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Abstract

Background: The prevalence of osteoporosis with related fragility fractures has increased during the last

decades. As physical activity influences the skeleton in a beneficial way, exercise may hypothetically be used as

a prophylactic tool against osteoporosis.

Objective: This review evaluates if exercise-induced skeletal benefits achieved during growth remain in a long-

term perspective.

Design: Publications within the field were searched through Medline (PubMed) using the search words:

exercise, physical activity, bone mass, bone mineral content (BMC), bone mineral density (BMD) and skeletal

structure. We based our inferences on publications with the highest level of evidence, particularly randomised

controlled trials RCT.

Results: Benefits in BMD achieved by exercise during growth seem to be eroded at retirement, but benefits in

skeletal structure may possibly be retained in a longer perspective. Recreational exercise seems to at least

partially maintain exercise-induced skeletal benefits achieved during growth.

Conclusions: Exercise during growth may be followed by long-term beneficial skeletal effects, which could

possibly reduce the incidence of fractures. Exercise during adulthood seems to partly preserve these benefits

and reduce the age-related bone loss.
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A
s reviewed in an accompanying review (1) and

reported in previous publications (2�12), the

incidence of fragility fractures has increased

during the last half of the 1900’s. This is related to an

increased prevalence of osteoporosis in society, predomi-

nantly due to an increased aging population (12�14).

Whether the age specific incidence of osteoporosis has

increased is unclear. Today there exist treatment of

osteoporosis. Drugs to treat osteoporosis (15) have in

randomised controlled trials (RCT) been shown to

increase the bone mineral density (BMD) by 5�10% and

reduce the fracture risk (16, 17). But other strategies for

fracture prevention are also needed, strategies that

influence BMD in a beneficial way without side effects

and methods that are available for most individuals

without high costs.

Epidemiological studies convincingly show that bone

mass (BM) or bone mineral content (BMC) or BMD are

closely associated with the risk of sustaining a fracture

(18). A 10% decrease in BMD, corresponding to one

standard deviation (SD), is associated with a doubled

fracture risk (18). But, it is also imperative to realise that

BMD is a poor predictor of the individual fracture risk,

as so many other risk factors influence the risk of

suffering a fracture (4, 13, 18�20).

Physical activity during growth is associated with

obvious skeletal benefits in both the accrual of bone

mineral and gain in bone structure, especially in the late

pre- and early peri-pubertal period (21�37). Mechanical

strain that includes a high load, a fast load or a load

affecting the skeleton in an unusual direction confers the

highest anabolic response. The duration of exercise is of

less importance, as a short duration of load or a small

number of repetitions are enough to achieve the maximal

anabolic effect. Thus, high intensity sports like squash,

tennis, soccer, ice-hockey, badminton and volleyball are
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most effective if the goal is to reach skeletal benefits. But

clinically relevant questions remain � do these exercise-

induced skeletal benefits remain with residual benefits

into old ages, into the ages when the incidence of fragility

fractures exponentially increases?

This review evaluates if the well-documented exercise-

induced skeletal benefits achieved during growth remain

in a long-term perspective.

Method

The search for papers to be included in the review was

done in Medline (PubMed). The search words: exercise,

physical activity, bone mass, bone mineral content, bone

mineral density, BMC, BMD and skeletal structure were

used. Included in the review were only papers or abstracts

published in the English language. No restriction on the

time period studied was used, and studies in adults or

those dealing with the long-term effects of exercise were

included. From the relevant papers included in the

Medline search, a further search was undertaken by

choosing the connection ‘related manuscripts’. Preferably,

prospective, randomised controlled trials (RCT) were

then included in this overview, as this is the highest

ranked study design in evidence-based systems. If no

RCT was found, the next level of evidence in the

evidence-based hierarchy was scrutinised, i.e. non-rando-

mised controlled studies, then retrospective and prospec-

tive observation cohort studies, and finally case-control

studies. As an enormous amount of publications exists

within this field and with these study designs, we

predominantly included those with the largest sample

size and the longest follow-up period. But, it must be

emphasised that this is not a systematic review with pre-

specified inclusion criteria or a meta-analysis. Neither did

we intend to include all papers published within this

topic. Instead, we tried to interpret the enormous amount

of data within the field in order to summarize the current

concept within this topic.

Results and discussion

Are exercise-induced benefits in bone mineral density

achieved during growth eroded by time?

Animal studies indicate a decline in exercise-induced

benefits over time. One trial including 50 young rats,

randomised to 8 or 12 weeks of training and then 4 weeks

of detraining revealed that femoral wet weight, bone

volume, cross-sectional area and cortical area all in-

creased with the training regime, but that all benefits were

lost with the 4 weeks of detraining (38). Another rat trial

(39) supports that the effects of detraining should be

followed for a long period, since all benefits in BMC were

eventually lost with detraining (40). Bone turnover

studies in humans do not oppose this view. Trials report

that there are discrepancies in bone turnover when

comparing active soccer players with retired soccer

players. Another study reports that 2 weeks of detraining

are followed by increased bone resorption and a decreaed

bone formation.

However, there are reports that both support and

oppose that exercise-induced BMD benefits are main-

tained after cessation of exercise (43�54). One cross-

sectional trial in tennis players infers that the arm to arm

discrepancy in BMC remains undiminished after detrain-

ing. This suggests that benefits in BMC are maintained

with reduced activity level (45). The prospective reports

that support the maintenance of BMC or BMD benefits

with cessation of exercise all have a questionable study

design that could confound the conclusions. Some studies

do not include more than 12 retired athletes (45), others

include retired athletes still on a higher than average

activity level, all studies have followed the former athletes

only in a short period of retirement, and in one study that

suggests BMD benefits to be retained with retirement,

there is actually some regions with a higher BMD loss

than in controls (46, 51�54). Therefore, we must be aware

that these trials can include a type II error; the former

athletes could still be on an activity level that influences

the BMD, and the period of retirement could be too short

to capture any increased age-related loss in BMD.

When looking at prospective data in a longer perspec-

tive of retirements, the results are less promising. One

trial, at baseline including middle-aged runners, reported

that 5 years later the loss in spine BMD was 13% in those

who stopped running in comparison with 4% in those

who continued to run (55). Similar data was reported in a

short-term study, evaluating unilateral leg presses four

times a week for 12 months in 12 women aged 19�27

years. The training period in this cohort was followed by

a non-significant increase in BMD, but 3 months of

detraining was followed by a return to the pre-training

BMD level (56). Another similar report in 29 premeno-

pausal women with regular training for 12 months

supports this view. The programme was followed by a

significant increase in BMD compared to 22 controls, but

that all these benefits were lost with 12 months of

detraining (57). There are now also two larger prospective

controlled studies published that follow former athletes

for 5�8 years into retirement (43, 44). The first study

included 97 male ice-hockey and soccer players and 49

controls (43), and the second study included 66 female

soccer players and 64 controls (44). Both reported that

the athletes had a 1�1.5 SD higher BMD at baseline than

controls, but after 4�5 years of retirement, the remaining

exercise-induced benefits in BMD were approximately

halved. These two studies revealed that the loss in BMD

following retirement was greater than the age related loss

in controls.

When evaluating the effect of retirement over decades,

we have to rely on cross-sectional data. One trial including

MK Karlsson et al.

2
(page number not for citation purpose)



22 active and 128 former active male soccer players and

138 controls indicated that the former athletes still had

higher BMD during the first two decades after retirement,

but lower than the active soccer players (35). The diminu-

tion in leg BMD was 0.33% per year in the former soccer

players compared to a loss of 0.21% per year in the

controls (Fig. 1). After 5 years, the leg BMD was 10%

higher than age-matched controls in the former players,

after 16 years 5% higher but no longer higher in players

retired for 42 years (Fig. 1). In spite of the more extensive

loss with retirement, the leg BMD was 6% higher in the

former soccer players, now over 70 years, than in controls,

a non-significant difference when comparing unadjusted,

but significant when comparing the values adjusted for

differences in body composition (35). No benefits were

seen in the hip, spine or any other skeletal region. The only

variables that correlated with BMD in this study was age

and current level of activity, not past level of activity. Also

cross-sectional data in female former soccer players

support this view. Twenty-five female former soccer

players, aged 40 years and retired for 10 years, still had

higher BMD than controls, however less than during their

active career (58). These female athletes were unfortu-

nately not followed in a long time perspective, so any

residual benefits after age 65 could not be evaluated in this

report. Also male former weight lifters had higher total

body BMD after cessation from active career, by 8% when

they were 35�49 years old, by 6% at 50�64 year, but not

higher than controls when they were 65�79 years (47�49).

Similar data have been reported in retired professional

male and female ballet dancers both in Australia (59) and

Sweden (50), as well as in retired Australian gymnasts (34).

Are exercise-induced benefits in bone structure eroded by

time?

Even if all benefits in BMD seem to be lost with

detraining, there is a possibility that the structural

changes, induced by exercise during growth, could be

retained. The enlargement in bone size in the dominant

upper extremity in former tennis players was maintained

with cessation of exercise (45). In this study, 12 male

former tennis players retired for 1�3 years were evaluated

by peripheral computed tomography (pQCT). Humeral

shaft arm to arm differences in total cross-sectional area

of bone was 13% higher, cortical area 23%, bone strength

index 24%, principle moments of inertia 41% and cortical

wall thickness 20% higher compared to controls (45). The

marrow cavity was also larger in the dominant arm

suggesting that a greater endocortical expansion during

activity or a higher endocortical resorption after retire-

ment had occurred. The observations fit with the

hypothesis that exercise produces enlargement of bone

size that is permanent, but that the increased mineralisa-

tion through an endocortical apposition may be lost with

retirement. Further, short-term studies from the same

research groups support the view that cessation of

exercise is associated with remaining benefits in bone

structure (51�54). The same view was supported in a

RCT, including 239 children aged 3�5 years (60). In this

study, 12 months of physical activity including the large

muscle groups was followed by both periosteal and

endosteal expansion and these differences compared to

controls remained with 12 months of detraining. This is

probably of biological importance, as placing the cortical

shell further away from the centre of the tubular bone will

increase the bone strength by the fourth power of the

radius (61).

But evaluation of benefits in a longer perspective has to

rely on cross-sectional data. Bone size was larger in 90

male former soccer players and weight lifters aged 50�92

years and retired from their exercise career 3�65 years

ago, in comparison with 77 sedentary age- and gender-

matched controls, both at the femoral neck and the

lumbar spine (62). Furthermore, in this study there were

also remaining benefits in the old former athletes

evaluated by quantitative ultrasound (QUS). This is of

special interest as QUS usually estimates not only the
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Fig. 1. Bone mass (BMD, g/cm2) of the legs and arms in

active, former soccer players and controls versus age.

Adapted from Karlsson et al. (35).
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quantity of bone mineral, but also the quality of the

skeletal architecture (63), a trait not captured by the

DXA technique. These latter data indicate that exercise-

induced structural skeletal changes, not captured by the

DXA method, are possibly preserved in former athletes

into old age and might then reduce the fragility fracture

risk. However, further prospective cohort studies and

long-term evaluated cross-sectional trials are needed to

support such inferences.

Conclusions

Physical activity on a level that most individuals can

perform increases the accrual of BMD during growth.

Moderate activity seems to reduce the BMD loss in

adulthood. The Achilles’ heel of exercise is its cessation.

Exercise-induced skeletal benefits in BMD achieved

during growth seem to be lost with cessation of exercise,

whereas exercise-induced structural benefits in the skele-

ton may be retained even with reduced activity level.

Physically activity on a recreational level seems to retain

some of the skeletal benefits achieved during growth.

Recommendations

Based on current scientific knowledge, we should recom-

mend a continual physically active lifestyle during adult-

hood as one prevention strategy to reduce the high

incidence of osteoporosis-related fractures.
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Malmö University Hospital

Lund University

SE-205 02 Malmö, Sweden
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