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Abstract

Background: Tartary buckwheat has beneficial effects on glucose and lipid metabolism of patients with type 
2 diabetes mellitus. However, the physiological effects of a soluble dietary fiber (SDF) from tartary buckwheat 
have rarely been studied, especially in vivo. 
Objective: This study aimed to examine the hypoglycemic and hypolipidemic effects of SDF from tartary 
buckwheat bran on high-fat diet/streptozotocin-induced diabetic mice.
Design: The SDF of tartary buckwheat bran was collected according to the Association of Official Analytical 
Chemists method 991.43. Diabetic mice were treated with high-fat diets supplemented with 0.5, 1, and 2% 
SDF for 8 weeks. Parameters related to glucose and lipid metabolism and relevant mechanisms, including 
the excretion of short-chain fatty acids and the glycemic signaling pathway in the liver, were investigated. 
In addition, the structural characterization of a purified polysaccharide from SDF of tartary buckwheat bran 
was illustrated.
Result: Supplementation with SDF in the diet resulted in reduced levels of fasting blood glucose, improved 
oral glucose tolerance, increased levels of liver glycogen and insulin, as well as improved lipid profiles in 
both the serum and liver, in diabetic mice. The amelioration of glucose and lipid metabolism by SDF was 
accompanied by an increase in the short-chain fatty acid levels in the cecum and co-regulated by hepatic 
adenosine-5′-monophosphate-activated protein kinase (AMPK) phosphorylation. A neutral tartary buck-
wheat polysaccharide with an average molecular weight of 19.6 kDa was purified from the SDF, which con-
sisted mainly of glucose with α-glycosidic bonds. 
Conclusions: The SDF of tartary buckwheat bran exhibits hypoglycemic and hypolipidemic effects in diabetic 
mice, contributing to the anti-diabetic mechanisms of tartary buckwheat. 
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Diabetes is a complex disease that causes elevated 
blood glucose levels. It involves either a deficiency 
in insulin secretion, resistance to insulin action, 

or both, and can also be associated with lipid disorder, 

cardiovascular disease, retinopathy, and other pathologies 
(1). Higher intake of fiber has been shown to lower the 
risk of type 2 diabetic mellitus (T2DM) (2). Pseudo-cereals 
have high levels of dietary fiber (3), and they show many 

Popular scientific summary
• � The soluble dietary fiber from tartary buckwheat bran improved glucose and lipid metabolism in 

diabetic mice.
• � This soluble dietary fiber increased the short-chain fatty acid levels in cecum and promoted phos-

phorylation of adenosine-5′-monophosphate-activated protein kinase in liver. 
• � The structural characterization of a purified polysaccharide from the soluble dietary fiber of tartary 

buckwheat bran was illustrated. 
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beneficial, physiological activities (4, 5). The soluble di-
etary fiber (SDF) from pseudo-cereals can be considered 
an alternative functional product for hyperglycemia and 
hyperlipidemia.

Tartary buckwheat (Fagopyrum tataricum) is a func-
tional grain that can effectively improve the glucose and 
lipid metabolism of  T2DM patients (6). Most studies 
have ascribed these promising beneficial health effects to 
tartary buckwheat’s flavonoids, proteins, and D-chiro-
inositol. It was reported that tartary buckwheat from 
Islek contains 24.76% of  total dietary fiber in bran frac-
tion (7). The content of  total dietary fiber in bran was 
higher than that in flour (7). However, few studies have 
revealed its physiological effects. The purified non-starch 
polysaccharide from tartary buckwheat exhibits in vitro 
inhibitory activity against α-D-glucosidase (8), indicat-
ing its potential anti-diabetic properties. Nevertheless, 
the in vivo physiological functions of  SDF remain to be 
studied. 

This study, therefore, aimed to examine the hypogly-
cemic and hypolipidemic effects of SDF from tartary 
buckwheat bran on high-fat diet/streptozotocin-induced 
diabetic mice. Parameters by which the relevant mecha-
nisms were investigated include the excretion of short-
chain fatty acids (SCFAs) and the glycemic signaling 
pathway in the liver. 

Materials and methods 

Materials
The tartary buckwheat (Xiqiao No. 2) was collected from 
Liangshan, Sichuan Province, China. Alcalase 2.4  L 
(2.4  U/g), acetic acid, propionic acid, and butyric acid 
were purchased from Sigma-Aldrich Chemicals (Shang-
hai, China). Amyloglucosidase (100 IU/mg) and heat-sta-
ble α-amylase were purchased from J & K Chemicals 
(Beijing, China). Commercial assay kits for glucose, total 
triglycerides (TG), total cholesterol (TC), low-density 
lipoprotein cholesterol (LDL-c), high-density lipoprotein 
cholesterol (HDL-c), aspartate aminotransferase (AST), 
alanine aminotransferase (ALT), and glycosylated serum 
protein (GSP) were purchased from Jiancheng Bioengi-
neering Institute (Nanjing, China). The mouse insulin 
Enzyme-linked immunosorbent assay (ELISA) assay 
kit was purchased from Cusabio Life Science (Wuhan, 
China). Primary antibodies against β-actin, adenosine-
5′-monophosphate-activated protein kinase (AMPKα), 
phospho-AMPKα (Thr172), and the secondary antibody 
of anti-rabbit IgG were purchased from Cell Signaling 
Technology (MA, USA). The polyvinylidene fluoride 
(PVDF) membrane and enhanced chemiluminescence 
(ECL) Western horseradish peroxidase (HRP) substrate 
were obtained from Millipore (MA, USA). All other 
chemicals purchased were of standard analytical grade.

Determination and preparation of soluble dietary fiber 
The SDF was extracted from tartary buckwheat bran. The 
SDF in bran was prepared and their content was deter-
mined according to the Association of  Official Analytical 
Chemists (AOAC) official method 991.43 (total, includ-
ing soluble, insoluble dietary fiber in foods, enzymatic-
gravimetric method, Mes-Tris buffer). In brief, tartary 
buckwheat bran was defatted with 85% ethanol twice 
(1:5,  w/v, 85°C, 1 h) to remove most lipids, flavonoids, 
and soluble low-molecular-weight carbohydrates, and 
then dried at 60°C overnight. The defatted flour was sus-
pended in distilled water (1:10, w/v) and boiled for starch 
gelatinization (95°C, 15 min). Thermally stable α-amylase 
was added to hydrolyze the starch (95°C, 30 min) up to 
the negative iodine test. Subsequently, alcalase was added 
for protein degradation (60°C, 4 h, pH 7.5). Papain and 
trypsin were added to further hydrolyze the protein resi-
dues. The suspension was then incubated with amyloglu-
cosidase (55°C, 2 h, pH 4.5). Following this, the mixture 
was neutralized and heated to terminate enzymatic hy-
drolysis (80°C, 15 min). The supernatant was collected 
by centrifugation at 5,500 rpm for 20 min (Avanti JXN-
26, Beckman Coulter, USA) and mixed with ethanol at 
a 1:4  ratio. The resulting precipitate was obtained by 
centrifugation and was lyophilized to obtain the SDF 
fraction. The procedure was repeated to obtain sufficient 
SDF for further study.

Purification and structural analysis of polysaccharide from SDF

Extraction of SDF and purification of polysaccharide 
from SDF
The SDF was dissolved in distilled water and then 
centrifuged to remove the insoluble residues (5,500 r/min,  
10  min). The supernatant was purified through a 
Diethylaminoethyl  (DEAE) Sepharose CL-6B column 
(3.5 × 30 cm) eluted with 0, 0.6, and 1.2 M NaCl in 20 
mM Tris-HCl buffer (pH 7.0) at a flow rate of 5 mL/min. 
The total carbohydrate content was measured using the 
phenol-sulfuric acid colorimetric method at 490 nm. The 
protein in the elute was detected by A280 nm. Two frac-
tions from the elution steps, tartary buckwheat polysac-
charide 1 (TBP1) and tartary buckwheat polysaccharide 
2 (TBP2), were concentrated by rotary evaporation, dia-
lyzed, and lyophilized. Further purification of TBP1 was 
performed on a Sepharose CL-6B column (2.5 × 55 cm) 
eluted with deionized water at a flow rate of 1.5 mL/min. 

Molecular weight distribution of TBP1
The average molecular weight of TBP1 obtained above 
was measured by online multi-angle laser light scattering 
(DAWN EOS, Wyatt Technology Inc., USA) combined 
with gel permeation chromatography according to the 
previous study (9). 
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Monosaccharide composition analysis of TBP1
The monosaccharide compositions of TBP1 were de-
termined by ion-exchange chromatography (ICS-3000, 
DIONEX, USA) with a pulsed amperometric detector 
according to the previous study (9). 

Fourier transform infrared spectroscopy 
The TBP1 (2 mg) was mixed and grounded with KBr and 
pressed into a film under the pressure of oil pump. FT-IR 
spectra were recorded with a Bruker tensor 27 Fourier 
transform infrared spectrometer (FT-IR) (Germany). 

Nuclear magnetic resonance
High-resolution nuclear magnetic resonance (NMR) 
spectroscopy was performed using a Bruker Avance III 
spectrometer (Germany), which is operated at 400 MHz 
for 1H NMR, 13C NMR, 1H-13C HSQC spectra, and 1H-1H 
HSQC spectra, respectively, at 25°C in sample tubes with 
a diameter of 3 mm.

Animals experiment
Four-week-old male C57BL/6 mice (n = 50, Certificate 
No. 2015000543572) were obtained from Beijing HFK 
Bioscience Co. Ltd (Beijing, China). After acclimatization 
for 1 week, the mice were divided into a healthy group and 
a diabetic model group. The healthy group was given a 
standard diet during the entire course of the experiment. 
The induction of the diabetic model was based on previ-
ous research (10) with some modifications. The diabetic 
mice were fed a high-fat diet (45% kcal of energy from 
fat, Research diets D12451, Table 1) for 5 weeks, and then 
were subjected to fasting for 18 h (free access to water). 
They were then given an intraperitoneal injection of 

streptozotocin (STZ) (120 mg/kg, citrate buffer, pH 4.5) 
and subjected to a further 2-h fasting period. The diabetic 
mouse model was confirmed by fasting blood glucose 
(FBG), which was maintained above 11.1 mM continu-
ously for 2 weeks after STZ injection. The eligible dia-
betic mice were subdivided into four groups according to 
weight and FBG; these included the diabetic model group 
(10 mice, 3–4 mice/cage), the low-dose SDF group (0.5%), 
the middle-dose SDF group (1%), and the high-dose SDF 
group (2%) (n = 9 mice in each SDF group, three mice/ 
cage). All mice were allowed free access to experimen-
tal diets for 8 weeks. Food intake and water intake were 
measured every day. The glucose levels of mice were mea-
sured every 2 weeks. The use of animals and experimental 
methods was in compliance with the National Institutes 
of Health Guidelines for the Care and Use of Laboratory 
Animals. 

Oral glucose tolerance test
One day before the end of experiment, the mice were 
fasted for 14 h, followed by an oral administration of 20% 
(w/v) glucose solution at a dose of 2 g/kg. Blood was col-
lected from the tail vein at 0, 30, 60, 90, and 120 min after 
administration of glucose. The blood glucose levels were 
determined using a commercial assay kit and recorded as 
BG0, BG30, BG60, B90, and B120. The area under the curve 
(AUC) was calculated as follows: 

AUC 0–120min Glu (mM × h) = �0.25 × BG0 + 0.5 × 
(BG30 + BG60 + BG90) + 0.25 
× BG120. 

At the end of experiment, the mice were fasted for 14 h 
before being sacrificed by cervical dislocation after an-
esthesia. Blood samples were collected from the orbital 
venous plexus. The serum was separated by centrifuga-
tion (3,000 r/min, 10 min) after coagulation at room tem-
perature for 30 min and was maintained at −20°C. The 
related parameters in the serum were measured using a 
commercial assay kit. The organs were rinsed with 0.9% 
NaCl solution, immediately frozen in liquid nitrogen, and 
stored at −80°C until analysis.

Assay of hepatic lipid analysis
The liver tissue was weighed and homogenized (IKA® T10) 
with a 0.9% NaCl solution (1:9 w/v) according to the man-
ufacturer’s instructions. The TC and TG contents in the 
homogenate were determined using a commercial assay kit.

Assay of total liver glycogen
The frozen liver samples were weighed, dissolved in a 
30% KOH solution, and boiled for 20 min. Glycogen 
was precipitated by adding ethanol. After centrifugation 
(1,700 × g, 10 min, 4°C) and decanting of the supernatant, 

Table 1.  Ingredients and chemical composition of experimental diets

Ingredient 
g/kg diet

High-fat 
diet

Soluble dietary fiber (SDF)

0.5% 1.0% 2%

Maize starch 84.8 83.9 83.0 81.1

Cellulose 58.3 57.6 57.0 55.7

Maltodextrin 116.5 115.3 114.0 111.5

Sucrose 201.4 199.2 197.0 192.6

SDF 0 5.0 10.0 20.0

Soybean oil 29.2

Lard 206.8

Casein 233.1

Cystine 3.5

Mineral mix 52.4

Vitamin mix 11.6

Choline 
Bitartrate

2.3

Red dye 0.1

Total (g) 1000.0
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the pellet was resolved in distilled water. The glycogen 
content was determined using the phenol–sulfuric acid 
method.

Extraction and analysis of SCFAs in the cecum 
The measurement of SCFA levels in the cecum was per-
formed as described in a previous study (11). In brief, the 
cecal content was mixed with acidified water (pH 1.5) 
with H2SO4 (1:5 w/v) at 4°C for 30 min and vortexed every 
10  min. Then, the mixture was centrifuged at 10,000 r/
min for 20 min at 4°C. The supernatant was transferred 
into a new tube and mixed with an equal volume of ethyl 
ether. After centrifugation, the ethyl ether extract was fil-
tered through a 0.22 μM filter. Cecal SCFAs were deter-
mined by gas chromatography (Agilent 7890B GC system 
equipped with a flame ionization detector). The SCFAs 
were separated on an HP INNO-WAX (ID 25 mm, length 
30 m, 0.25 μm film thickness, J&W scientific, USA) using 
the following program. The initial temperature was 100°C. 
It was raised to 170°C by 6°C/min, increased to 230°C 
by 20°C/min, and held at 230°C for 2 min. The injection 
port was operated at 250°C. The detector temperature 
was 280°C. The carrier gas was nitrogen at 25 mL/min. 
Sample quantification was carried out using the standard 
SCFAs (acetic, propionic, and butyric acid) at concentra-
tions of 0.1–2 mg/mL. 

Western blotting
Total protein was extracted from the liver tissue using ra-
dio-immunoprecipitation assay (RIPA) lysis buffer. Ali-
quots of the liver protein extract (25 μg protein/lane) were 
separated by 10% sodium dodecyl sulfate polyacrylamide 
gel electrophoresis (SDS-PAGE) and transferred onto a 
PVDF membrane. The PVDF membrane was blocked 
with 5% bovine serum albumin in TBS-Tween buffer for 1 
h and incubated with the first antibody at 4°C overnight. 
β-Actin was used as the control to ensure a consistent 
amount of loaded protein. The membrane was washed 

three times in Tris-buffered saline-Tween and further in-
cubated with secondary antibody at room temperature 
for 1 h. Protein expression was detected using an ECL 
detection kit, which was exposed by Bio-Rad ChemiDoc 
XRS+ Imager (USA). Densitometric analysis was per-
formed using Image J software.

Statistical analysis
Values are expressed as the mean ± standard error of the 
mean (SEM). Statistical differences among groups were 
evaluated by one-factor analysis of variance (ANOVA) 
and Duncan’s test for post hoc analysis. Data were con-
sidered to be statistically significant at P < 0.05. The other 
statistical evaluations were performed using Student’s 
t-test. 

Results

SDF ameliorated glucose metabolism in diabetic mice

SDF reduced FBG and glycosylated serum protein (GSP)
The changes in levels of  FBG and GSP are shown in 
Table 2. The FBG level of  the diabetic model increased 
from 25.58 ± 1.33 mM to 28.35 ± 0.16 mM during 
the 8-week treatment, which was a significantly larger 
change than that of  the healthy group. Prior to treat-
ment, FBG showed no significant difference among all 
diabetic groups (P > 0.05). There were no significant 
differences in food intake and body weight among the 
diabetic and SDF groups. After 8-week treatment, FBG 
levels in the 0.5, 1, and 2% SDF groups were signifi-
cantly reduced by 18.0, 18.3, and 16.6%, respectively 
(P  < 0.05). The change in the level of  GSP was simi-
lar to that of  FBG. Treatment with SDF at doses of 
0.5, 1, and 2% resulted in significant GSP reductions by 
12.2, 6.8, and 11.6%, respectively (P < 0.05). However, 
the dosage effects of  SDF on FBG and GSP were not 
significant. 

Table 2.  Weekly fasting blood glucose (FBG) change and final glycated serum protein (GSP) level

Groups FBG (mM) GSP (mM)

0 week 2nd week 4th week 6th week 8th week 8th week

Healthy 6.7 ± 0.21a 6.57 ± 0.10 a 5.63 ± 0.17a 7.03 ± 0.43a 7.6 ± 0.43a 1.21 ± 0.11a

Diabetic model 25.58 ± 1.33b 26.0 ± 0.84b 27.18 ± 0.63b 26.74 ± 0.47b 28.35 ± 0.16b 3.18 ± 0.26b

Soluble dietary fiber (SDF) 0.5% 25.00 ± 0.81b 24.16 ± 0.93b 25.44 ± 0.56c 23.43 ± 0.70c 23.26 ± 0.21c 2.77 ± 0.10c

SDF 1% 25.41 ± 0.79b 24.4 ± 1.12b 23.89 ± 0.57c 24.00 ± 0.59c 23.19 ± 0.28c 2.94 ± 0.17c

SDF 2% 25.56 ± 1.13b 24.54 ± 0.98b 23.69 ± 0.87c 24.13 ± 0.50c 23.65 ± 0.57c 2.79 ± 0.19c

Each value represents mean ± SEM for 9–10 mice. Different letters represent the statistical differences at P < 0.05 among the groups measured by 
Duncan’s test. 
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SDF improved oral glucose tolerance
As shown in the oral glucose tolerance test (OGTT) 
(Fig.  1a), glucose tolerance was impaired in the diabetic 
mice group. In contrast, SDF treatments at doses of 1 and 
2% significantly suppressed the increase in blood glucose 
levels at all five time-points (P < 0.05). The mice treated 
with a low dose (0.5% of SDF) only showed significant sup-
pression of the blood glucose level at 30 min (P < 0.05). The 
higher dose-treated mice had more potent glucose tolerance 
than the lowest dose-treated mice. As shown in Fig. 1b, the 
AUC value of the OGTT in the diabetic mice model was 
significantly higher than that of the healthy group. In com-
parison with the diabetic mice group, the AUC values of 
the SDF-treated groups were significantly decreased. The 
SDF-induced reductions in AUC values of the OGTT were 
comparable among groups with different doses. 

SDF increased liver glycogen content
The liver is a crucial organ for the maintenance of glucose 
homeostasis, as it balances gluconeogenesis and glycogen 
synthesis. As shown in Fig. 1c, SDF treatment signifi-
cantly enhanced liver glycogen storage in diabetic mice, 
which contributed to the suppression of hepatic glucose 
output and the improvement of glucose homeostasis.

SDF increased fasting insulin levels
The diabetic mice showed significantly lower fasting insu-
lin levels than the healthy mice (Fig. 1d) as STZ injection 

destroys β-cells in the pancreas. The reduction in the 
insulin secretion led to a further increase in the FBG levels 
of the diabetic mice. The SDF-treated groups, at all doses, 
showed significantly increased levels of insulin compared 
with the diabetic mice group (P < 0.05), which may mean 
that SDF could help lower FBG.

SDF improved the serum lipid profiles of diabetic mice 
Diabetes is usually accompanied by hyperlipidemia. As 
shown in Fig. 2a–d, the diabetic mice showed higher 
serum levels of TC, TG, and LDL-c and lower levels 
of HDL-c in response to the high-fat diet. In compari-
son with diabetic mice, SDF interventions at doses of 
0.5, 1, and 2% significantly reduced TC by 8.6, 11.2, and 
15.8%, and LDL-c by 11.6, 10.9, and 16.7%, respectively 
(P < 0.05). SDF supplementation at a dose of 2% signifi-
cantly reduced the TG level by 18.4% compared with the 
diabetic mice group (P < 0.05), while SDF supplementa-
tion at lower doses of 0.5 and 1% had no effects on TG. 

SDF attenuated hepatic lipid accumulation and high-fat diet/
STZ-induced liver injury in diabetic mice
As shown in Fig. 3a and b, the diabetic model had higher 
accumulated levels of hepatic TG and TC compared with 
the healthy group. A significant reduction in the hepatic 
TC and TG was observed in the SDF groups at all doses. 
Furthermore, glucose and lipid disorders may impair liver 
function in diabetic mice. ALT and AST levels are two 

Fig. 1.  Effects of soluble dietary fiber (SDF) on glucose metabolism in mice: oral glucose tolerance test (OGTT) (a); calculated 
areas under the curve (AUC) from OGTT (b); liver glycogen content (c); and serum insulin levels (d). Each value represents 
mean ± SEM for 9–10 mice. In (a), statistical differences were evaluated using Student’s t-test. *P < 0.05 versus control group; 
**P < 0.01 versus control group. In (b–d), different letters represent the statistical differences at P < 0.05 among the groups 
measured by Duncan’s test. 

a b

dc
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useful biomarkers of hepatocellular injury. As shown 
in Fig. 3c and d, the diabetic mice groups had signifi-
cantly higher ALT and AST levels than the healthy group 
(P < 0.05). Treatment with SDF at all doses resulted in 

significantly reduced ALT levels. Treatment with 2% SDF 
caused a significant decrease in AST by 21.7% (P < 0.05), 
while the treatments at doses of 0.5 and 1% caused no 
significant changes. 

a b

dc

Fig. 2.  Effects of soluble dietary fiber (SDF) on the serum lipid profile in mice: total cholesterol, TC (a); total triglycerides, TGs 
(b); low-density lipoprotein cholesterol, LDL-c (c); and high-density lipoprotein cholesterol, HDL-c (d). Each value represents 
mean ± SEM for 9–10 mice. Different letters represent the statistical differences at P < 0.05 among the groups measured by 
Duncan’s test. 

a b

dc

Fig. 3.  Effects of  soluble dietary fiber (SDF) on lipid profiles and function parameters of  liver in mice: hepatic TG (a); hepatic 
TC (b); serum alanine aminotransferase, ALT (c); and serum aspartate aminotransferase, AST (d). Each value represents 
mean ± SEM for 9–10 mice. Different letters represent the statistical differences at P < 0.05 among the groups measured by 
Duncan’s test. 
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SDF promoted the phosphorylation of AMPK in the liver of 
diabetic mice
As shown in Fig. 4, the high-fat diet downregulated the 
phosphorylation of AMPK in the livers of diabetic mice 
by 67.8% (P < 0.05), which was consistent with previous 
reports (12) The administration of SDF at doses of 0.5, 
1, and 2% substantially increased the phosphorylation of 
AMPK in the liver by 155.4, 249.8, and 357.7%, respec-
tively. In addition, the level of hepatic AMPK phosphor-
ylation in the 2% SDF group was higher than that in the 
healthy group (P < 0.05). 

SDF increased the SCFA contents in the cecum of diabetic mice
As shown in Fig. 5, compared with the healthy group, the 
high-fat diet significantly decreased the cecal SCFA con-
tent, especially acetic acid and butyric acid, by 25.2 and 
5.7%, respectively (P < 0.05). The intake of SDF at doses 
of 0.5, 1, and 2% increased acetic acid levels by 76.3, 91.7, 

and 102.2%, respectively. Treatment with SDF at doses of 
0.5, 1, and 2% resulted in higher production levels of pro-
pionic acid by 21.3, 23.1, and 32.64%, respectively. The 
concentrations of cecal butyric acid in the 0.5, 1, and 2% 
SDF groups increased by 9.8, 13.7, and 21.7%, respec-
tively. Moreover, SDF interventions at all doses resulted 
in higher levels of acetic acid, propionic acid, and butyric 
acid than those of the healthy group (P < 0.05).

Purification and structural analysis of polysaccharide from SDF
The SDF content in tartary buckwheat bran is 4.02  ± 
0.19%. The SDF was purified by DEAE-Sepharose 
CL-6B column. As shown in Fig. 6a, two tartary buck-
wheat polysaccharide (TBP) fractions were detected, 
TBP1 and TBP2. The first peak TPB1 was the neutral 
polysaccharide and was the major polysaccharide fraction 
with higher polysaccharide content. Further purification 
of TBP1 using the Sepharose CL-6B column obtained 

a b

Fig. 4.  Protein expression of AMPK in the liver of mice by Western blot analysis: representative blots (a); the relative protein 
expression for signaling protein is shown as mean ± SEM (n = 4/group) and expressed as the fold change over the diabetic con-
trol (b). The results were all normalized to β-actin levels. Different letters represent the statistical differences at P < 0.05 among 
groups measured by Duncan’s test.

Fig. 5.  Effects of soluble dietary fiber (SDF) on cecal short-chain fatty acids in mice. Each value represents mean ± SEM for 
9–10 mice. Different letters represent the statistical differences at P < 0.05 among the groups measured by Duncan’s test.
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a single polysaccharide peak (Fig. 6b). The protein and 
nucleic acids were not detected in TBP1. The purified 
TBP1 from SDF was used for further structural analysis. 

The TBP1 was mainly composed of glucose (93.98%). 
Besides, it was composed of mannose (1.69%), galac-
tose (1.48%), arabinose (1.37%), rhamnose (1.30%), 
and xylose (0.18%). The previous study showed that the 
polysaccharide from tartary buckwheat consisted of ga-
lactose, arabinose, xylose, and glucose with a molar ratio 
of 0.7:1:6.3:74.2(8). The TBP1 has the average molecu-
lar weight of 19.6 kDa, with polydispersity (Mw/Mn) of 
1.129. It was found in the previous report that the molec-
ular weight of polysaccharide from tartary buckwheat by 
Sephadex G-25 and G75 was 26 kDa (8).

As shown in Fig. 7a, the TBP1 displayed a typical 
FT-IR spectrum of polysaccharide (13). The broad in-
tense characteristic peak at 3,387 cm−1 was attributed to 
the stretching vibration of O-H. The peaks of 2,929 cm−1 
were ascribed to the C-H stretching (14). The peaks from 
1,641 cm−1 and 1,415 cm−1 belong to C=O bending and 
C-H bending, respectively, which were typical infrared 
absorption peaks of polysaccharides (15). In addition, 
three stretching peaks between 1,154 cm−1 and 1,024 cm−1 
indicated the presence of pyranoside. The weak band at 
848 cm−1 and 928 cm−1 was ascribed to α-glycosidic bond 
and β-glycosidic bond in the polysaccharides, respectively 
(8, 15, 16).

The structural characteristics of TBP1 derived from 
NMR analysis are shown in Fig. 7b–e, namely, 1H, 13C 
NMR, 1H-13C HSQC, and 1H-1H COSY spectra. In gen-
eral, the anomeric signals in 1H NMR were concentrated 
in the range of 4.69–5.45 ppm. The 5.02–5.45 ppm region 
represented the type of α-configuration, and the 4.69–4.73 
ppm region represented the β-configuration. The ano-
meric signals in 13C NMR were in the low field ranging 
from 91.9 to 100.0 ppm, of which 91.9–98.6 ppm repre-
sented the type of α-configuration, and 99.6–100.0 ppm 

represented the β-configuration of glucose (17, 18). The 
maximum heap of anomeric signals among the regions δ 
5.45–5.40 ppm in 1H NMR and δ 91.9, 99.6, 99.8, and 
100.0 ppm in 13C NMR indicated that D-glucopyranose 
residues in TBP1 were mainly of the type α-configura-
tion. The primary shift signal of C-1 at δ 99.8 and 99.6 
ppm combined with C-2 shift at δ 70.4 ppm proved the 
dominant existence of α-D-Glcp-(1→linkage, which were 
probably at terminal position (19). The shift signal of C-1 
at δ 100.0 ppm and C-6 at δ 69.4 ppm could prove the 
existence of →6)-β-D-Glcp-(1→linkage, respectively (20). 
The weak C-1 signal at δ 91.9 ppm indicated -α-D-Gl-
cp-(4→linkage (21). The C-1 signal at δ 95.8 and 95.9 
ppm with the C-2 signal at δ 74.0 ppm could be assigned 
to linkage →1)-β-D-Glcp-(6→. Both the C-1 signal at δ 
98.6 ppm and the C-6 shift at δ 60.8 ppm demonstrated 
that →2)-β-D-Glcp-(1→ linkage existed, although H-2, 
H-3, H-4, and H-5 were hard to be distinguished due to 
signal overlapping (20). According to the literature above, 
major signals among the region δ 69.3-77.0 ppm could 
be attributed from C-2 to C-5, respectively. The chemical 
shifts of the characteristic signals in the 1H and 13C NMR 
spectra of TBP1 are summarized in Table 3. The structure 
of TBP1 mainly consisted of α-D-Glcp linkage. 

Discussion
In this study, the hypoglycemic and hypolipidemic activi-
ties of SDF from tartary buckwheat bran in high-fat diet 
and STZ-induced diabetic mice were investigated. In ad-
dition, it was found that the amelioration of glucose and 
lipid metabolism by SDF was accompanied by an increase 
in SCFAs in the cecum and phosphorylation of AMPK 
in the liver. 

The glucose metabolism in diabetic mice was improved 
by SDF (Table 2 and Fig. 1), which was consistent with 
data on the hypoglycemic effects of SDF from other 
sources, such as oat β-glucan (22, 23), deoiled cumin (24), 

Fig. 6.  Chromatogram of eluted polysaccharide from soluble dietary fiber (SDF) on DEAE CL-6B column (a) and on Sepharose 
CL-6B column (b).

a b

http://dx.doi.org/10.29219/fnr.v65.4998


Citation: Food & Nutrition Research 2021, 65: 4998 - http://dx.doi.org/10.29219/fnr.v65.4998 9
(page number not for citation purpose)

Anti-diabetic effects of soluble dietary fiber from tartary buckwheat bran

Fig. 7.  Structural characteristics of tartary buckwheat polysaccharide 1(TBP1) derived from FT-IR spectra (a) and NMR based 
on 1H NMR (b), 13C NMR (c), 1H-13C HSQC spectra (d), and 1H-1H COSY spectra (e).

a

b

c
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barley (25), and bamboo shoot shell (26). Similar to the 
results of this study, the lowering of FBG levels by oat 
β-glucan was accompanied by significantly increased lev-
els of liver glycogen (23) and serum fasting insulin (22, 23). 
The in vitro study showed that the hypoglycemic effects of 

dietary fiber may be attributed to its ability to lower the 
postprandial glucose level by binding to glucose and pre-
venting its diffusion (26, 27). An in vitro glucose absorption 
capacity test was performed by the research team of this 
study, which revealed that SDF has a glucose absorption 

d

e

Fig. 7. (Continued)  Structural characteristics of tartary buckwheat polysaccharide 1(TBP1) derived from FT-IR spectra (a) and 
NMR based on 1H NMR (b), 13C NMR (c), 1H-13C HSQC spectra (d), and 1H-1H COSY spectra (e).
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capacity of 11.39–2070.64 μmol(glucose)/g(SDF) in dif-
ferent concentrations of glucose solution (10-200 mM) 
(detailed data are not shown in this study). In addition, 
the non-starch soluble polysaccharide from tartary buck-
wheat has been reported to inhibit α-glucosidase activity, 
which indicates potential hypoglycemic effects (8). 

Furthermore, SCFAs, such as acetic, propionic, and 
butyric acids, are major metabolites produced by the in-
testinal fermentation of complex carbohydrate fibers by 
the microbiota. In this study, SDF enhanced SCFA pro-
duction in the cecum (Fig. 5), which resembled the effects 
of SDF from cumin (24). The levels of SCFAs in the SDF 
groups exceeded those in the healthy group. SCFAs can 
enter the systemic circulation and activate AMPK in in-
testinal epithelial (28), skeletal muscle (29), and liver cells 
(30) either directly or indirectly. It is suggested that acti-
vation of AMPK through increased SCFA production is 
the main mechanism underlying the beneficial effects of a 
high-fiber diet on metabolic syndrome (31–34). In agree-
ment with previous studies (32–34), SDF treatment not 
only resulted in SCFA production but was also accom-
panied by the activation of AMPK in the liver (Figs.  4 
and  5). The phosphorylation of AMPK functions as a 
major cellular fuel gauge and a master regulator of glu-
cose and lipid metabolism through its effects on energy 
metabolism (28, 35–38, 39).

AMPK activation can lead to hyperglycemia in diabetic 
mice (Figs. 1 and 5). Hepatic gluconeogenesis appears to 
be suppressed by SCFAs, such as acetic acid (36, 40) and 
propionic acid (41), through upregulation of AMPK. This 
aligns with the results of this study, in which increased 
glycogen storage by SDF supplementation was observed, 
and this may indicate that the effects of SDF are mediated 
by hepatic AMPK activation (38, 42). 

Furthermore, SDF treatment ameliorated the lipid pro-
files in both serum and liver (Figs. 2 and 3), which aligns 
with data on the hypolipidemic effects of SDF from 

cumin (24), soybean residue (43), and guar gum (44). The 
SCFAs that were absorbed and metabolized in the liver 
may be involved in lowering plasma cholesterol levels 
(45). The results of this study revealed that the highest 
dose (2%) of SDF was more effective at improving lipid 
metabolism, which may be related to the dose-dependent 
effects of SDF on butyric acid (Figs. 2 and 5). In addi-
tion, the reduction in hepatic lipid accumulation may be 
related to SCFA-induced AMPK activation, as reported 
previously (30, 37, 46, 47). Furthermore, the result of 
this study revealed that SDF effectively protected against 
high-fat diet-induced liver injury (Fig. 3), similar to pectin 
(48) and SDF from barley (25). As the accumulation of 
hepatic lipid is less modifiable than that of serum lipid, 
SDF may not have any significant effects on hepatic lipid 
accumulation. 

Interestingly, this study showed that the dosage effects 
of SDF were not linearly linked with the hypoglycemic 
effects, which resembled the effects of SDF from other 
sources (22, 24, 49). As reported previously, the SDF 
doses from 0.5 to 2% might reach the activity plateau. 
The hypoglycemic effects of dietary fiber were mainly 
through binding glucose and/or digestive enzyme so as to 
inhibit glucose release and absorption. SDF from tartary 
buckwheat reached its highest inhibition activity plateau 
against α-glucosidase with a relatively low concentration 
of 0.8 mg/mL (8). In addition, the hypoglycemic and hy-
polipidemic activities of SDF are indirectly affected by 
SCFAs.

Tartary buckwheat contains several hypoglycemic and/
or hypolipidemic compounds, such as rutin, fagopyritols, 
D-chiro-inositol (DCI), and protein (50). Rutin has been 
shown not to affect serum TC (51), ALT, and AST (52) in 
high-fat diet-fed rats. In addition, rutin has little effect on 
SCFA production (51). However, significant reductions in 
the serum TC and LDL-c levels of patients with type 2 dia-
betes were observed in the tartary buckwheat intervention 

Table 3.  Chemical shifts of the characteristic signals in the 1H and 13C nuclear magnetic resonance spectra of TBP1

Glycosyl residues Chemical shifts (ppm)

H1/C1 H2/C2 H3/C3 H4/C4 H5/C5 H6/C6

α-D-Glcp-(1→ 5.40–5.45 3.60–3.65 nd nd nd 3.7, 3.8

99.8–99.6 70.4 74.2 70.4 72.9 60.5

→6)-α-D-Glcp-(1→ 5.40–5.45 3.60–3.65 nd nd nd 3.7, 3.8

100.0 70.4 nd nd 72.8 69.4

α-D-Glcp-(4→ 5.27 nd nd nd nd 3.6

91.9 nd 74.0 77.9 71.3 60.8

→1)-β-D-Glcp-(6→ 4.71 3.95 nd nd nd nd

95.8, 95.9 74.0 76.2 70.4 nd nd

→2)-β-D-Glcp-(1→ 5.40–5.45 nd nd nd nd 3.7, 3.8

98.6 72.7 74.0 70.4 72.8 60.8
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group (6). This study revealed that SDF might contribute 
to the SCFA production and reduction of TC, similar to 
tartary buckwheat protein (53). In addition, as tartary 
buckwheat contains several bioactive compounds, the syn-
ergistic effects of these compounds need to be analyzed to 
reveal the mechanisms of action of tartary buckwheat in 
the process of glucose and lipid metabolism. Furthermore, 
the SDF from tartary buckwheat could be used as a novel 
source of dietary fiber to assist in the amelioration of glu-
cose and lipid metabolism. As pseudo-cereals are a good 
source of dietary fiber, further studies that compare the an-
ti-diabetic properties of SDFs with different pseudo-cereals 
will benefit the exploration of functional dietary fibers. 

The mainly effective component of SDF is a neutral 
polysaccharide, TBP1, which mainly consisted of α-D-
Glcp linkage (Table 3 and Fig. 7). The previous study found 
that the backbone of TBP was composed of (1→4)-linked 
-D-Glcp (8). It suggests that the structure of SDF from 
tartary buckwheat is different from that of other bioactive 
soluble polysaccharides obtained from some cereals and 
pseudo-cereals in common, such as arabinoxylans and 
β-glucans, which are connected by β-configuration (54). 
The difference in polysaccharide structure among these 
cereals and pseudo-cereals probably results in the differ-
ences in their intestinal function and the indirect interfer-
ence of glucose and lipids metabolism, which still need to 
be further illustrated.

Conclusion
This study confirms the in vivo hypoglycemic and hypo-
lipidemic effects of SDF from tartary buckwheat and 
demonstrates the correlation between an increase in 
SCFA excretion and the promotion of hepatic AMPK 
phosphorylation. The collective findings reveal the physi-
ological activities of SDF from tartary buckwheat, which 
contribute to the mechanisms by which tartary buckwheat 
improves glucose and lipid metabolism. In addition, the 
SDF of tartary buckwheat could be used as a new source 
of dietary fiber for the treatment of diabetes. 
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