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Abstract

Background: Recent evidence indicates that the inhibition of hepatocyte apoptosis is possible to develop a 
potential therapeutic strategy for nonalcoholic fatty liver disease (NAFLD). Our previous work suggested 
that purple sweet potato color (PSPC), a class of naturally occurring anthocyanins, effectively improved many 
features of high-fat diet (HFD)-induced NAFLD. However, whether PSPC ameliorates HFD-induced hepato-
cyte apoptosis has never been investigated.
Objective: Here we investigated the effects of PSPC on HFD-induced hepatic apoptosis and the mechanisms 
underlying these effects.
Design: Mice were divided into four groups: Control group, HFD group, HFD + PSPC group and PSPC 
group. PSPC was administered by daily oral gavage at doses of  700 mg/kg/day for 20 weeks. EX-527 
(a SirT1-selective inhibitor) and Sirt1 siRNA were used to demonstrate the Sirt1 dependence of  PSPC-medi-
ated effects on apoptotic and survival signaling pathways in vivo and in vitro.
Results: Our results showed that PSPC reduced body weights, hepatic triglyceride contents, histopathological 
lesions and serum ALT levels in a mouse model of NAFLD induced by HFD. Furthermore, PSPC attenuated 
HFD-induced hepatocyte apoptosis ratio from 7.27 ± 0.92% to 1.79 ± 0.27% in mouse livers, which is insignif-
icant compared with that of controls. Moreover, PSPC activated Sirt1 by boosting NAD+ level in HFD-treated 
mouse livers. Furthermore, PSPC promoted Sirt1-dependent suppression of P53-mediated apoptotic signal-
ing and activation of Akt survival signaling pathway in HFD-treated mouse livers, which was confirmed by 
EX527 treatment. Moreover, Sirt1 knockdown abolished these ameliorative effects of PSPC on apoptosis and 
P53 acetylation and protein expression in PA-treated L02 cells. Ultimately, PSPC reduced Caspase-3 activa-
tion and Bax level, and elevated the Bcl-2 level in HFD-treated mouse livers.
Conclusion: PSPC protected against HFD-induced hepatic apoptosis by promoting Sirt1- dependent 
inhibition of  p53-apoptotic pathway and facilitation of  Akt survival pathway. This study indicates that PSPC 
is a candidate for nutritional intervention of  NAFLD.
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Popular scientific summary
• � Purple sweet potato color (PSPC) improved many pathological features of high-fat diet (HFD)-induced 

nonalcoholic fatty liver disease (NAFLD) in mice.
• � This study showed that PSPC exhibited a significant ameliorative effect on HFD-induced hepatic 

apoptosis by restoring the NAD+ depletion-mediated SirT1 loss, thereby suppressing p53-apoptotic 
pathway and enhancing Akt survival pathway.

• � Inhibition of hepatocyte apoptosis is recognized as a potential therapeutic strategy for NAFLD. 
Thus, PSPC is a promising candidate for nutritional intervention of NAFLD.
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Nonalcoholic fatty liver disease (NAFLD), one of 
the most prevalent liver diseases worldwide, is 
closely associated with metabolic diseases, such 

as obesity, dyslipidemia and type 2 diabetes (T2D) (1, 2). 
It is well recognized that chronic intake of Western-style 
diet rich in fat and sugar is a major factor responsible for 
the development of NAFLD (1–3). However, the mech-
anisms contributing to the development and progression 
of NAFLD under high-fat (Western) diet condition have 
never been fully clarified.

Apoptosis, a major form of programmed cell death, 
is considered as a fundamental component in the patho-
genesis of various liver diseases including NAFLD (4, 5). 
It  has been established that high-fat diet (HFD) may 
promote the development and progression of NAFLD 
via inducing liver cell apoptosis (6, 7). Furthermore, 
recent evidences indicate that the inhibition of hepato-
cyte apoptosis improves NAFLD under HFD condition, 
which is possible to develop a potential therapeutic strat-
egy for NAFLD (7, 8). Though liver cell apoptosis has 
been emerged as an important pathological mechanism 
of NAFLD, the mechanisms underlying HFD-induced 
hepatocyte apoptosis and its therapeutic potentiality 
remain to be investigated.

Silent mating type information regulation 2 homolog1 
(SirT1), the best characterized mammalian homologs 
of yeast Sir2, governs a variety of physiological pro-
cesses, such as aging, stress response, circadian rhythm 
and energy metabolism. Recently, the NAD+ depletion-
mediated down-regulation of Sirt1 is emerging as a major 
contributor to the pathogenesis of various diseases includ-
ing T2D, which contributes to many disorders of these 
diseases, such as oxidative stress, mitochondrial damage 
and inflammation (9, 10). It has been well demonstrated 
that SirT1 plays a crucial role in the suppression of cell 
apoptosis during multiple physiological and pathologi-
cal processes, owing to its ability to deacetylate numer-
ous substrates involving in various apoptotic and survival 
pathway, such as p53 and NF-κB (11, 12). Accumulating 
evidence indicates that SirT1 is involved in regulating 
hepatocyte apoptosis during NAFLD (7, 13). However, 
the role of SirT1 in HFD-induced hepatocyte apopto-
sis and the underlying mechanisms of this action need 
further study.

Purple sweet potato color (PSPC), a class of nat-
ural anthocyanins derived from purple sweet potato 
storage roots, exhibits stronger free radical scavenging 
activity both in vitro and in vivo (14, 15). It has been 
widely reported that PSPC possesses multiple physiolog-
ical activities, including antioxidant, anti-inflammatory, 
anti-carcinogenic, anti-diabetic and hepatoprotective 
effects (16–20). Moreover, our previous work indicated 
that PSPC effectively improved many features of HFD-
induced NAFLD, such as inflammation, steatosis and 

insulin resistance in mice (17–19). Nevertheless, whether 
PSPC ameliorates HFD-induced hepatocyte apoptosis 
has never been investigated.

It has been established that hepatocyte apoptosis  con-
tributes to the development and progression of NAFLD. 
SirT1 inhibits cell apoptosis under various disease con-
ditions. Our previous work showed that PSPC effectively 
ameliorated hepatocyte apoptosis-mediated liver injuries 
in D-galactose-treated mice (21). Thus, we postulated 
that PSPC might improve NAFLD via ameliorating Sirt1 
down-regulation-mediated hepatocyte apoptosis. This 
study was designed to address these issues.

Materials and methods

Animals and treatment
All experimental and euthanasia procedures performed 
in this study were approved by the Institutional Animal 
Care and Use Committee of Jiangsu Normal Univer-
sity. ICR mice (male, 8-week-old) were purchased from 
Hua-fu-Kang Biological Technology Co. Ltd (Beijing, 
China). Mice were maintained at constant temperature 
(23 ± 1°C) and humidity (60%), had free access to rodent 
food and tap water and were kept on a 12-h light/dark 
schedule (lights on 08:30–20:30). After acclimation for 
1 week, mice were randomly divided into four groups: Con-
trol group (n = 8), HFD (60% of energy as fat; D12492; 
Research Diets, New Brunswick, NJ, USA) group (n = 8), 
HFD + PSPC group (n = 20) and PSPC group (n = 8), 
and received the following treatments for 20 weeks: Mice 
in the Control group and the PSPC group were fed a nor-
mal diet (ND, 10% of energy as fat; D12450B; Research 
Diets, New Brunswick, NJ, USA). Mice in the HFD 
group and the HFD + PSPC group were fed an HFD. 
PSPC was purchased from Qingdao Pengyuan Natural 
Pigment Research Institute (Qingdao, China). The major 
components of PSPC by HPLC analysis are cyanidin acyl 
glucosides and peonidin acyl glucosides (>90%, peonidin 
3-O-(6-O-(E)-caffeoyl-2-O-β-D-glucopyranosyl-β-D-glu-
copyranoside) -5-O-β-D- glucoside, peonidin  3-O-(2-O-
(6-O-(E)-caffeoyl-β-D-glucopyranosyl) -6-O-(E)-caffeoyl-
β-D-glucopyranoside)-5-O-β-D-glucopyranoside, Peo-
nidin3-O-(2-O-(6-O-(E)-feruloyl-β-D-glucopyra-
nosyl)-6-O-(E)-caffeoyl-β -D-glucopyranoside)- 
5-O-β-D-glucopyranoside, cyanidin 3-O-(6-O-p-couma-
royl)-β-D-glucopyranoside)  and the rest is other flavo-
noids), as described in our previous work (22).

PSPC treatment
PSPC was dissolved in distilled water containing 
0.1% Tween 80. Mice were orally gavaged with a daily 
700 mg/kg/day dose of PSPC or an equal volume of dis-
tilled water containing 0.1% Tween 80. The PSPC dosage 
used in this study was according to our previous work (19).
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EX527 treatment
After 12 weeks of HFD treatment, 12 mice of HFD + 
PSPC group were randomly divided into two subgroups: 
HFD+PSPC group (n = 6) and HFD+PSPC+EX527 
group (n = 6). Three hours before PSPC treatment, EX527 
(a SirT1-selective inhibitor, SelleckBio, Houston, USA) 
dissolved in 99% sterile saline/1% DMSO (Sigma-Aldrich, 
MO, USA) was given to mice in HFD+PSPC+EX527 
group by daily intraperitoneal injections (ip) at the dose 
of 10 mg/kg/day for 8 weeks, and the mice of HFD+
PSPC group received daily ip of an equal volume of 99% 
sterile saline/1% dimethyl sulphoxide (DMSO).

After 20 weeks of treatment, mice were fasted over-
night, anesthetized and sacrificed. The liver, epididymal 
fat and blood were immediately collected for experiments 
or stored at −80°C until analysis.

Tissue homogenates
The preparation of liver homogenates was performed as 
described in our previous work (19, 23). The protein con-
centration was determined with a bicinchoninic acid assay 
kit (Pierce Biotechnology, Rockford, IL, USA) according 
to the manufacturer’s instructions.

Biochemical analyses
The serum ALT activities were spectrophotometrically 
measured with a diagnostic kit (Jiancheng Institute of 
Biotechnology, Nanjing, China) following the manufac-
turer’s instructions.

Hepatic lipids were extracted from approximately 
200 mg frozen liver samples using chloroform:methanol 
(2:1 v/v) solution, as described by Folch and Lees (24) 
and resuspended in PBS containing 5% Triton X-100 
(Amresco, Solon, OH, USA). The serum sample and 
hepatic lipid extraction solution were used to determine 
TG levels using the corresponding LabAssay kit (Wako 
Chemicals, Richmond, VA, USA) according to the manu-
facturer’s instructions.

Liver slice collection and histopathological analysis
Liver slice collection and hematoxylin-eosin staining were 
performed according to the protocols described in our 
previous work (19, 23). The liver sections stained with 
HE (Sigma-Aldrich, St. Louis, MO, USA) were examined 
using a Zeiss Axioskop 40 microscope (Carl Zeiss, Göttin-
gen, Germany).

Terminal deoxyribonucleotidyl transferase-mediated 
dUTP-digoxigenin nick-end labeling assay
Terminal deoxyribonucleotidyl transferase-mediated 
dUTP-digoxigenin nick-end labeling (TUNEL) stain-
ing was performed to assess apoptosis with an In Situ 
Cell Death Detection Kit, Flourescein (Roche, India-
napolis, IN, USA) according to the instructions of the 

manufacturer. A double-staining technique was used; 
that is, TUNEL staining was used for the apoptotic 
hepatocyte nuclei, and ProLong® Gold containing 
4, 6-diamidino-2-phenylindole (Invitrogen, Carlsbad, 
CA, USA) staining was used for all hepatocytes. Stained 
specimens were captured using a Zeiss Axioskop 40 
microscope, and images were taken with a CCD cam-
era (CoolSNAP Color; Photometrics, Roper Scientific). 
Apoptosis was quantified by determining the percentages 
of TUNEL-positive cells in 10 random microscopic fields 
at 200× magnification per specimen.

NAD+ assay
NAD+ levels were measured using EnzyChromTM 
NAD+/NADH Assay kit (BioAssay Systems, Hayward, 
CA, USA) following the manufacturer’s instructions. The 
NAD levels were expressed as pmol/mg liver.

SirT1 activity determination
SirT1 activity was measured using a SirT1 Fluorometric 
Drug Discovery Kit (ENZO Life Sciences International, 
Inc. PA, USA) according to the manufacturer’s instruc-
tions. This assay uses a peptide containing human p53 
amino acids 379–382 (Arg-His-Lys-Lys(Ac)) as a sub-
strate. SirT1 activity is proportional to the amount of 
Lys-382 deacetylation. Fluorescence was assessed in a 
Molecular Devices M2 plate reader (Molecular Devices 
Corporation, Menlo Park, CA, USA) with an excitation 
wavelength of 360 nm and an emission wavelength of 
460 nm. Changes in SirT1 activity in livers were calculated 
against the mean value of SirT1 activity in control liver 
and expressed as percent of control.

Immunofluorescence staining
The preparation of  frozen sections and immunofluo-
rescence staining was performed as described previ-
ously (19, 23). The liver sections were incubated with 
the primary antibody (rabbit anti-4-HNE antibody, 
1:100, Alpha Diagnostics, San Antonio, TX, USA) over-
night at 4°C. After a washing with phosphate-buffered 
saline, the liver sections were incubated with Texas Red-
conjugated anti-rabbit IgG (1:200, Vector Laboratories, 
Inc., Burlingame, CA, USA).

ROS assay
Reactive oxygen species (ROS) assay was performed based on 
the oxidation of 2’, 7’-dichlorodihydrofluorescein diacetate 
(H2-DCF-DA) to 2’, 7’-dichlorofluorescein (DCF) as previ-
ously described [19,23]. The conversion of H2-DCF-DA to 
the fluorescent product DCF was measured with a Molec-
ular Devices M2 plate reader (Molecular Devices Corpora-
tion) (excitation at 484 nm and emission at 530 nm). ROS 
formation was quantified from a DCF standard curve. Data 
are calculated as pmol DCF formed/min/mg protein.
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GSH assay
The levels of Glutathione (GSH) in the hepatic super-
natants were determined according to the protocols 
of a commercially available GSH assay kit (Cayman 
Chemical, Ann Arbor, MI, USA). After reaction with 
5,5-dithiobes-(2-ni-trobenzoic acid) (DTNB), the GSH 
contents were measured by a spectrophotometer (Shi-
madzu UV-2501PC) at 405 nm. The GSH contents were 
calculated as the contents (μmol GSH) per mg protein.

Cell culture and treatments
The human normal liver cell line L02 cells were obtained 
from Shanghai Cell Bank of the Chinese Academy of 
Sciences (Shanghai, China). L02 cells were cultured in 
Dulbecco's modified eagle medium (DMEM; Gibco, 
Carlsbad, CA, USA) cell culture medium supplemented 
with 10% heat-inactivated fetal bovine serum (FBS; 
Gibco, Carlsbad, CA, USA), 100 units/mL penicillin and 
100 μg/mL streptomycin. The cells were incubated in a 
humidified cell incubator at 37°C, 5% CO2.

Sirt1 siRNA (sc-40986) and control siRNA (sc-37007) 
were obtained from Santa Cruz Biotechnology (Dallas, 
TX, USA). The L02 cells were seeded in 6-well plates for 
24 h and then transfected with Sirt1 siRNA or control 
siRNA using Lipofectamine 3000 reagent (Invitrogen 
Inc., CA, USA) according to the manufacturer's instruc-
tions. Forty-eight hours after transfection, L02 cells were 
treated with PSPC (50 μg/mL, according to our previous 
study (25) for 4 h, and then treated with palmitic acid (PA) 
or bovine serum albumin (BSA) for 48 h.

PA powder (Sigma-Aldrich, St. Louis, MO, USA) was 
dissolved in 0.1 M NaOH at 70°C by water bath, then 
added to a 10% solution of fatty acid free BSA and fil-
tered on a 0.22-μm filter, yielded a 10 mM stock solution. 
The PA stock solution was added to L02 cells at a final 
concentration of 500 μM.

Caspase-3 activity assay
Hepatic caspase-3 activity was determined with a 
caspase-3 cellular activity assay kit (Calbiochem, San 
Diego, CA, USA) following the manufacturer’s instruc-
tions. Caspase-3 activity was quantified by measuring 
the colorimetric release of chromophore ρnitroanilide 
(ρNA) that is cleaved from the substrate acetyl-Asp-Glu-
Val-Asp p-nitroanilide (Ac-DEVD-pNA). The ρNA level 
was determined at 405 nm using a Molecular Devices M2 
plate reader. Caspase-3 activity is calculated as pmol/min/
mg protein.

Western blot analysis
The western blot analyses were performed as described in 
our previous work (19, 23). The primary antibodies were as 
follows: rabbit anti-SirT1 and rabbit anti-AC-P53 (Lys373, 
Lys382) antibodies (Millipore, Billerica, MA, USA); rabbit 

anti-P-Akt (Ser473), rabbit anti-Akt, rabbit anti-P-GSK-3β 
(Ser9), rabbit anti-GSK-3β, rabbit anti-cleaved-caspase-3, 
mouse anti-P53 and rabbit anti-β-Actin antibodies (Cell 
Signaling Technology, Beverly, MA, USA); mouse anti-
Bax and mouse anti-Bcl-2 antibodies (BD Biosciences, San 
Diego, CA, USA) and rabbit anti-P21 antibody (Abcam, 
Cambridge, UK). After washing, proteins were detected 
using horseradish peroxidase (HRP)-conjugated anti-rab-
bit and HRP-conjugated anti-mouse secondary antibod-
ies (Cell Signaling Technology, Beverly, MA, USA). The 
optical density (OD) values of the immunoblot bands 
were quantified with Scion Image analysis software (Scion 
Corp., Frederick, MD, USA). The OD values were nor-
malized using appropriate internal controls (optical density 
detected protein/optical density internal control).

Statistical analysis
All statistical analysis was performed using SPSS version 
11.5. All the data were analyzed with a one-way ANOVA 
followed by Tukey’s Honestly Significant Difference 
(HSD) post hoc test (more than two groups) and Student’s 
t-test (two groups). Data were expressed as means ± stan-
dard deviation (SD). Statistical significance was set at 
P < 0.05.

Results

PSPC attenuates hepatocyte apoptosis in 
HFD-induced NAFLD mouse model
After 20 weeks of feeding, the body weights of HFD-fed 
mice were significantly higher (54.8 ± 2.66 g) than those 
of ND-fed mice (43.7 ± 1.9 g) (Fig. 1a). The notably 
increased levels of serum alanine aminotransferase 
(ALT, 85.99 ± 14.75 U/L) and hepatic triglycerides (TG, 
68.4 ± 7.47 mg/g protein) were found in HFD-fed mice 
compared to those of controls (ALT: 27.22 ± 4.53 U/L; 
TG: 16.7 ± 2.25 mg/g protein) (Fig. 1b and c). Hematox-
ylin and eosin (H&E) staining showed that HFD caused 
the hepatocyte hypertrophy and vacuolization and inflam-
matory cell infiltration in mouse livers, further confirming 
the occurrence of NAFLD (Fig. 1d). Interestingly, PSPC 
strikingly reversed these pathological liver injuries and 
NAFLD-related parameters in HFD-treated mice (body 
weights: 45.4 ± 2.13 g; ALT: 35.79 ± 6.55 U/L; TG: 19.17 
± 3.11 mg/g protein) (Fig. 1). No marked differences in 
body weights, hepatic fat accumulation and liver injuries 
were observed among the HFD+PSPC, PSPC and the 
vehicle control groups.

The results of TUNEL assay showed that HFD signifi-
cantly elevated the percentages of hepatocytes undergoing 
apoptosis in the mouse livers (7.27 ± 0.92%) compared 
to those of controls (1.36 ± 0.23%) (Fig. 2). Interestingly, 
PSPC markedly decreased the hepatocyte apoptosis ratio 
to 1.79 ± 0.27% in HFD-treated mice (Fig. 2). There was 
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no evident difference in hepatocyte apoptosis among the 
HFD+PSPC, PSPC and the control groups. These results 
indicated that PSPC protected against hepatocyte apopto-
sis in HFD-induced NAFLD mouse model.

PSPC promotes Sirt1 activation in HFD-treated mouse livers
HFD feeding caused an obvious diminution of NAD+ 
levels in mouse livers (131.29 ± 14 pmol/mg tissue) com-
pared to those of controls (241.38 ± 20.98 pmol/mg tis-
sue) (Fig. 3a). Interestingly, PSPC effectively renewed the 
NAD+ level (224.49 ± 19.41 pmol/mg tissue) in HFD-fed 
mouse livers (Fig. 3a). A remarkable reduction in protein 
expression of SirT1 as well as its activity (53.4 ± 11.84%) 
was observed in HFD-fed mouse livers compared to those 
of controls (Fig. 3b and c). Interestingly, PSPC dramati-
cally restored SirT1 protein expression and activity (94.6 ± 
12.7%) in the livers of HFD-fed mice (Fig. 3b and c). 
There were no significant differences in NAD+ and SirT1 
levels among the HFD + PSPC, PSPC and control groups.

It is well established that chronic oxidative stress 
diminishes Sirt1 levels in various tissues. Thus, we deter-
mined the levels of  oxidative stress markers including 
4-hydroxynonenal (4-HNE, a marker of  lipid peroxida-
tion) and ROS in mouse livers. Our results showed there 

was a remarkable oxidative stress characterized by sig-
nificantly increased levels of  4-HNE (0.85 ± 0.07) and 
ROS (123.62 ± 17.38 pmol DCF formed/min/mg pro-
tein), notably diminished GSH level (29.28 ± 4.41 μmol/
mg protein) in HFD-treated mouse livers compared to 
those of  controls (4-HNE: 0.39 ± 0.06; ROS: 62.81 ± 9.51 
pmol DCF formed/min/mg protein; GSH: 58.42 ± 5.87 
μmol/mg protein) (Fig. 4). Interestingly, PSPC obviously 
reduced the levels of  4-HNE (0.46 ± 0.05) and ROS 
(71.35 ± 7.12 pmol DCF formed/min/mg protein), while 
restored GSH content (51.78 ± 5.94 μmol/mg protein) in 
the livers of  HFD-treated mice (Fig. 4). No remarkable 
differences were found in hepatic redox status among 
the HFD+PSPC, PSPC and the vehicle control group. 
These results suggested that PSPC might strikingly pro-
mote SirT1 activation by inhibiting oxidative stress in the 
HFD-treated mouse livers.

PSPC suppresses P53-mediated apoptosis 
signaling in HFD-treated mouse livers
There were markedly elevated protein expressions of 
AC-P53 (Lys373, Lys382) and total P53, which resulted in a 
consequent increase of P21 protein expression in HFD-fed 
mouse livers (Fig. 5a). Interestingly, PSPC dramatically 

Fig. 1.  Effects of PSPC on the pathological features of NAFLD in HFD-treated mice. (a) Total body weight in all treated groups 
(n = 8). (b) Serum ALT activities in all treated groups (n = 5). (c) Hepatic TG levels in all treated groups (n = 5). (d) H&E staining 
of liver sections (n = 5). The arrow indicates congregated leucocytes and migratory leucocytes. Magnification 200x. All of the 
values are expressed as the mean ± SD. **P < 0.01, ***P < 0.001 versus the control group; #P < 0.05, ##P < 0.01, ###P < 0.001 
versus the HFD group.
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decreased the protein levels of AC-P53, T-P53 and P21 in 
HFD-fed mouse livers (Fig. 5a). No obvious differences in 
those protein expressions were found among the HFD + 
PSPC, PSPC and control groups.

To investigate whether PSPC inhibited P53-mediated 
apoptosis signaling by restoring SirT1 level, we blocked 

SirT1 activity by EX527 (a selective inhibitor of SirT1) 
in mouse livers. EX527 markedly abated SirT1 activities 
(54.2 ± 8.04%) of mouse livers in HFD+PSPC group 
(Fig. 5b). Moreover, PSPC-mediated inhibition of P53 
acetylation and protein expression was markedly blunted 
by EX527 in mouse livers (Fig. 5c).

Fig. 2.  Effects of PSPC on hepatocyte apoptosis in HFD-treated mice (n = 5). (a) Representative micrographs of hepatic TUNEL 
staining from mice in different treatment groups. Magnification, 100x. (b) Quantitative results of hepatic TUNEL staining. All of 
the values are expressed as mean ± SD. ***P < 0.001 versus the control group; ###P < 0.001 versus HFD group. 

Fig. 3.  Effects of PSPC on Sirt1 activation in HFD-treated mouse livers (n = 5). (a) NAD+ levels in mouse livers. (b) Immuno-
blotting and densitometry of SirT1 in mouse livers. (c) SirT1 activities in mouse livers. All of the values are expressed as the mean 
± SD. ***P < 0.001 versus the control group; ##P < 0.01, ###P < 0.001 versus the HFD group. 
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Fig. 4.  Effects of PSPC on oxidative stress in HFD-treated mouse livers (n = 5). (a) 4-HNE immunofluorescence staining. 
Magnification 200x. (b) 4-HNE fluorescence intensity was measured as the mean OD value. (c) ROS productions in mouse 
livers. (d) GSH levels in mouse livers. All of the values are expressed as the mean ± SD. ***P < 0.001 versus the control group; 
###P < 0.001 versus the HFD group.
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In vitro experiments using normal human hepatic cell 
line L02 were conducted to further confirm that Sirt1 is 
responsible for PSPC-mediated suppression of apop-
tosis via decreasing P53 acetylation and protein expres-
sion. The cells of PA+PSPC group were treated with 
Sirt1 siRNA to knockdown Sirt1. PA treatment notably 
reduced Sirt1 protein expression, which was effectively 
restored by PSPC treatment in L02 cells (Fig. 6a). Sirt1 
level was decreased by 59.31% in the cells of PA+PSPC 
group treated with Sirt1 siRNA as compared with that 
of control siRNA treatment (Fig. 6a), which conformed 
the efficiency of siRNA-mediated Sirt1 knockdown. PA 
markedly elevated the percentages of apoptotic L02 cells 
(12.62 ± 1.89%) compared to that of control cells 
(2.57 ± 0.52%), which was largely inhibited by PSPC treat-
ment (4.22 ± 0.7%) (Fig. 6b and c). Moreover, PA notably 
increased P53 acetylation and protein expression in L02 
cells (Fig. 6d). Interestingly, PSPC treatment significantly 
diminished P53 acetylation and protein expression in 
PA-treated L02 cells (Fig. 6d). However, Sirt1 knockdown 
dramatically abolished these ameliorative effects of PSPC 

on cell apoptosis (11.7 ± 1.57%) and P53 acetylation and 
protein expression in PA-treated L02 cells (Fig. 6b–d).

Taken together, these results indicated that PSPC 
inhibited P53-mediated apoptotic signaling through up-
regulating SirT1 level in HFD-fed mouse livers.

PSPC renews Akt survival signaling pathway in HFD-treated 
mouse livers
HFD feeding significantly abated the Akt (ser-473) phos-
phorylation levels in mouse livers (Fig. 7a), suggesting a 
notable decrease in Akt activation. HFD consequently 
enhanced GSK-3β signaling as evidenced by reducing 
GSK-3β (ser-9) phosphorylation levels in mouse livers 
(Fig.  7a). Interestingly, PSPC markedly increased the 
levels of Akt (ser-473) phosphorylation, resulting in 
the elevation of GSK-3β (ser-9) phosphorylation in the 
HFD-fed mouse livers (Fig. 7a). There were no visible 
differences among the HFD+PSPC, PSPC and the con-
trol groups. However, EX527 dramatically restrained the 
PSPC-mediated Akt activation and GSK-3β inhibition 
in HFD-fed mouse livers (Fig. 7b). These results showed 

Fig. 5.  Effects of PSPC on P53-mediated apoptosis signaling in HFD-treated mouse livers. (a) Immunoblotting and densitome-
try of AC-P53, T-P53 and P21 in mouse livers (n = 3). (b) SirT1 activities in mouse livers (n = 5). (c) Immunoblotting and densi-
tometry of AC-P53 and T-P53 in mouse livers (n = 3). All of the values are expressed as the mean ± SD. **P < 0.01, ***P < 0.001 
versus the control group; ##P < 0.01, ###P < 0.001 versus the HFD group. 
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Fig. 6.  Effects of Sirt1 knockdown on PSPC-mediated suppressions of apoptosis and P53 acetylation and protein expression in 
L02 cells. (a) Immunoblotting and densitometry of SirT1 in L02 cells. (b) Quantitative results of TUNEL staining in L02 cells. 
(c) Representative micrographs of TUNEL staining of L02 cells in different treatment groups. Magnification, 200x. All of the 
values are expressed as mean ± SD. **P < 0.01, ***P < 0.001 versus the control siRNA group; ##P < 0.01, ###P < 0.001 versus 
PA+control siRNA group; &&P < 0.01, &&&P < 0.001 versus PA+PSPC+control siRNA group.
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that PSPC renewed Akt survival signaling pathway by 
elevating SirT1 level in HFD-fed mouse livers.

PSPC ameliorates apoptosis-related protein levels 
in HFD-treated mouse livers
A strikingly elevated protein expressions of cleaved-
Caspase-3 and Bax, as well as an obviously decreased Bcl-2 
levels, were observed in HFD-treated mouse livers (Fig. 8a). 
Moreover, the activities of Caspase-3 were markedly 
increased in the livers of HFD-fed mice (29.8 ± 3.7 pmol/
min/mg protein) compared to those of control mice (9 ± 
1.58 pmol/min/mg protein) (Fig. 8b). Interestingly, PSPC 
notably reduced the protein expressions of cleaved-
Caspase-3 and Bax and Caspase-3 activities (12.4 ± 
2.3 pmol/min/mg protein), and elevated the Bcl-2 level in 
HFD-treated mouse livers (Fig. 8). No evident differences 
in those apoptosis-related protein levels were found among 
the HFD + PSPC, PSPC and control groups. These results 
indicated that PSPC ameliorated apoptosis-related protein 
levels in HFD-treated mouse livers.

Discussion
NAFLD, the hepatic manifestation of metabolic syn-
drome, currently becomes a worldwide health con-
cern because its incidence is rising at an alarming rate. 

However, the contributing mechanism in the development 
of NAFLD has never been fully clarified, and there are 
still no confirmed clinical treatment strategies for this 
disease. Substantial evidences have indicated that natural 
plant products ameliorate various symptoms of NAFLD, 
including inflammation and the disorders of glucose 
and lipid metabolism (26–28). In the present study, our 
results revealed that PSPC effectively attenuated hepato-
cyte apoptosis by restoring the NAD+ depletion-mediated 
SirT1 loss, thereby suppressing p53-apoptotic pathway 
and enhancing Akt survival pathway, ultimately improv-
ing NAFLD. Moreover, in this study, PSPC exhibited a 
slight (insignificant) inhibitory effect on apoptotic path-
ways and a slight (insignificant) facilitative effect on 
Sirt1 activation and cell survival pathways in the livers of 
ND-treated mice. Our results suggested that PSPC didn’t 
lead to adverse effects on normal mice at present dosage. 
Thus, this study provides novel mechanistic insights into 
the pathogenesis of NAFLD and potential therapeutic 
targets of PSPC for NAFLD and metabolic syndrome.

Hepatocyte apoptosis is a prominent pathologic feature 
of NAFLD and plays an important role in the progres-
sion from simply steatosis to non-alcoholic steatohepatitis 
(NASH) (4–7). It has been well established that elevated 
circulating free fatty acids (FFAs) promote hepatic lipid 

Fig. 7.  Effects of PSPC on Akt survival pathway in HFD-treated mouse livers (n = 3). (a and b) Immunoblotting and densitome-
try analysis of p-Akt and p-GSK-3β in mouse livers. All of the values are expressed as the mean ± SD. **P < 0.01, ***P < 0.001 
versus the control group; ##P < 0.01, ###P < 0.001 versus the HFD group.
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accumulation under the HFD and obesity conditions, lead-
ing to lipotoxic liver injury, which activates endoplasmic 
reticulum (ER) stress and mitochondrial dysfunction-de-
pendent apoptotic signaling, resulting in hepatic apoptosis 
(29, 30). In the present study, our data showed that HFD 
induced marked hepatic fat accumulation, augmented 
apoptosis-related protein levels and the percentages of 
hepatocytes undergoing apoptosis, indicating the occur-
rence of hepatic lipoapoptosis. Accumulating evidence 
suggests that in contrast to their apoptotic effects on can-
cer cells, naturally occurring polyphenols protect normal 
tissue cells from apoptosis under a variety of pathological 
conditions (31–33). In this study, PSPC notably attenuated 
hepatic fat accumulation and hepatocyte apoptosis. Our 
findings indicated that PSPC might suppress hepatic apop-
tosis via its inhibitory effects on hepatic fat accumulation.

It has been well established that Sirt1 plays a critical 
role in apoptosis inhibition under various pathological 
conditions (11, 12, 34). A growing body of evidence sug-
gests that Sirt1 is down-regulated in diverse tissue inju-
ries and diseases, which promotes apoptosis to cause 
tissue damage (11, 12, 34). In this study, HFD remark-
ably reduced the protein expression of SirT1 as well as 
its activity in mouse livers, indicating that HFD-induced 
hepatic apoptosis may be associated with the down-regu-
lation of Sirt1. It has been widely reported that some nat-
urally occurring polyphenols, such as resveratrol, are Sirt1 

activators, which exhibit beneficial effects on a variety of 
diseases including NAFLD (12, 35). Our previous study 
also demonstrated that troxerutin, a flavonoid, markedly 
renewed Sirt1 levels to protect mouse liver from HFD-in-
duced steatosis (23). In the present study, our results 
showed that PSPC significantly elevated the SirT1 level in 
the livers of HFD-fed mice. Moreover, Sirt1 knockdown 
by siRNAs markedly abrogated the inhibitory effect of 
PSPC on PA-induced apoptosis in L02 cells. Consistent 
with these studies (12, 23, 35), our results revealed that 
PSPC might exhibit inhibitory effects on HFD-induced 
hepatic apoptosis via restoring Sirt1 level.

P53, a critical tumour suppressor, is activated by many 
stress stimuli, such as DNA damage and oxidative stress, 
thereby promoting the transcription of  pro-apoptotic 
proteins to induce apoptosis (36, 37). It is reported that 
up-regulated P53 facilitates steatosis and subsequent 
lipotoxic liver injury including apoptosis under HFD 
condition (36, 37). In this study, HFD markedly elevated 
the expression of  P53 and its acetylation at Lys379 in the 
mouse livers. P53 is identified as a key downstream target 
of  Sirt1, and its transcriptional activity was restrained 
by SirT1-dependent deacetylation (12, 38). Therefore, 
our findings indicated that HFD might trigger p53-
dependent hepatic apoptosis by down-regulating Sirt1. 
Akt is a pivotal survival kinase that mediates a variety 
of  cell survival signaling pathways, such as inhibition of 

Fig. 8.  Effects of PSPC on apoptosis-related protein levels in HFD-treated mouse livers. (a) Immunoblotting and densitometry 
analysis of apoptosis-related protein in HFD-treated mouse livers (n = 3). (b) Caspase-3 activities in mouse livers (n = 5). All of 
the values are expressed as the mean ± SD. **P < 0.01, ***P < 0.001 versus the control group; ##P < 0.01, ###P < 0.001 versus 
the HFD group.
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BCL-2 family pro-apoptotic member, to oppose apop-
tosis (39,  40). GSK-3β is a well-identified inhibitory 
target of  Akt which plays a key role in the promotion 
of  apoptosis (41, 42). In the present study, our results 
showed that a notable decrease in Akt activation and 
consequently enhanced GSK-3β signaling were found in 
HFD-treated mouse livers. Substantial evidences indi-
cate that Sirt1 can deacetylate and activate Akt/ GSK-3β 
pathway to regulate various physiological and patholog-
ical processes including apoptosis (43). Thus, our data 
suggested that HFD might induce hepatic apoptosis 
via suppressing SirT1-mediated activation of  Akt sur-
vival signaling. It has been well established that natu-
rally occurring polyphenols suppress P53 activation and 
enhance Akt survival signaling to protect normal tis-
sue cells against apoptosis (44, 45). In this study, PSPC 
remarkably decreased P53 activation and increased Akt 
survival signaling in HFD-fed mouse livers, which was 
dramatically abolished by Sirt1 inhibitor EX527. Fur-
thermore, Sirt1 knockdown significantly restrained the 
PSPC-mediated P53 inhibition and Akt activation in 
PA-treated L02 cells. Collectively, our findings revealed 
that PSPC might protect mouse liver from HFD-induced 
apoptosis through promoting Sirt1-mediated P53 inhibi-
tion and Akt activation.

Increasing evidences have highlighted the beneficial 
effects of NAD+ on diet-induced disorders of glucose 
and lipid metabolism (46, 47). NAD+ depletion plays an 
important role in the development and progression of 
many diseases (48, 49). Moreover, recent evidences sug-
gest that naturally occurring polyphenols exhibit their 
ameliorative effects on metabolic syndrome including 
NAFLD by boosting NAD+ level (23, 50). In the present 
study, PSPC significantly restored the NAD+ level in the 
livers of HFD-treated mouse. Oxidative stress is widely 
reported to be responsible for NAD+ depletion by impair-
ing NAD+ biosynthesis and elevating NAD+ breakdown 
under various pathological conditions including meta-
bolic syndrome (51, 52). Consistent with our previous 
works (17–19), our present results showed that PSPC 
markedly abated HFD-induced oxidative stress in mouse 
livers. Therefore, our findings indicated that PSPC might 
increase NAD+ level to enhance Sirt1 activation via its 
antioxidant activity in the HFD-treated mouse livers.

Conclusions
In summary, our findings highlighted the significant 
beneficial effects of PSPC on hepatic apoptosis in HFD-
induced NAFLD. Our results showed that PSPC abated 
oxidative stress to restore NAD+ level, consequently 
promoting Sirt1 activation, thereby inhibiting p53-apop-
totic pathway and enhancing Akt survival pathway, ulti-
mately attenuating apoptosis in the HFD-treated mouse 
livers. This study provides novel mechanistic insights 

into NAFLD pathogenesis and indicates that PSPC is a 
candidate for nutritional intervention of NAFLD.
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