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Abstract
Background: Polyphenols are a class of plant secondary metabolites with a variety of physiological func-
tions. Polyphenols and their intestinal metabolites could greatly affect host energy metabolism via multiple 
mechanisms.
Objective: The objective of this review was to elaborate the role of intestinal microecology in the regulatory 
effects of dietary polyphenols and their metabolites on energy metabolism.
Methods: In this review, we illustrated the potential mechanisms of energy metabolism regulated by the 
crosstalk between polyphenols and intestinal microecology including intestinal microbiota, intestinal epithe-
lial cells, and mucosal immune system.
Results: Polyphenols can selectively regulate the growth of susceptible microorganisms (eg. reducing the ratio 
of Firmicutes to Bacteroides, promoting the growth of beneficial bacteria and inhibiting pathogenic bacteria) 
as well as alter bacterial enzyme activity. Moreover, polyphenols can influence the absorption and secretion of 
intestinal epithelial cells, and alter the intestinal mucosal immune system.
Conclusion: The intestinal microecology play a crucial role for the regulation of energy metabolism by dietary 
polyphenols.
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Polyphenols are plant secondary metabolites that 
widely exist in vegetables and fruits with poten-
tial contribution to the prevention of  chronic 

diseases, including cardiovascular disease, cancer, obe-
sity, and diabetes (1, 2). A number of  polyphenols are 
minimally absorbed, and the rest are transformed by 
intestinal bacteria into other bioactive polyphenol me-
tabolites. These polyphenols and their metabolites can 
influence the type and quantity of  intestinal microbial 
species which in return may affect their bioavailability 
and bioactivity.

Recent findings also suggest the relationship between 
polyphenols and the intestinal flora in the development of 
obesity and obesity-related metabolic diseases. Intestinal 
bacterial modulation was shown to trigger obesity in both 
humans and animals (3, 4), and higher ratio of Firmicutes 
and Bacteroides phyla was found to be correlated with in-
creased body weight (5, 6). Recent studies also revealed 
the selective growth-stimulating effect of gut microbes by 
polyphenols, leading to obesity prevention (7, 8). There-
fore, polyphenols, a potential ‘metabolic prebiotics’, could 
provide beneficial effects to hosts (such as weight loss) 

Popular scientific summary
•  �Dietary polyphenols have an important impact on energy metabolism.
•  �Dietary polyphenols may affect host energy metabolism via regulating intestinal microecology.
•  �Crosstalk between polyphenols and gut microbiota may have regulatory effects on host metabolic 

control.
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by  reshaping the gut microbial communities (9). In this 
review, we summarized recent studies investigating the ef-
fects of dietary polyphenols and their metabolites to gut 
microecology and energy metabolism.

Intestinal microecology and energy metabolism
The ‘intestinal microecology’ consists of three parts: in-
testinal microbiota, intestinal epithelial cells, and mu-
cosal immune system that together form the intestinal 
mucosal barrier (10). The intestinal flora may serve the 
most important roles in intestinal microecology. At least 
500–1,000 different bacterial species have been identified 
to be present in the human gastrointestinal tract, and up 
to 98% of intestinal flora can be classified into four phyla: 
Firmicutes (64%), Bacteroidetes (23%), Proteobacteria 
(8%), or Actinobacteria (3%) (11–13). Intestinal dysbiosis 
is considered as an important factor inducing metabolic 
diseases including obesity, chronic inflammation and 
insulin resistance, secondary to dietary changes (14–16). 
On the other hand, the roles of intestinal epithelial cells 
in the intestinal microecology cannot be overlooked. For 
example, secretory mucin, lysozyme, and defensins could 
inhibit the growth of certain intestinal microbes and pre-
vent their intestinal adhesion; meanwhile, these secreted 

protein/peptides are also associated with the release of 
interleukin factors including IL-1α, IL-1β, IL-6, IL-8, 
and IL-10, which are all involved in host inflammatory 
response, adipose tissue energy metabolic disorder and 
development of insulin resistance (10). Finally, the intes-
tinal mucosal immune system, one of the major immune 
organs, functions to exclude and provide tolerance to an-
tigens (17). It has been reported that long-term intake of 
high-fat diets will increase the permeability of the intesti-
nal mucosa, resulting in endotoxemia, causing chronic in-
flammation, and eventually inducing metabolic disorders 
including obesity and insulin resistance (18). The increase 
of mucosal permeability was also found to be positively 
correlated with the degree of steatosis and fat accumu-
lation in the liver (19). Taken together, the intestinal mi-
croecology plays multiple and yet important roles in the 
regulation of energy metabolism.

The absorption and metabolism pathway 
of polyphenols in the intestine
Plant-based foods contain polyphenols in both soluble 
and insoluble-bound forms. As shown in Fig. 1, solu-
ble polyphenols are mainly found in the vacuole. Dietary 
intake of free and soluble polyphenols can be rapidly 

Fig. 1.  The metabolic pathway of dietary polyphenols in humans. A small portion of polyphenols are directly absorbed by the 
small intestine. The majority of polyphenols (the insoluble and high molecular weight polyphenols) undergo extensive metabo-
lism by gut microflora or tissues before being excreted, which represents at least 90–95% of the polyphenol intake.
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absorbed by active transport or passive diffusion and dis-
tributed throughout the body, bringing health benefits such 
as oxidative inhibition of low-density lipoprotein (LDL), 
cholesterol and liposomes (20, 21). In contrast, insoluble 
polyphenols are structurally bound with proteins, cellulose, 
pectin, and other macromolecules in the cell wall via ether, 
ester or C-C bonds and released as phenolic glycosides by 
colonic microflora or enzymes to exert their health bene-
fits (22–24). In fact, insoluble and high molecular weight 
polyphenols, which account for approximately 90–95% of 
the total polyphenols intake, are metabolized by gut mi-
croflora rather than being absorbed by the gastrointestinal 
tract (25, 26). As a consequence, a myriad of diverse groups 
of dietary polyphenol-derived metabolites are found in 
human and animal excrement (feces or urine), as shown in 
Table 1. Taking anthocyanin as an example, it undergoes 
extensive metabolism in the body before being excreted; the 
proportion of intact anthocyanin excreted in urine was esti-
mated to be lower than 0.1% of the intake (Fig. 2).

Energy metabolism regulatory mechanisms 
involving dietary polyphenols and intestinal bacteria

Polyphenols reshape the composition and diversity of gut 
bacterial communities
The metabolism of polyphenols by gut bacteria involves 
hydrolysis of glycosidic bonds and decomposition of 
polyphenol heterocycle (42). Glycans, the products of gly-
coside cleavage, are essential nutrients for most intestinal 
microbes (43). Evidence suggests that dietary polyphenols 
play a crucial role in modulating the gut microbial com-
munity such as alleviating pathogen growth, regulating 

commensal bacteria and probiotics, and enhancing 
host-microbial interactions, ultimately leading to benefi-
cial effects such as weight loss (9, 44).

The gut microbiota is dominated by anaerobic bacteria, 
mainly the Firmicutes and Bacteroidetes phyla. A reduced 
Firmicutes-to-Bacteroidetes ratio has been associated with 
improved glucose levels, alleviated fat accumulation and 
decreased body weight (45–48). The intake of fruits and 
vegetables, such as apples, pears, strawberry, grapefruit, 
eggplant, green pepper, all of which are rich in polyphe-
nols, may promote weight loss in obese patients. These 
effects were possibly attributed to the ratio of Firmicutes/
Bacteroidetes lowering caused by the regulation of phe-
nolic compounds (Fig. 3). A human intervention study 
performed with the administration of de-alcoholized red 
wine, an excellent source of anthocyanins, revealed a sig-
nificant lowering of blood pressure, serum triglycerides 
(TG), and high-density lipoprotein (HDL) cholesterol 
level, which may be partly due to the greater reduction 
in Firmicutes than Bacteroidetes (51). It has also been 
found that quercetin administration led to a reduction in 
the Firmicutes/Bacteroidetes ratio and this was associated 
with reduced body weight gain and serum insulin levels 
in patients who consumed high-fat and high-sucrose diets 
(52). Similarly, Zhao et al. (53) found that the combined 
actions of the polyphenols quercetin and resveratrol low-
ered the Firmicutes/Bacteroidetes ratio in rats fed with 
high-fat diets, thereby decreasing their subsequent weight 
gain. Thus, diets containing different polyphenols might 
reshape the gut microbiota in various ways; however, the 
reduction in the ratio of Firmicutes to Bacteroidetes re-
sulting from polyphenol administration might contribute 

Table 1.  Metabolites of phenolics compounds via gut microbiota in vivo or in vitro

Polyphenols Type of Study Metabolites References

Baicalin In vitro study (humans feces) Baicalein (27)

Epicatechin In vitro study (humans feces) (-)-5-(3’,4’-dihydroxyphenyl)-γ-valerolactone,5-(3,4-dihydroxyphenyl)-γ-valeric 
acid,3-(3-hydroxyphenyl)propionic acid,4-hydroxyphenylacetic acid 

(28)

Apigenin Animal study (urine) P-hydroxyphenylacetic acid, P-hydroxycinnamic acid,P-hydroxybenzoic acid (29)

Quercetin Animal study (urine) 4-ethylphenol, Benzoic acid,4-ethylbenzoic acid (30)

Catechin Human intervention (urine) (-)-5-(3′,4′,5′-trihydroxyphenyl)-γ-valerolactone(M4),(-)-5-(3′,4′-dihydroxyphe-
nyl)-γ-valerolactone

(31)

Naringenin In vitro study (rat feces) Phenylacetic acid, P-hydroxyphenylacetic acid, Protocatechuic acid (32)

Naringin In vitro study (humans feces) 3-(4-hydroxyphenyl)-propionic acid,3-phenylpropionic acid (33)

Rutin In vitro study (humans feces) 3-(3-hydroxyphenyl)-propionic acid,3-hydroxyphenylacetic acid (33)

Rutin Escherichia coli 3,4-dihydroxyphenylacetic acid (34)

Daidzein In vitro study (rat feces) Dihydrodaidzein (35)

Anthocyanin In vitro study (humans feces) Gallic, syringic and p-coumaric acids. (36)

Chlorogenic acid In vitro study (humans feces) 3-(3-hydroxyphenyl)-propionic acid (33)

Caffeic acid In vitro study (humans feces) Hydroxyphenylpropionic and Benzoicacids (37)

Ferulaic acid Lactobacillus and Bifidobacterium Coumaric acid and Caffeic acid (38)

Ellagic acid In vitro study (humans feces) Urolithin(A) (39)
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to weight loss in obese individuals and aid in maintaining 
a normal body weight.

Probiotics intake is also found to be correlated with 
weight loss (54–58). Polyphenols are known to alter a 
number of Bifidobacterium and Lactobacillus in the intes-
tinal tract. For example, flavanols promoted the growth 
of Lactobacillus spp. and Bifidobacterium spp., which 
may partly be responsible for the observed reductions in 
plasma concentrations of C-reactive protein (CRP) (59); 
CRP is produced by adipose tissue and largely occurs 
under the transcriptional control of interleukin-6 (60, 61). 
In addition, these changes in Bifidobacterium and Lacto-
bacillus abundance are also associated with significant 

reduction in plasma triacylglycerol level, which may con-
tribute to the benefits associated with dietary polyphenols 
(62–64). In addition, polyphenol-rich pomegranate peel 
extract was found to increase the caecal pool of Bifidobac-
teria accompanied with reduced serum level of total cho-
lesterol (TC) and LDL cholesterol induced by high-fat 
diet in mice (65). Another research group observed a 
significant increase in the proportion of Bifidobacterium 
in obese patients after consumption of red wine polyphe-
nol for 4 weeks, and reported that Bifidobacterium posi-
tively correlated with HDL cholesterol levels (51). Thus, 
polyphenols have the ability to promote the growth of 
probiotic bacteria, contribute to the improvement of 

Fig. 2.  The hypothetic pathways of anthocyanin absorption and metabolism based on literature review (40, 41). Anthocyanin 
undergoes extensive metabolism in the body; the stomach exhibited only native anthocyanin, while in other organs native antho-
cyanin and its metabolites (phenolic acid or conjugates) were detected before being excreted.

Fig. 3.  Dietary polyphenols inhibit the metabolic disease related to obesity by regulating the intestinal microflora ecology, for 
example, lowering Firmicutes/Bacteroidetes ratio (49, 50).
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intestinal barrier function and prevent or treat metabolic 
syndrome and obesity.

Enterobacter genus (proteobacteria phylum), presented 
at higher baseline level in obese compared to healthy sub-
jects, has been found to induce obesity and metabolic syn-
drome in human hosts (66). For example, Enterobacter 
cloacae produces endotoxins, causing non-obese aseptic 
mice to develop severe obesity, inducing inflammation 
and insulin resistance in mice, downregulating genes in-
volved in fat catabolism, and activating lipogenesis genes 
(67, 68). Till now, available experimental evidence showed 
that polyphenols have an inverse relationship with intes-
tinal Enterobacter. The promotion of Enterobacter was 
strongly inhibited by the presence of tea phenolics (epi-
catechin, catechin, 3-O-Me gallic acid, gallic acid, caffeic 
acid, and so on) as well as their aromatic metabolites 
including 3-(4-OH phenyl) propionic acid, 3-Phenylpro-
pionic acid, and 4-OH phenylacetic acid (69). Moreover, 
consumption of polyphenol-containing red wine or de-al-
coholized red wine normalized the Enterobacter and im-
proved blood pressure and blood glucose dysregulation in 
patients with the metabolic syndromes (70). Furthermore, 
a combination of quercetin and resveratrol can cease the 
relative population increase of Enterobacter cloacae in-
duced by high-fat diet, and this may relate to the lowering 
of body weights, serum lipids, and inflammatory cytok-
ines levels (53). Thus, lowering of the relative Enterobacter 
population in the human intestinal tract may serve as an-
other mechanism for polyphenols to rectify metabolic ab-
normalities. Enterobacter could be the new target for the 
prevention and treatment of obesity and related diseases.

Akkermansia muciniphila (A. muciniphila), a member of 
the Verrucomicrobia phylum, is believed to have anti-in-
flammatory and anti-obesity effects in humans and rodents 
(71, 72). The proportion of A. muciniphila is found to be 
around 3–5% in human digestive tract, but significantly re-
duced in obese individuals (73, 74). A. muciniphila could 
increase the thickness of intestinal walls by stimulating the 
secretion of mucin, which hinders food absorption (74). 
A lower relative abundance of A. muciniphila tends to in-
duce poor performance in obesity-associated metabolic 
phenotypes such as insulin resistance, inflammation, and 
ponderal growth (75–77). As an obligate anaerobe, A. mu-
ciniphila indeed is susceptible to the presence of free ox-
ygen radicals. Intriguingly, unabsorbed polyphenols could 
scavenge reactive oxygen species, thereby allowing A. mu-
ciniphila to thrive (78, 79). Some recent literature further 
supported this hypothesis; an in vivo study showed ellagic 
acid (a metabolite of pomegranate ellagitannins) promoted 
the growth of A. muciniphila (80). Polyphenol-rich cran-
berry extract was also found to improve insulin tolerance 
and attenuate intestinal inflammation in mice fed with 
high-fat/high-sucrose diet, and these effects are linked to the 
expansion of Akkermansia population (81). Consequently, 

dietary polyphenols very likely play an important role in 
modulating the relative abundance of A. muciniphila and 
therefore the control of host energy metabolism. Neverthe-
less, this link between changes in A. muciniphila population 
and weight loss awaits further experimental confirmation.

Polyphenols are metabolized to generate short-chain fatty acids 
via intestinal microbiota
The short-chain fatty acids (SCFAs) are beneficial for the 
prevention of obesity-related metabolic diseases (82, 83). 
Acetic acid is the major product of intestinal saccharo-
lytic fermentation, which reduces appetite, and can be ab-
sorbed and utilized by peripheral tissues in the host (84). 
Propionic acid, one of the major fermentation products 
by Bacteroides, is further decomposed and metabolized in 
the liver after being absorbed into the blood, regulating the 
conversion of pyruvate to glucose and potentially inhibiting 
fat synthesis (85). Butyric acid, one of the major fermenta-
tion products by Firmicutes, is the primary energy source 
of colon epithelial cells (86). It is worth emphasizing that 
a large proportion of dietary polyphenols may be metabo-
lized in the colon, and broken down into small molecules, 
including organic acids such as lactate, succinate, pyruvate, 
butyrate, fumarate, and acetate (87, 88). According to Bleut 
et al. (89), anaerobic bacteria in gut can cleave the ring 
structure of several flavonoids into hydroxyphenylacetic 
and hydroxyphenylpropionic acids, as well as into acetate 
and butyrate. Coincidentally, supplementation of querce-
tin and fructooligosaccharides enhanced the production of 
SCFAs, especially butyric acid, whereas supplementation 
of catechin and fructooligosaccharides significantly in-
creased the production of propionic acid compared to ad-
ministration of fructooligosaccharides alone (90). Besides, 
anthocyanins, a compound being used prophylactically 
and therapeutically, is also found to exhibit positive effects 
on the production of SCFAs, including acetic, propionic, 
and butyric acids, by regulating the intestinal microbial 
flora (82). In addition, polyphenols can induce changes in 
gut microbiota and therefore the production of SCFAs, 
leading to an upregulation of phosphorylated AMP-acti-
vated protein kinase (91, 92), which takes an up-stream and 
yet strong part in the energy metabolic pathways.

Polyphenols influence the activity of intestinal microbial enzymes
Intestinal microbiota affects the host physiological pro-
cesses via a wide range of secretory enzymes, including 
hydrolase, oxidoreductase, lyase and transfer enzymes to 
regulate host energy metabolism (77, 93). Intriguingly, 
dietary polyphenols also have significant effects on the 
intestinal microbial enzymes. For example, polyphe-
nols can inhibit bacterial enzyme activity by metal ions 
(iron and cobalt) chelation, leading to altered micro-
bial metabolism (94, 95). The catechin epigallocate-
chin gallate exhibits strong antibiotic activity against 
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Stenotrophomonas maltophilia (a kind of bacteria linked to 
inflammation) via inhibition of its dihydrofolate reductase 
(96, 97). Also, the increased abundance of Bacteroidetes 
by polyphenols may contribute to energy homeostasis due 
to the large number of glycan-degrading enzymes such as 
glycoside hydrolases and polysaccharide lyases possessed 
by Bacteroidetes (43). Thus, this might be another mech-
anism by which polyphenols exert weight-reducing effect 
via increasing Bacteroidetes abundance in gut (50).

Polyphenols influence fasting-induced adipose factor via 
intestinal microbiota
Fasting-induced adipose factor (Fiaf), also known as an-
giopoietin-like protein 4 (Angptl4), inhibits adipocytok-
ine lipoprotein lipase activity and promotes fatty acid 
oxidation. Polyhenols and their metabolites can alter in-
testinal Fiaf expression by affecting the diversity of gut 
microbiota, which then can lead to the changes in lipopro-
tein lipase activity in gut and modulate host energy me-
tabolism (Fig. 4). Recent evidence indicated that adding 
quercetin to a high-fat, high-sucrose diet significantly in-
creased the expression of Fiaf, which was associated with 
beneficial changes in the gut microbiota (101); the micro-
bial populations of Bifidobacterium and A. muciniphila 
were credited with the increase of intestinal Fiaf expres-
sion by secreting bioactive compounds (102, 103). For ex-
ample, anthocyanin was shown to activate Fiaf expression 
in gut epithelium by means of increasing the growth of 
Bifidobacterium, and reducing fat storage (104). Further-
more, research indicated that resveratrol has the poten-
tial to attenuate mRNA expression of fatty acid synthesis 
genes and switch on to lipolysis-related genes in the host, 
which may be driven by increased Fiaf expression in the 

intestine (105). These changes in gene expression may be 
responsible for the prebiotic effect of resveratrol on the 
gut microbiota. In addition, the microbial metabolites of 
polyphenols, such as propionate and butyrate, can also 
promote the expression of the Fiaf in gut epithelial cell 
lines (106). Therefore, polyphenols and their metabolites 
may be able to influence intestinal Fiaf expression, and 
through this mechanism, regulate energy metabolism.

Energy metabolism regulatory mechanisms involving 
dietary polyphenols and intestinal mucosal epithelial cell

Polyphenols modulate glucagon-like peptide-1 secretion
Glucagon-like peptide-1 (GLP-1) is an endogenous insulino-
tropic peptide secreted from the intestine L cells in response 
to food intake (107). GLP-1 analogues promote insulin se-
cretion and decrease glucagon secretion in a glucose-depen-
dent manner (108). Current findings also demonstrated that 
resveratrol given orally exerts an anti-diabetic effect linked 
to increased intestinal levels of GLP-1 (109). Furthermore, 
anthocyanin is propitious to energy homeostasis, possi-
bly by inducing the secretion of GLP-1 (110). In addition, 
polyphenol metabolites such as SCFAs in the intestine were 
also found to stimulate the release of GLP-1, which further 
inhibits appetite and food intake, delays gastric emptying 
and increases the sensation of fullness (87, 88, 111, 112). 
Therefore, the beneficial effects of polyphenols may be on 
the grounds of a GLP-1 receptor-dependent manner. 

Polyphenols modulate sodium-coupled glucose transporter 
1 expression
Sodium-coupled Glucose Transporter 1 (SGLT1), a 
major Na-dependent glucose co-transporter on the brush 

Fig. 4.  Polyphenols change fiaf gene expression via reshaping microbiota structure (87, 88, 98–100). The active fiaf, an inhibitor 
of LPL, can promote lipid clearance in blood, suppress hepatic lipogenesis and contribute to the release of fatty acids and tria-
cylglycerol from circulating lipoproteins in adipose tissue.
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border of intestinal epithelial cells, regulates intestinal 
glucose uptake and glucose-dependent incretin secretion 
like GIP-1 (113). Polyphenols might play a significant role 
in controlling the dietary glucose uptake in the intestinal 
tract by attenuating SGLT1 expression (114, 115). Coin-
cidentally, flavonoids, with well-documented anti-diabetic 
activities, can hamper glucose uptake mediated by the in-
testinal glucose transporter SGLT1 in mouse (116). Also, 
tea polyphenols have been shown to inhibit the glucose 
transport activity of SGLT1, with the most pronounced 
inhibition by epicatechin gallate (117). In addition, 
polyphenols include phlorizin, quercetin, kaempferol, 
phloretin, and cholorgenic acid, which are found to in-
hibit SGLT1 expression and diminish glucose responses 
in mice and humans (118). Streptozotocin-induced di-
abetic mice are given a diet containing 0.5% phloridzin 
for up to 14 days; blood glucose levels were significantly 
improved, probably through the decreased expression of 
SGLT1 in the small intestine (119). Based on these find-
ings, polyphenols may act as potent inhibitors of glucose 
absorption by suppressing the SGLT1 sugar transporters, 
and serve as a promising treatment option to obesity and 
metabolic diseases (120, 121).

Polyphenols modulate fructose/glucose transporter expression
Experimental evidence suggested consumption of high-
fructose products in rat models or in humans could 
lead to the development of metabolic syndrome, which 
is characterized by obesity, high blood pressure, and in-
creased serum glucose, insulin and TG levels (122). Two 
glucose/fructose transporters (GLUT2, which transports 
both glucose and fructose, and GLUT5, which transports 
fructose only) mediate intestinal glucose/fructose trans-
port from the intestinal lumen into enterocytes. Flavanols 
are the potent non-competitive inhibitors of the intesti-
nal sugar transporters (116). Some recent evidence in-
dicated that quercetin, apigenin, chrysin, curcumin, and 
bisdemethoxy can reduce the expression of GLUT2 or 
GLUT5 genes to interfere with fructose absorption via 
the intestinal–epithelial cells (123, 124). In addition, some 
polyphenol-rich foods were shown to improve glucose 
control by efficiently attenuating glucose transport across 
intestinal cells through interaction with the GLUT trans-
porter family (125). In vitro studies also showed that the 
polyphenols contained in blackcurrant and apple extracts 
inhibited GLUT-mediated glucose uptake in Caco-2/
TC7 cells (a frequently used cellular model of the small 
intestine), and cinnamon polyphenol extract can affect 
immune responses by regulating GLUT gene expression 
(126, 127). Therefore, dietary polyphenols may be bene-
ficial to the host by regulating the rate of intestinal sugar 
absorption and preventing excessive glucose/fructose up-
take; this may lead to reducing the risk of obesity, diabe-
tes and the metabolic syndrome.

Energy metabolism regulatory mechanisms 
involving dietary polyphenols and intestinal mucosal 
immune system
Latest studies have correlated the impairments in intestinal 
immune homeostasis and the mucosal barrier with increased 
activation of inflammatory pathways and the pathogenesis 
of insulin resistance (128). Studies conducted in in vivo and 
in vitro models have provided evidence that polyphenol as 
well as polyphenol-rich foods have beneficial effects on gut 
health, such as modulation of mucosal immune and in-
flammatory response via downregulation of inflammatory 
cytokines and suppression of pro-inflammatory signaling 
pathways (129–131). Lipopolysaccharide (LPS), an endo-
toxin released by gram-negative bacteria, is important for 
the induction of gut mucosal permeability by provoking 
inflammatory responses and aggravating inflammation-re-
lated chronic conditions such as obesity and insulin resis-
tance (132, 133). It has been proved that polyphenols might 
ameliorate the development of metabolic endotoxemia by 
interfering with LPS in the gut lumen (134). For instance, 
the supplementation of anthocyanin-rich fruit can alleviate 
low-grade inflammation by upregulating the interleukin-10 
gene expression and downregulating inflammatory mark-
ers (interleukin-6, tumor necrosis factor-α) in the colon 
with an increased growth of Lactobacillus spp in the off-
spring (135). In addition, polyphenol metabolites showed 
a strong inhibition toward LPS activation. Ferulaldehyde, 
a water-soluble degradation product of polyphenols, inhib-
ited the LPS-induced inflammatory response in mice (136). 
Urolithins, another group of gut microbiota-derived me-
tabolites of ellagitannins, are responsible for anti-inflam-
matory properties (137). Also, the 3-O-methylquercetin, 
a metabolite of quercetin, showed stronger potential in 
inhibiting LPS-mediated activation of macrophage U937 
cells compared to quercetin itself (138). Therefore, dietary 
polyphenols as well as their metabolites may act a key role 
in the intestinal mucosal immune system.

Conclusions
Current evidence has strongly supported the correlation 
of the occurrence of obesity with a shift in intestinal mi-
croecology. Polyphenols and their diverse metabolites have 
profound influence on the diversity and complexity of the 
intestinal microflora. Various studies have been carried 
out to understand the response of the gut microbiota with 
polyphenol administration as well as to identify the key 
microorganisms involved. It is clear that dietary polyphe-
nols and their metabolites contribute to the maintenance 
of energy homeostasis and gut health through modula-
tion of the gut microbiome, intestinal epithelial cellular 
function, and the mucosal immune system. Although the 
detailed mechanism by which polyphenols interact with 
the gut microecology is still not yet well characterized, 
polyphenols appear to influence energy metabolism and 
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promote weight loss by re-structuring the intestinal mi-
croecology. This may provide a new viewpoint for obesity 
treatment via polyphenol interventions.
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