fatty acid profile in rodent model

with persistent autistic features, there is a need for better

designed and registered trials of at least 6 months in

length, in order to reliably identify a confirmed proper

effect.
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