Appendix 1. Search terms

Database: Ovid MEDLINE(R) In-Process & Other Non-Indexed Citations and Ovid MEDLINE(R) <1950 to Present>

Search Strategy:

- 1 exp Dietary Proteins/ (71799)
- 2 Proteins/me [Metabolism] (61274)
- 3 Nitrogen/me [Metabolism] (19039)
- 4 amino acids/ or exp amino acids, essential/ (266907)
- 5 exp Diet, Protein-Restricted/ or exp Diet, Vegetarian/ (3849)
- 6 exp Fish Proteins/ (7102)
- 7 exp Plant Proteins/ (112865)
- 8 ((egg* or yolk* or milk or animal* or diet*) adj3 protein*).tw. (30205)

9 (amino adj2 acid* adj4 (essential* or nonessential* or non essential* or dispensable* or nondispensable* or non dispensable*)).tw. (6328)

- 10 (diet* adj3 (low protein* or protein restricted or protein free or high protein)).tw. (5813)
- 11 ((Soy or soy bean* or soybean* or plant or vegetable* or fish) adj3 protein*).tw. (10738)
- 12 ((vegan* or vegetarian*) and protein*).tw. (444)
- 13 ((diet* or balance*) adj3 nitrogen*).tw. (4906)
- 14 or/1-13 (528777)
- 15 (intake* or timing* or frequen* or requirement* or utilization*).tw. (1384587)
- 16 nutritional requirements/ (15722)
- 17 15 or 16 (1392935)
- 18 14 and 17 (48263)
- 19 exp Lipids/bl [Blood] (164517)
- 20 exp Lipoproteins/ (107523)
- 21 exp Hyperlipidemias/ (50696)
- 22 cholesterol, hdl/ or cholesterol, ldl/ (27190)
- 23 exp Triglycerides/ (55871)

- 24 ((serum or blood) adj2 lipid*).tw. (21078)
- 25 lipoprotein*.tw. (95533)
- 26 hyperlipidemia*.tw. (12571)
- 27 (cholesterol adj2 (hdl or ldl)).tw. (35090)
- 28 triglyceride*.tw. (63777)
- 29 or/19-27 (281777)
- 30 exp Glucose/ (215099)
- 31 exp Hyperglycemia/ (20648)
- 32 (glucose or dextrose).tw. (280143)
- 33 (d glucose or l glucose).tw. (16987)
- 34 (fasting adj3 glucose).tw. (18392)
- 35 (hyperglycemia or hyperglycemia or hyperglycemic or (hyper adj glycemi*)).tw. (25219)
- 36 (blood adj2 (sugar or glucose)).tw. (43161)
- 37 (glucose adj2 intoleranc*).tw. (5750)
- 38 or/30-37 (370848)
- 39 Insulin/ (142600)
- 40 exp Insulin Resistance/ (38231)
- 41 exp Hyperinsulinism/ (43180)
- 42 (humulin or iletin or insulin or novolin or velosulin).tw. (226819)
- 43 (hyperinsulin* or insulinem*).tw. (18338)
- 44 (insulin adj2 (sensitiv* or resistanc* or hypersensitiv*)).tw. (46353)
- 45 or/39-44 (270838)
- 46 exp Blood Pressure/ (226330)
- 47 exp hypertension/ (188397)
- 48 exp hypotension/ (21099)
- 49 ((blood or diastolic* or pulse or systolic*) adj2 pressur*).tw. (211754)
- 50 (hypertension* or hypotension*).tw. (263275)
- 51 or/46-49 (453970)
- 52 exp Body Composition/ (28527)
- 53 exp body mass index/ (56123)

- 54 exp Abdominal Fat/ (2418)
- 55 Waist-hip ratio/ (2052)
- 56 exp Adipose Tissue/ (59986)
- 57 (body adj2 composition*).tw. (16839)
- 58 (body adj2 fat* adj3 (distribution* or pattern*)).tw. (2312)
- 59 (body adj2 mass adj3 index).tw. (68249)
- 60 bmi.tw. (46648)
- 61 ((fat free or lean) adj3 body mass).tw. (5098)
- 62 (waist adj2 hip).tw. (6197)
- 63 adiposity.tw. (9077)
- 64 ((visceral or abdominal or body or pad) adj2 fat*).tw. (28631)
- 65 or/52-64 (192342)
- 66 exp "Bone and Bones"/ (429468)
- 67 Bone Density/ (33081)
- 68 exp Fractures, Bone/ (124402)
- 69 exp Osteoporosis/ (38044)
- 70 (bone or bones).tw. (430056)
- 71 (osteoporos* or bone loss*).tw. (47186)
- 72 or/66-71 (802479)
- 73 exp Pregnancy Outcome/ (32312)
- 74 exp Parturition/ (5980)
- 75 Abortion, Spontaneous/ (12901)
- 76 exp Infant, Newborn/ (447494)
- 77 "growth and development"/ or exp aging/ or exp growth/ (673749)
- 78 exp Muscular Atrophy/ (7784)
- 79 (birth* or childbirth* or stillbirth* or (pregnancy adj2 outcome*)).tw. (212641)
- 80 parturition*.tw. (10663)
- 81 (abortion* or miscarriage*).tw. (47509)
- 82 ((Infant* adj2 newborn) or neonate*).tw. (74510)
- 83 (Body adj2 (size or height* or weight*)).tw. (142288)

- 84 (cell* adj2 (growth or enlargement* or proliferation*)).tw. (182400)
- 85 (organ adj2 (size* or weight* or volume*)).tw. (4629)
- 86 (development* adj2 (human* or child* or infant* or adolescent*)).tw. (26608)
- 87 (aging or ageing or longevity).tw. (117701)
- 88 ((muscular adj2 atrop*) or sarcopenia).tw. (5675)
- 89 or/73-88 (1537884)
- 90 exp Body Weight/ (291817)
- 91 ((birth or body or fetal or gain or los* or reduc* or decreas* or chang*) adj2 weight*).tw. (232690)
- 92 (obesit* or obese or leanness or thinness or underweight or under weight or overweight or over weight).tw. (134236)
- 93 (emaciation* or cachexia).tw. (5111)
- 94 or/90-93 (473911)
- 95 Cardiovascular Diseases/ (77121)
- 96 exp heart diseases/ (772950)
- 97 exp vascular diseases/ (1159229)

98 (cardio* or cardia* or heart* or vascular* or ischem* or ischeam* or coronary* or myocardial* or angina* or cvd or chd or arrythmi* or atrial* or endocardi* or fibrillate*).tw. (1595528)

- 99 (vascular* or thromboembolism* or thrombosis*).tw. (451761)
- 100 or/95-99 (2391038)
- 101 exp neoplasms/ (2199022)
- 102 (cancer* or tumor* or carcinoma* or neoplasm*).tw. (1573780)
- 103 or/101-102 (2505578)
- 104 exp Diabetes Mellitus, Type 2/ (63869)
- 105 exp Insulin Resistance/ (38231)
- 106 ((typ* 2 or typ* ii) adj diabet*).tw. (51164)
- 107 impaired glucose toleranc*.tw. (6845)
- 108 glucose intoleranc*.tw. (5714)
- 109 insulin resistanc*.tw. (36244)
- 110 (MODY or NIDDM or T2DM or DM 2).tw. (10504)
- 111 ((non insulin* or noninsulin*) adj2 depend*).tw. (11937)
- 112 (non insulin?depend* or noninsulin?depend*).tw. (18)

- 113 ((keto restist* or non keto* or nonketo*) adj2 diabet*).tw. (346)
- 114 ((adult* or matur* or late or slow or stabl*) adj2 diabet*).tw. (5486)
- 115 (insulin defic* adj2 relativ*).tw. (126)
- 116 plur?metabolic* syndrome*.tw. (32)
- 117 or/104-115 (128394)
- 118 exp diabetes insipidus/ (6512)
- 119 diabet* insipidus.tw. (6199)
- 120 or/118-119 (8185)
- 121 117 not 120 (128330)
- 122 Interleukin-6/ (35767)
- 123 exp receptors, interleukin-6/ (2773)
- 124 c-reactive protein/ (22323)
- 125 tumor necrosis factor-alpha/ (79154)
- 126 Cytokines/ (79501)
- 127 exp lymphocytes/ (390817)
- 128 (interleukin 6 or IL 6 or IL6).tw. (58213)
- 129 (interleukin* adj2 (b or hp1)).tw. (227)
- 130 ((plasmacytoma or hybridoma) adj2 growth factor*).tw. (97)
- 131 (b cell adj2 (differentiat* or stimulat*)).tw. (4462)
- 132 (hepatocyte adj2 stimulat*).tw. (485)
- 133 ((beta2 or beta 2) adj2 interferon*).tw. (133)
- 134 (hepatocyte adj2 stimulat*).tw. (485)
- 135 (b adj lymphocyte*).tw. (25416)
- 136 (BSF?2 or IFN?beta?2 or MGI?2).tw. (56)
- 137 (BSF 2 or IFN beta 2 or MGI 2).tw. (242)
- 138 (myeloid adj3 protein).tw. (449)
- 139 ((26k or 26 k) adj2 protein*).tw. (36)
- 140 ((((il6 or il 6) adj soluble*) or (sil6r or sil 6 r or il6r or il 6 r or interleukin 6 receptor)) adj4 protein*).tw. (56)
- 141 (hsCRP or CRP).tw. (20078)
- 142 cd126.tw. (51)

- 143 (high sensitiv* adj3 c reactive protein*).tw. (3292)
- 144 cachectin*.tw. (447)
- 145 (Tnfalpha or tnf alpha*).tw. (70756)
- 146 tumor necrosis*.tw. (69922)
- 147 Tnf superfamily*.tw. (493)
- 148 (lymphocyte* or ((lymphoid* or killer) adj2 cell*)).tw. (282046)
- 149 or/122-148 (675867)
- 150 exp Kidney Diseases/ (358584)
- 151 exp Renal Circulation/ (11422)
- 152 (((kidney* or renal*) adj2 (calculi or calculus or stone*)) or nephrolithiasis).tw. (9918)
- 153 ((kidney* or renal*) adj2 (disease* or function*)).tw. (114942)
- 154 (renal adj3 (flow* or circulat*)).tw. (13708)
- 155 or/150-154 (418863)
- 156 exp Muscle Strength/ (10755)
- 157 Muscle Fatigue/ (4587)
- 158 exp Physical Endurance/ (19718)
- 159 exp Exercise/ (54191)
- 160 Physical fitness/ (18227)
- 161 exp Motor Activity/ (93817)
- 162 ((muscle or muscular) adj2 (strength* or fatigue* or weak*)).tw. (22245)
- 163 (physical* adj2 (fitness or exercise* or active or activity or endur*)).tw. (50835)
- 164 ((train* or exercise*) adj2 endur*).tw. (6383)
- 165 or/156-164 (218608)
- 166 Mortality/ (30837)
- 167 mortal*.tw. (358222)
- 168 ((fatalit* or death*) adj2 rate*).tw. (21676)
- 169 (excess adj2 mortalit*).tw. (3980)
- 170 or/166-169 (382939)
- 171 exp Lactation/ (29877)
- 172 Milk, human/ (13700)

- 173 breast feeding/ (22118)
- 174 lactation*.tw. (23492)
- 175 (milk adj2 (human* or breast*)).tw. (13617)
- 176 (breast feed* or breastfeed*).tw. (19668)
- 177 or/171-176 (74168)
- 178 18 and 29 (2069)
- 179 18 and 38 (4390)
- 180 18 and 45 (2751)
- 181 18 and 51 (1153)
- 182 18 and 65 (3577)
- 183 18 and 72 (1449)
- 184 18 and 89 (12410)
- 185 18 and 94 (9635)
- 186 18 and 100 (3007)
- 187 18 and 103 (3541)
- 188 18 and 121 (863)
- 189 18 and 149 (2860)
- 190 18 and 155 (2096)
- 191 18 and 165 (1243)
- 192 18 and 170 (901)
- 193 18 and 177 (2680)
- 194 or/178-193 (26444)
- 195 limit 194 to (humans and yr="2000 -Current") (6022)
- 196 limit 195 to English language (5632)
- 197 limit 196 to "reviews (sensitivity)" (3153)

Appendix 2. Excluded full text papers

Article	Reason for exclusion
(2000) "Position of the American Dietetic Association, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and athletic performance." Journal of the American Dietetic Association 100(12):1543	Position paper
(2002). "Protein and amino acid requirements in human nutrition." <u>World</u> <u>Health Organization Technical Report Series(935)</u> : 1-265.	Report
Afolabi, P. R., et al. (2004). "Response of hepatic proteins to the lowering of habitual dietary protein to the recommended safe level of intake." <u>American Journal of Physiology - Endocrinology and Metabolism</u> 287(2): E327-E330.	Not included endpoints
Agus, M. S., et al. (2000). "Dietary composition and physiologic adaptations to energy restriction." <u>American Journal of Clinical Nutrition</u> 71(4): 901-907.	Short term. Energy restriction
Aldrich, N. D., M. M. Reicks, <i>et al.</i> (2011). "Varying protein source and quantity do not significantly improve weight loss, fat loss, or satiety in reduced energy diets among midlife adults." <u>Nutrition Research</u> 31(2): 104-112	Diet during weight loss in overweight/obese
Alemany, J. A., et al. (2008). "Effects of dietary protein content on IGF-I, testosterone, and body composition during 8 days of severe energy deficit and arduous physical activity." Journal of Applied Physiology 105(1): 58-64.	Short-term. 8 days with energy deficit. Military
Alfenas, R. C., et al. (2010). "Effects of protein quality on appetite and energy metabolism in normal weight subjects." <u>Arquivos Brasileiros de</u> <u>Endocrinologia e Metabologia</u> 54(1): 45-51.	Short duration. Each intervention was 7 days.
Allen, J. K., et al. (2007). "Effect of soy protein-containing isoflavones on lipoproteins in postmenopausal women." <u>Menopause</u> 14(1): 106-114.	Included in the meta-analysis by Harland & Haffner, 2008
Allen, N. E., et al. (2008). "Animal foods, protein, calcium and prostate cancer risk: the European Prospective Investigation into Cancer and Nutrition." <u>British Journal of Cancer</u> 98(9): 1574-1581.	Foods (dairy protein)
American Dietetic, A., et al. (2003). "Position of the American Dietetic Association and Dietitians of Canada: vegetarian diets." <u>Canadian Journal of</u> <u>Dietetic Practice and Research</u> 64(2): 62-81.	Review

Amsellem-Ouazana, D., et al. (2004). "Diet and prostate cancer: from prevention to treatment." <u>Progres en Urologie</u> 14(4): 573-576.	Review
Anderson, G. H., et al. (2004). "Dietary proteins in the regulation of food intake and body weight in humans." <u>Journal of Nutrition</u> 134(4): 974S-979S.	Review
Anderson, G. H., et al. (2004). "Protein source, quantity, and time of consumption determine the effect of proteins on short-term food intake in young men." Journal of Nutrition 134(11): 3011-3015.	Short term
Anderson, R. A. (2002). "A complementary approach to urolithiasis prevention." <u>World Journal of Urology</u> 20(5): 294-301.	Review
Aparicio, M. (2009). "Protein intake and chronic kidney disease: literature review, 2003 to 2008." <u>Journal of Renal Nutrition</u> 19(5:Suppl): Suppl-8.	Review
Appel, L. J. (2003). "The effects of protein intake on blood pressure and cardiovascular disease." <u>Current Opinion in Lipidology</u> 14(1): 55-59.	Review
Appel, L. J., et al. (2009). "ASH Position Paper: Dietary approaches to lower blood pressure." <u>Journal of Clinical Hypertension</u> 11(7): 358-368.	Review
Appleby, P., et al. (2007). "Comparative fracture risk in vegetarians and nonvegetarians in EPIC-Oxford." <u>European Journal of Clinical Nutrition</u> 61(12): 1400-1406.	Not protein. Vegetarians vs non- vegetarians. Ca2+ intake
Arnal, M. A., et al. (2000). "Protein feeding pattern does not affect protein retention in young women." <u>Journal of Nutrition</u> 130(7): 1700-1704.	Short term
Arnal, M. A., et al. (2000). "Protein turnover modifications induced by the protein feeding pattern still persist after the end of the diets." <u>American</u> Journal of Physiology - Endocrinology and Metabolism 278(5): E902-E909.	Short term
Ashton, E., et al. (2000). "Effects of soy as tofu vs meat on lipoprotein concentrations." <u>European Journal of Clinical Nutrition</u> 54(1): 14-19.	Meat vs. tofu. Not protein
Aubertin-Leheudre, M., et al. (2009). "Relationship between animal protein intake and muscle mass index in healthy women." <u>British Journal of Nutrition</u> 102(12): 1803-1810.	Cross-sectional

Baer, D. J., K. S. Stote, <i>et al.</i> (2011). "Whey protein but not soy protein supplementation alters body weight and composition in free-living overweight and obese adults." <u>Journal of Nutrition</u> 141(8): 1489-1494	Overweight/obese subjects
Ball, R. O., et al. (2006). "The in vivo sparing of methionine by cysteine in sulfur amino acid requirements in animal models and adult humans." <u>Journal of Nutrition</u> 136(6:Suppl): Suppl-1693S.	Review
Ballard, T.L., et al. (2005) "Effect of protein supplementation during a 6-mo strength and conditioning program on insulin-like growth factor I and markers of bone turnover in young adults." American Journal of Clinical Nutrition 81(6):1442-8.	Supplement containing various components.
Ballard, T.L., et al. (2006) "Effect of protein supplementation during a 6- month strength and conditioning program on areal and volumetric bone parameters." Bone 38(6):898-904.	Supplement containing various components
Basu, A., et al. (2006). "Dietary factors that promote or retard inflammation." <u>Arteriosclerosis, Thrombosis and Vascular Biology</u> 26(5): 995-1001.	Review
Beasley, J. M., A. K. Aragaki, <i>et al.</i> (2011). "Higher biomarker-calibrated protein intake is not associated with impaired renal function in postmenopausal women." <u>Journal of Nutrition</u> 141(8): 1502-1507	Cross-sectional
Beasley, J. M., et al. (2009). "Associations between macronutrient intake and self-reported appetite and fasting levels of appetite hormones: results from the Optimal Macronutrient Intake Trial to Prevent Heart Disease." <u>American Journal of Epidemiology</u> 169(7): 893-900.	OMNI-Heart. Prehypertension or stage 1 hypertension and only 40 % Caucasians. No subgroup analyses
Beelen, M., L. M. Burke, <i>et al.</i> (2010). "Nutritional strategies to promote postexercise recovery. [Review]." <u>International Journal of Sport Nutrition & Exercise Metabolism</u> 20(6): 515-532	Review
Benito-Garcia, E., et al. (2007). "Protein, iron, and meat consumption and risk for rheumatoid arthritis: a prospective cohort study." <u>Arthritis Research</u> and Therapy 9(1): R16.	Rheumatoid arthritis not included as an endpoint
Bernstein, A. M., et al. (2010). "Major dietary protein sources and risk of coronary heart disease in women." <u>Circulation</u> 122(9): 876-883.	Food based, not protein

Betts, J. A. and C. Williams (2010). "Short-term recovery from prolonged exercise: exploring the potential for protein ingestion to accentuate the benefits of carbohydrate supplements. [Review]." <u>Sports Medicine</u> 40(11): 941-959	Review
Bilsborough, S., et al. (2006). "A review of issues of dietary protein intake in humans." <u>International Journal of Sport Nutrition and Exercise Metabolism</u> 16(2): 129-152.	Review
Bingham, S. A. (2000). "Diet and colorectal cancer prevention." <u>Biochemical</u> <u>Society Transactions</u> 28(2): 12-16.	Review
Blatt, A. D., L. S. Roe, <i>et al.</i> (2011). "Increasing the protein content of meals and its effect on daily energy intake." <u>Journal of the American Dietetic</u> <u>Association</u> 111(2): 290-294	Short term
Blazejewski, S., et al. (2009). "The chronic oral administration of arginine aspartate decreases secretion of IGF-1 and IGFBP-3 in healthy volunteers." <u>Fundamental and Clinical Pharmacology</u> 23(3): 339-344.	Arginine aspartate, not protein
Blom, W. A., et al. (2006). "Effect of a high-protein breakfast on the postprandial ghrelin response." <u>American Journal of Clinical Nutrition</u> 83(2): 211-220.	Acute study
Bloomer, R. J., et al. (2010). "Effect of a 21 day Daniel Fast on metabolic and cardiovascular disease risk factors in men and women." <u>Lipids in Health and Disease</u> 9: 94.	Vegetarian diet. Only 21 days. No control group. Heterogenic subject group
Bode-Boger, S. M., et al. (2007). "The L-arginine paradox: Importance of the L-arginine/asymmetrical dimethylarginine ratio." <u>Pharmacology and Therapeutics</u> 114(3): 295-306.	Review
Boelsma, E., et al. (2009). "Lactotripeptides and antihypertensive effects: a critical review." <u>British Journal of Nutrition</u> 101(6): 776-786.	Review
Bohe, J., et al. (2001). "Latency and duration of stimulation of human muscle protein synthesis during continuous infusion of amino acids." Journal of Physiology 532(Pt:2): 2-9.	Acute study

Bolster, D.R., et al. (2005) "Dietary protein intake impacts human skeletal muscle protein fractional synthetic rates after endurance exercise." American Journal of Physiology - Endocrinology and Metabolism 289(4):E678-83.	Athletes.
Bonjour, J. P. (2005). "Dietary protein: an essential nutrient for bone health." <u>Journal of the American College of Nutrition</u> 24(6:Suppl): Suppl- 36S.	Review
Bonjour, J. P., et al. (2001). "Protein intake and bone growth." <u>Canadian</u> Journal of Applied Physiology 26: 153-166.	Review
Bortolotti, M., et al. (2009). "High protein intake reduces intrahepatocellular lipid deposition in humans." <u>American Journal of Clinical</u> <u>Nutrition</u> 90(4): 1002-1010.	Short term
Borzoei, S., et al. (2006). "A comparison of effects of fish and beef protein on satiety in normal weight men." <u>European Journal of Clinical Nutrition</u> 60(7): 897-902.	Acute study
Bos, C., et al. (2002). "Isotopic studies of protein and amino acid requirements." <u>Current Opinion in Clinical Nutrition and Metabolic Care</u> 5(1): 55-61.	Review
Bourre, J. M. (2004). "The role of nutritional factors on the structure and function of the brain: an update on dietary requirements." <u>Revue</u> <u>Neurologique</u> 160(8-9): 767-792.	Review
Bourre, J. M. (2006). "Effects of nutrients (in food) on the structure and function of the nervous system: update on dietary requirements for brain. Part 2 : macronutrients." <u>Journal of Nutrition, Health and Aging</u> 10(5): 386-399.	Review
Bowen, J., et al. (2006). "Appetite regulatory hormone responses to various dietary proteins differ by body mass index status despite similar reductions in ad libitum energy intake." <u>Journal of Clinical Endocrinology and Metabolism</u> 91(8): 2913-2919.	Acute study
Bowtell, J. L., et al. (2000). "Effect of oral glucose on leucine turnover in human subjects at rest and during exercise at two levels of dietary protein." Journal of Physiology 525: t-81.	Short term

Bray, G. A., S. R. Smith, <i>et al.</i> (2012). "Effect of dietary protein content on weight gain, energy expenditure, and body composition during overeating: a randomized controlled trial." JAMA 307(1): 47-55	Only 28% Caucasians
Bronte, V., et al. (2005). "Regulation of immune responses by L-arginine metabolism." <u>Nature Reviews</u> 5(8): 641-654.	Review
Burd, N.A., et al. (2009) "Exercise training and protein metabolism: influences of contraction, protein intake, and sex-based differences." Journal of Applied Physiology 106(5):1692-701.	Review
Burk, A., et al. (2009) "Time-divided ingestion pattern of casein-based protein supplement stimulates an increase in fat-free body mass during resistance training in young untrained men." Nutrition Research 29(6):405- 13.	Supplement containing various components
Burke, V., et al. (2001). "Dietary protein and soluble fiber reduce ambulatory blood pressure in treated hypertensives." <u>Hypertension</u> 38(4): 821-826.	Hypertensives
Calbet, J. A., et al. (2002). "Plasma glucagon and insulin responses depend on the rate of appearance of amino acids after ingestion of different protein solutions in humans." <u>Journal of Nutrition</u> 132(8): 2174-2182.	Short term
Campbell, W. W. and M. Tang (2010). "Protein intake, weight loss, and bone mineral density in postmenopausal women." <u>Journals of Gerontology Series A Biological Sciences & Medical Sciences</u> 65(10): 1115-1122	During weight loss
Campbell, W. W., et al. (2004). "Short-term low-protein intake does not increase serum parathyroid hormone concentration in humans." <u>Journal of Nutrition</u> 134(8): 1900-1904.	Short term and PTH
Campbell, W. W., et al. (2010). "Protein intake, weight loss, and bone mineral density in postmenopausal women." <u>Journals of Gerontology Series</u> <u>A-Biological Sciences and Medical Sciences</u> 65(10): 1115-1122.	Weight loss in overweight
Cao, J. J. and F. H. Nielsen (2010). "Acid diet (high-meat protein) effects on calcium metabolism and bone health. [Review]." <u>Current Opinion in Clinical Nutrition & Metabolic Care</u> 13(6): 698-702	Review

Carey, V. J., et al. (2005). "Rationale and design of the Optimal Macro- Nutrient Intake Heart Trial to Prevent Heart Disease (OMNI-Heart)." <u>Clinical</u> <u>Trials</u> 2(6): 529-537.	Description of OMNI-Heart design
Carruba, G., et al. (2006). "A traditional Mediterranean diet decreases endogenous estrogens in healthy postmenopausal women." <u>Nutrition and</u> <u>Cancer</u> 56(2): 253-259.	Dietary pattern (Mediterranean diet), not protein
Caudarella, R., et al. (2004). "Osteoporosis and urolithiasis." <u>Urologia</u> Internationalis 72: 17-19.	Review
Chang, E. T., et al. (2008). "Dietary patterns and risk of ovarian cancer in the California Teachers Study cohort." <u>Nutrition and Cancer</u> 60(3): 285-291.	Dietary patterns
Choi, H. K., et al. (2004). "Purine-rich foods, dairy and protein intake, and the risk of gout in men." <u>New England Journal of Medicine</u> 350(11): 1093-1103.	Gout not included as an outcome
Clifton, P. M., et al. (2007). "Metabolic effects of high-protein diets." <u>Current Atherosclerosis Reports</u> 9(6): 472-478.	Review
Cloutier, G. R., et al. (2003). "Protein and bone health: literature review and counselling implications." <u>Canadian Journal of Dietetic Practice and Research</u> 64(1): 5-11.	Review
Coelho, J. S., et al. (2006). "Selective carbohydrate or protein restriction: effects on subsequent food intake and cravings." <u>Appetite</u> 47(3): 352-360.	Short term. 3 days followed by acute study
Conigrave, A. D., et al. (2008). "Dietary protein and bone health: roles of amino acid-sensing receptors in the control of calcium metabolism and bone homeostasis." <u>Annual Review of Nutrition</u> 28: 131-155.	Review
Craig, W. J., et al. (2009). "Position of the American Dietetic Association: vegetarian diets." <u>Journal of the American Dietetic Association</u> 109(7): 1266-1282.	Review
Dawson-Hughes, B. (2003). "Calcium and protein in bone health." <u>Proceedings of the Nutrition Society</u> 62(2): 505-509.	Review
Dawson-Hughes, B. (2003). "Interaction of dietary calcium and protein in bone health in humans." <u>Journal of Nutrition</u> 133(3): 852S-854S.	Review

Dawson-Hughes, B., et al. (2007). "Comparative effects of oral aromatic and branched-chain amino acids on urine calcium excretion in humans." <u>Osteoporosis International</u> 18(7): 955-961.	Short term
Deglaire, A., et al. (2009). "Hydrolyzed dietary casein as compared with the intact protein reduces postprandial peripheral, but not whole-body, uptake of nitrogen in humans." <u>American Journal of Clinical Nutrition</u> 90(4): 1011-1022.	Short term
Dent, S. B., et al. (2001). "Soy protein intake by perimenopausal women does not affect circulating lipids and lipoproteins or coagulation and fibrinolytic factors." <u>Journal of Nutrition</u> 131(9): 2280-2287.	Intervention with isoflavones in protein isolate
Ding, E. L., et al. (2006). "Optimal dietary habits for the prevention of stroke." <u>Semin Neurol</u> 26(1): 11-23.	Review
Dioguardi, F. S. (2004). "Wasting and the substrate-to-energy controlled pathway: a role for insulin resistance and amino acids." <u>American Journal of Cardiology</u> 93(8A): 6A-12A.	Review
Duranti, M. (2006). "Grain legume proteins and nutraceutical properties." <u>Fitoterapia</u> 77(2): 67-82.	Review
Dye, L., et al. (2000). "Macronutrients and mental performance." <u>Nutrition</u> 16(10): 1021-1034.	Review
Elango, R., et al. (2008). "Indicator amino acid oxidation: concept and application." <u>Journal of Nutrition</u> 138(2): 243-246.	review
Elliott, P. (2003). "Protein intake and blood pressure in cardiovascular disease." <u>Proceedings of the Nutrition Society</u> 62(2): 495-504.	Review
Elliott, P., et al. (2006). "Association between protein intake and blood pressure: the INTERMAP Study." <u>Archives of Internal Medicine</u> 166(1): 79-87.	Cross-sectional
Erdmann, J., et al. (2003). "Differential effect of protein and fat on plasma ghrelin levels in man." <u>Regulatory Peptides</u> 116(1-3): 101-107.	Acute studies
Esfahani, A., et al. (2010). "Session 4: CVD, diabetes and cancer: A dietary portfolio for management and prevention of heart disease." <u>Proceedings of the Nutrition Society</u> 69(1): 39-44.	Symposium

Evans, W.J. (2001) "Protein nutrition and resistance exercise." Canadian Journal of Applied Physiology 26:Suppl-52.	Review
Feigelson, H. S., et al. (2003). "Alcohol, folate, methionine, and risk of incident breast cancer in the American Cancer Society Cancer Prevention Study II Nutrition Cohort." <u>Cancer Epidemiology, Biomarkers and Prevention</u> 12(2): 161-164.	Not protein
Fernstrom, J. D. (2000). "Can nutrient supplements modify brain function?" <u>American Journal of Clinical Nutrition</u> 71(6:Suppl): 1669S-1675S.	Review
Fielding, R.A., and Parkington, J. (2002) "What are the dietary protein requirements of physically active individuals? New evidence on the effects of exercise on protein utilization during post-exercise recovery." Nutrition in Clinical Care 5(4):191-6.	Review
Fleming, R. M. (2000). "The effect of high-protein diets on coronary blood flow." <u>Angiology</u> 51(10): 817-826.	CAD patients
Flood, A., et al. (2002). "Folate, methionine, alcohol, and colorectal cancer in a prospective study of women in the United States." <u>Cancer Causes and</u> <u>Control</u> 13(6): 551-561.	Not protein
Fontana, L., et al. (2006). "Long-term low-protein, low-calorie diet and endurance exercise modulate metabolic factors associated with cancer risk." <u>American Journal of Clinical Nutrition</u> 84(6): 1456-1462.	Raw food, vegan diet
Fontana, L., et al. (2008). "Long-term effects of calorie or protein restriction on serum IGF-1 and IGFBP-3 concentration in humans." <u>Aging Cell</u> 7(5): 681- 687.	Calorie restriction combined with reduced protein, and endpoint IGF-1
Fouillet, H., et al. (2008). "Urea-nitrogen production and salvage are modulated by protein intake in fed humans: results of an oral stable- isotope-tracer protocol and compartmental modeling." <u>American Journal of</u> <u>Clinical Nutrition</u> 87(6): 1702-1714.	Acute study
Friedman, A. N. (2004). "High-protein diets: potential effects on the kidney in renal health and disease." <u>American Journal of Kidney Diseases</u> 44(6): 950-962.	Review
Friedman, M. (2010). "Origin, microbiology, nutrition, and pharmacology of D-amino acids." <u>Chemistry and Biodiversity</u> 7(6): 1491-1530.	Review

Friedman, M., et al. (2001). "Nutritional and health benefits of soy proteins." <u>Journal of Agricultural and Food Chemistry</u> 49(3): 1069-1086.	Review
Fuchs, C. S., et al. (2002). "The influence of folate and multivitamin use on the familial risk of colon cancer in women." <u>Cancer Epidemiology,</u> <u>Biomarkers and Prevention</u> 11(3): 227-234.	Not protein
Fukagawa, N. K. (2006). "Sparing of methionine requirements: evaluation of human data takes sulfur amino acids beyond protein." <u>Journal of Nutrition</u> 136(6:Suppl): Suppl-1681S.	Review
Furtado, J. D., et al. (2008). "Effect of protein, unsaturated fat, and carbohydrate intakes on plasma apolipoprotein B and VLDL and LDL containing apolipoprotein C-III: results from the OmniHeart Trial." <u>Am J Clin Nutr</u> 87(6): 1623-1630.	OMNI-Heart. Prehypertension or stage 1 hypertension and only 40 % Caucasians. No subgroup analyses
Furtado, J. D., et al. (2010). "Dietary interventions that lower lipoproteins containing apolipoprotein C-III are more effective in whites than in blacks: results of the OmniHeart trial." <u>American Journal of Clinical Nutrition</u> 92(4): 714-722.	OMNI-Heart. Prehypertension or stage 1 hypertension No subgroup analysis among prehypertensives
Gaine, P.C., et al. (2006) "Level of dietary protein impacts whole body protein turnover in trained males at rest." Metabolism: Clinical and Experimental 55(4):501-7.	Athletes
Gann, P. H., et al. (2005). "Sequential, randomized trial of a low-fat, high- fiber diet and soy supplementation: effects on circulating IGF-I and its binding proteins in premenopausal women." <u>International Journal of</u> <u>Cancer</u> 116(2): 297-303.	IGF-1 Not included functional outcome
Garlick, P. J. (2006). "Toxicity of methionine in humans." <u>Journal of</u> <u>Nutrition</u> 136(6:Suppl): Suppl-1725S.	Review
Geleijnse, J. M., et al. (2010). "Lactopeptides and human blood pressure." <u>Current Opinion in Lipidology</u> 21(1): 58-63.	Review
Genton, L., et al. (2010) "Energy and macronutrient requirements for physical fitness in exercising subjects." Clinical Nutrition 29(4):413-23.	Review
Genton, L., K. Melzer, <i>et al.</i> (2010). "Energy and macronutrient requirements for physical fitness in exercising subjects. [Review]." <u>Clinical Nutrition</u> 29(4): 413-423	Review

Gibala, M.J. (2007) "Protein metabolism and endurance exercise." Sports Medicine 37(4-5):337-40.	Review
Gilbert, J. A., N. T. Bendsen, <i>et al.</i> (2011). "Effect of proteins from different sources on body composition. [Review]." <u>Nutrition Metabolism &</u> <u>Cardiovascular Diseases</u> 21	Review
Ginty, F. (2003). "Dietary protein and bone health." <u>Proceedings of the</u> <u>Nutrition Society</u> 62(4): 867-876.	Review
Gleeson, M. (2005) "Interrelationship between physical activity and branched-chain amino acids." Journal of Nutrition 135(6:Suppl):Suppl-5S.	Review
Gleeson, M., et al. (2004). "Exercise, nutrition and immune function." Journal of Sports Sciences 22(1): 115-125.	Review
Grases, F., et al. (2006). "Renal lithiasis and nutrition." <u>Nutrition Journal</u> 5: 23.	Review
Greany, K. A., et al. (2008). "Consumption of isoflavone-rich soy protein does not alter homocysteine or markers of inflammation in postmenopausal women." <u>European Journal of Clinical Nutrition</u> 62(12): 1419-1425.	Isoflavones from soy protein isolates
Guadagni, M., et al. (2009). "Effects of inflammation and/or inactivity on the need for dietary protein." <u>Current Opinion in Clinical Nutrition and Metabolic Care</u> 12(6): 617-622.	Review
Hackney, K.J., et al. (2010) "Timing protein intake increases energy expenditure 24 h after resistance training." Medicine and Science in Sports and Exercise 42(5):998-1003.	Short term
Hall, W. L., et al. (2003). "Casein and whey exert different effects on plasma amino acid profiles, gastrointestinal hormone secretion and appetite." British Journal of Nutrition 89(2): 239-248.	Acute study
Handa, K., et al. (2002). "Diet patterns and the risk of renal cell carcinoma." <u>Public Health Nutr</u> 5(6): 757-767.	Foods, not protein
Harnack, L., et al. (2002). "Relationship of folate, vitamin B-6, vitamin B-12, and methionine intake to incidence of colorectal cancers." <u>Nutrition and Cancer</u> 43(2): 152-158.	Not protein

Hayashi, Y. (2003). "Application of the concepts of risk assessment to the study of amino acid supplements." <u>Journal of Nutrition</u> 133(6:Suppl:1): Suppl-2024S.	Review
Heaney, R. P., et al. (2008). "Amount and type of protein influences bone health." <u>American Journal of Clinical Nutrition</u> 87(5): 1567S-1570S.	Review
Hecker, K. D. (2001). "Effects of dietary animal and soy protein on cardiovascular disease risk factors." <u>Current Atherosclerosis Reports</u> 3(6): 471-478.	Review
Heilberg, I. P., et al. (2006). "Renal stone disease: Causes, evaluation and medical treatment." <u>Arquivos Brasileiros de Endocrinologia e Metabologia</u> 50(4): 823-831.	Review
Hermansen, K., et al. (2005). "Effects of soy supplementation on blood lipids and arterial function in hypercholesterolaemic subjects." <u>European</u> <u>Journal of Clinical Nutrition</u> 59(7): 843-850.	Hypercholesterolemic subjects
Hermsdorff, H. H., et al. (2007). "Macronutrient profile affects diet-induced thermogenesis and energy intake." <u>Archivos Latinoamericanos de Nutricion</u> 57(1): 33-42.	Review
Hess, B. (2002). "Nutritional aspects of stone disease." <u>Endocrinology and</u> <u>Metabolism Clinics of North America</u> 31(4): 1017-1030.	Review
Hesselink, M. K., et al. (2006). "Eat the meat or feed the meat: protein turnover in remodeling muscle." <u>Current Opinion in Clinical Nutrition and Metabolic Care</u> 9(6): 672-676.	Review
Higashi, K., et al. (2001). "Effects of soy protein on levels of remnant-like particles cholesterol and vitamin E in healthy men." <u>Journal of Nutritional Science and Vitaminology</u> 47(4): 283-288.	Soy protein isolate
Hochstenbach-Waelen, A., et al. (2009). "Comparison of 2 diets with either 25% or 10% of energy as casein on energy expenditure, substrate balance, and appetite profile." <u>American Journal of Clinical Nutrition</u> 89(3): 831-838.	Acute study. 36-h stay in indirect calorimetry chamber
Hochstenbach-Waelen, A., et al. (2009). "Single-protein casein and gelatin diets affect energy expenditure similarly but substrate balance and appetite differently in adults." Journal of Nutrition 139(12): 2285-2292.	Acute study. 36-h stay in indirect calorimetry chamber

Hodgson, J. M., et al. (2006). "Partial substitution of carbohydrate intake with protein intake from lean red meat lowers blood pressure in hypertensive persons." <u>American Journal of Clinical Nutrition</u> 83(4): 780- 787.	Hypertensive subjects
Hughes, R., et al. (2000). "Protein degradation in the large intestine: relevance to colorectal cancer." <u>Current Issues in Intestinal Microbiology</u> 1(2): 51-58.	Review
Hulmi, J.J., et al. (2009) "Acute and long-term effects of resistance exercise with or without protein ingestion on muscle hypertrophy and gene expression." Amino Acids 37(2):297-308.	Whey isolate supplement
Ince, B. A., et al. (2004). "Lowering dietary protein to U.S. Recommended dietary allowance levels reduces urinary calcium excretion and bone resorption in young women." <u>Journal of Clinical Endocrinology and Metabolism</u> 89(8): 3801-3807.	Short term
Ioannou, G. N., et al. (2009). "Association between dietary nutrient composition and the incidence of cirrhosis or liver cancer in the United States population." <u>Hepatology</u> 50(1): 175-184.	Cirrhosis not included as an endpoint, and only five with liver cancer
Isaia, G., et al. (2007). "Protein intake: the impact on calcium and bone homeostasis." <u>Journal of Endocrinological Investigation</u> 30(6:Suppl): 48-53.	Review
Jackson, A. A., et al. (2001). "Synthesis of hepatic secretory proteins in normal adults consuming a diet marginally adequate in protein." <u>American</u> <u>Journal of Physiology - Gastrointestinal and Liver Physiology</u> 281(5): G1179- G1187.	Hepatic secretory proteins not included as outcome
Jacobs, D. R., Jr., et al. (2009). "The effects of dietary patterns on urinary albumin excretion: results of the Dietary Approaches to Stop Hypertension (DASH) Trial." <u>American Journal of Kidney Diseases</u> 53(4): 638-646.	DASH study Dietary patterns
Jacobsen, R., et al. (2005). "Effect of short-term high dietary calcium intake on 24-h energy expenditure, fat oxidation, and fecal fat excretion." <u>International Journal of Obesity</u> 29(3): 292-301.	Short term
James, P. (2006). "Marabou 2005: nutrition and human development." <u>Nutrition Reviews</u> 64(5:Pt:2): t-11.	Review

Jenkins, D. J., et al. (2001). "High-protein diets in hyperlipidemia: effect of wheat gluten on serum lipids, uric acid, and renal function." <u>American</u> <u>Journal of Clinical Nutrition</u> 74(1): 57-63.	Hyperlipidemic subjects
Jenkins, D. J., et al. (2003). "Effect of high vegetable protein diets on urinary calcium loss in middle-aged men and women." <u>European Journal of Clinical Nutrition</u> 57(2): 376-382.	Hyperlipidemic subjects
Jenkins, D. J., et al. (2009). "The effect of a plant-based low-carbohydrate ("Eco-Atkins") diet on body weight and blood lipid concentrations in hyperlipidemic subjects." <u>Archives of Internal Medicine</u> 169(11): 1046-1054.	Hyperlipidemic subjects
Jenkins, D. J., et al. (2010). "Supplemental barley protein and casein similarly affect serum lipids in hypercholesterolemic women and men." Journal of Nutrition 140(9): 1633-1637.	Hypercholesterolemic subjects
Jesudason, D. and P. Clifton (2011). "The interaction between dietary protein and bone health. [Review]." <u>Journal of Bone & Mineral Metabolism</u> 29(1): 1-14	Review
Johnstone, A. M., et al. (2000). "Altering the temporal distribution of energy intake with isoenergetically dense foods given as snacks does not affect total daily energy intake in normal-weight men." <u>British Journal of Nutrition</u> 83(1): 7-14.	Short term
Kendler, B. S. (2006). "Supplemental conditionally essential nutrients in cardiovascular disease therapy." <u>Journal of Cardiovascular Nursing</u> 21(1): 9-16.	Review
Kerksick, C.M., et al. (2006) "The effects of protein and amino acid supplementation on performance and training adaptations during ten weeks of resistance training." Journal of Strength and Conditioning Research 20(3):643-53.	Supplementation: whey+casein vs. whey+BCAA+glutamine vs. CHO
Kerstetter, J. E., A. M. Kenny, <i>et al.</i> (2011). "Dietary protein and skeletal health: a review of recent human research. [Review]." <u>Current Opinion in Lipidology</u> 22(1): 16-20	Review
Kerstetter, J. E., et al. (2000). "A threshold for low-protein-diet-induced elevations in parathyroid hormone." <u>American Journal of Clinical Nutrition</u> 72(1): 168-173.	Short term

Kerstetter, J. E., et al. (2003). "Dietary protein, calcium metabolism, and skeletal homeostasis revisited." <u>American Journal of Clinical Nutrition</u> 78(3:Suppl): Suppl-592S.	Review
Kerstetter, J. E., et al. (2003). "Low protein intake: the impact on calcium and bone homeostasis in humans." <u>Journal of Nutrition</u> 133(3): 855S-861S.	Review
Kimball, S. R., et al. (2006). "Signaling pathways and molecular mechanisms through which branched-chain amino acids mediate translational control of protein synthesis." <u>Journal of Nutrition</u> 136(1:Suppl): Suppl-31S.	Review
Kitazato, H., et al. (2002). "Effects of chronic intake of vegetable protein added to animal or fish protein on renal hemodynamics." <u>Nephron</u> 90(1): 31-36.	Japanese
Knerr, I., et al. (2003). "Endocrine effects of food intake: insulin, ghrelin, and leptin responses to a single bolus of essential amino acids in humans." <u>Annals of Nutrition and Metabolism</u> 47(6): 312-318.	Acute study
Knight, J., et al. (2009). "Increased protein intake on controlled oxalate diets does not increase urinary oxalate excretion." <u>Urological Research</u> 37(2): 63-68.	Short term
Knowler, W. C. (2006). "Optimal diet for glycemia and lipids." <u>Nestle</u> <u>Nutrition Workshop Series Clinical and Performance Program</u> 11: 97-102.	Review
Koutros, S., et al. (2008). "Nutrients contributing to one-carbon metabolism and risk of non-Hodgkin lymphoma subtypes." <u>Am J Epidemiol</u> 167(3): 287- 294.	Not protein
Krebs, M., et al. (2002). "Mechanism of amino acid-induced skeletal muscle insulin resistance in humans." <u>Diabetes</u> 51(3): 599-605.	Acute study
Kreider, R.B., and Campbell, B. (2009) "Protein for exercise and recovery." Physician and Sportsmedicine 37(2):13-21.	Review
Krieger, J. W., et al. (2006). "Effects of variation in protein and carbohydrate intake on body mass and composition during energy restriction: a meta-regression 1." <u>American Journal of Clinical Nutrition</u> 83(2): 260-274.	Energy restriction during weight loss

Krissansen, G. W. (2007). "Emerging health properties of whey proteins and their clinical implications." <u>Journal of the American College of Nutrition</u> 26(6): 713S-723S.	Review
Kune, G., et al. (2006). "Colorectal cancer protective effects and the dietary micronutrients folate, methionine, vitamins B6, B12, C, E, selenium, and lycopene." <u>Nutr Cancer</u> 56(1): 11-21.	Not protein
Larsson, S. C., et al. (2007). "Methionine and vitamin B6 intake and risk of pancreatic cancer: a prospective study of Swedish women and men." <u>Gastroenterology</u> 132(1): 113-118.	Not protein
Layman, D. K. (2003). "The role of leucine in weight loss diets and glucose homeostasis." <u>Journal of Nutrition</u> 133(1): 261S-267S.	Review
Layman, D. K. (2004). "Protein quantity and quality at levels above the RDA improves adult weight loss." <u>Journal of the American College of Nutrition</u> 23(6:Suppl): Suppl-636S.	Review
Layman, D. K., et al. (2003). "Increased dietary protein modifies glucose and insulin homeostasis in adult women during weight loss." <u>Journal of Nutrition</u> 133(2): 405-410.	Weight loss
Lee, S. A., et al. (2009). "Adolescent and adult soy food intake and breast cancer risk: results from the Shanghai Women's Health Study." <u>American</u> Journal of Clinical Nutrition 89(6): 1920-1926.	Chinese
Leidy, H. J., et al. (2009). "Increased dietary protein consumed at breakfast leads to an initial and sustained feeling of fullness during energy restriction compared to other meal times." <u>British Journal of Nutrition</u> 101(6): 798-803.	Short term
Lejeune, M. P., et al. (2006). "Ghrelin and glucagon-like peptide 1 concentrations, 24-h satiety, and energy and substrate metabolism during a high-protein diet and measured in a respiration chamber." <u>American</u> <u>Journal of Clinical Nutrition</u> 83(1): 89-94.	Short term
Lemon, P. W. (2000). "Beyond the zone: protein needs of active individuals." <u>Journal of the American College of Nutrition</u> 19(5:Suppl): Suppl-521S.	Review

Levi, F., et al. (2002). "Macronutrients and colorectal cancer: a Swiss case- control study." <u>Annals of Oncology</u> 13(3): 369-373.	included
Li, P., et al. (2007). "Amino acids and immune function." <u>British Journal of</u> <u>Nutrition</u> 98(2): 237-252.	Review
Lichtenstein, A. H., et al. (2002). "Lipoprotein response to diets high in soy or animal protein with and without isoflavones in moderately hypercholesterolemic subjects." <u>Arteriosclerosis, Thrombosis and Vascular</u> <u>Biology</u> 22(11): 1852-1858.	Hypercholesterolemic subjects
Lim, U., et al. (2005). "Dietary determinants of one-carbon metabolism and the risk of non-Hodgkin's lymphoma: NCI-SEER case-control study, 1998- 2000." <u>Am J Epidemiol</u> 162(10): 953-964.	Not protein
Lin, Y., S. Bolca, <i>et al.</i> (2011). "Plant and animal protein intake and its association with overweight and obesity among the Belgian population." <u>British Journal of Nutrition</u> 105(7): 1106-1116	Cross-sectional
Linn, T., et al. (2000). "Effect of long-term dietary protein intake on glucose metabolism in humans." <u>Diabetologia</u> 43(10): 1257-1265.	Glucose metabolism
Loenneke, J. P., A. Balapur, <i>et al.</i> (2010). "Short report: Relationship between quality protein, lean mass and bone health." <u>Annals of Nutrition &</u> <u>Metabolism</u> 57(3-4): 219-220	Cross-sectional
Lu, L. J., et al. (2001). "Effects of an isoflavone-free soy diet on ovarian hormones in premenopausal women." <u>Journal of Clinical Endocrinology and</u> <u>Metabolism</u> 86(7): 3045-3052.	Not included endpoint (ovarian hormones)
Luhovyy, B. L., et al. (2007). "Whey proteins in the regulation of food intake and satiety." Journal of the American College of Nutrition 26(6): 704S-712S.	Review
Luiking, Y. C., et al. (2005). "Casein and soy protein meals differentially affect whole-body and splanchnic protein metabolism in healthy humans." Journal of Nutrition 135(5): 1080-1087.	Acute study
Luiking, Y. C., M. P. Engelen, <i>et al.</i> (2011). "Differential metabolic effects of casein and soy protein meals on skeletal muscle in healthy volunteers." <u>Clinical Nutrition</u> 30 (1): 65-72.	Not ordered, received by mistake from librarian

Lukaczer, D., et al. (2006). "Effect of a low glycemic index diet with soy protein and phytosterols on CVD risk factors in postmenopausal women." <u>Nutrition</u> 22(2): 104-113.	Overweight and obese. Dyslipidemi. Low glycemic diet w soy protein and phytosterols
Lundberg, J. O., M. Carlstrom, <i>et al.</i> (2011). "Roles of dietary inorganic nitrate in cardiovascular health and disease. [Review]." <u>Cardiovascular</u> <u>Research</u> 89 (3): 525-532	Not ordered, received by mistake from librarian
Mamo, J. C., et al. (2005). "A low-protein diet exacerbates postprandial chylomicron concentration in moderately dyslipidaemic subjects in comparison to a lean red meat protein-enriched diet." <u>European Journal of Clinical Nutrition</u> 59(10): 1142-1148.	Dyslipidemic subjects
Mangravite, L. M., S. Chiu, <i>et al.</i> (2011). "Changes in atherogenic dyslipidemia induced by carbohydrate restriction in men are dependent on dietary protein source." <u>Journal of Nutrition</u> 141(12): 2180-2185	Not the effect of protein
Manore, M.M. (2005) "Exercise and the Institute of Medicine recommendations for nutrition." Current Sports Medicine Reports 4(4):193- 8.	Review
Mariotti, F., et al. (2000). "Postprandial modulation of dietary and whole- body nitrogen utilization by carbohydrates in humans." <u>American Journal of</u> <u>Clinical Nutrition</u> 72(4): 954-962.	Acute study
Marmonier, C., et al. (2002). "Snacks consumed in a nonhungry state have poor satiating efficiency: influence of snack composition on substrate utilization and hunger." <u>American Journal of Clinical Nutrition</u> 76(3): 518- 528.	Acute study
Maskarinec, G., et al. (2005). "Insulin-like growth factor-1 and binding protein-3 in a 2-year soya intervention among premenopausal women." <u>British Journal of Nutrition</u> 94(3): 362-367.	Not included endpoint (IGF-1)
Massey, L. K. (2003). "Dietary animal and plant protein and human bone health: a whole foods approach." <u>Journal of Nutrition</u> 133(3): 862S-865S.	Review
McCarron, D. A., et al. (2001). "Reducing cardiovascular disease risk with diet." <u>Obes Res</u> 9 Suppl 4: 335S-340S.	Subjects w hypertension, hyperlipidemia, or type2 diabetes
McCarty, M. F. (2000). "The origins of western obesity: a role for animal protein?" <u>Medical Hypotheses</u> 54(3): 488-494.	Review

McCarty, M. F. (2001). "Mortality from Western cancers rose dramatically among African-Americans during the 20th century: are dietary animal products to blame?" <u>Medical Hypotheses</u> 57(2): 169-174.	Review
McKnight, J. R., et al. (2010). "Beneficial effects of L-arginine on reducing obesity: potential mechanisms and important implications for human health." <u>Amino Acids</u> 39(2): 349-357.	Review
McKnight, J. R., M. C. Satterfield, <i>et al.</i> (2010). "Beneficial effects of L- arginine on reducing obesity: potential mechanisms and important implications for human health. [Review] [74 refs]." <u>Amino Acids</u> 39(2): 349- 357	Doublet from initial search
McLaughlin, J. M., S. Olivo-Marston, <i>et al.</i> (2011). "Effects of tomato- and soy-rich diets on the IGF-I hormonal network: a crossover study of postmenopausal women at high risk for breast cancer." <u>Cancer Prevention</u> <u>Research</u> 4(5): 702-710	High risk participants and not included outcome
Medina, M. A. (2001). "Glutamine and cancer." <u>Journal of Nutrition</u> 131(9:Suppl): Suppl-42S.	Review
Merz-Demlow, B. E., et al. (2000). "Soy isoflavones improve plasma lipids in normocholesterolemic, premenopausal women." <u>American Journal of</u> <u>Clinical Nutrition</u> 71(6): 1462-1469.	Soy isoflavones, not protein
Michaud, D. S., et al. (2005). "Dietary patterns and pancreatic cancer risk in men and women." <u>Journal of the National Cancer Institute</u> 97(7): 518-524.	Dietary patterns, not protein
Michelfelder, A. J. (2009). "Soy: a complete source of protein." <u>American</u> <u>Family Physician</u> 79(1): 43-47.	Review
Mikkelsen, P. B., et al. (2000). "Effect of fat-reduced diets on 24-h energy expenditure: comparisons between animal protein, vegetable protein, and carbohydrate." <u>American Journal of Clinical Nutrition</u> 72(5): 1135-1141.	Short term
Miles, M. P., C. M. Depner, <i>et al.</i> (2010). "Influence of macronutrient intake and anthropometric characteristics on plasma insulin after eccentric exercise." <u>Metabolism: Clinical & Experimental</u> 59(10): 1456-1464	Short term
Miller, E. R., III, et al. (2006). "The effects of macronutrients on blood pressure and lipids: an overview of the DASH and OmniHeart trials." Current Atherosclerosis Reports 8(6): 460-465.	Review

Millward, D. J. (2000). "Postprandial protein utilization: implications for clinical nutrition." <u>Nestle Nutrition Workshop Series Clinical and Performance Program</u> 3: 135-152.	Review
Millward, D. J. (2001). "Protein and amino acid requirements of adults: current controversies." <u>Canadian Journal of Applied Physiology</u> 26: 130-140.	Review
Millward, D. J. (2004). "Macronutrient intakes as determinants of dietary protein and amino acid adequacy." <u>Journal of Nutrition</u> 134(6:Suppl): Suppl-1596S.	Review
Millward, D. J., et al. (2002). "Efficiency of utilization of wheat and milk protein in healthy adults and apparent lysine requirements determined by a single-meal [1-13C]leucine balance protocol." <u>American Journal of Clinical</u> <u>Nutrition</u> 76(6): 1326-1334.	Short term
Millward, D. J., et al. (2004). "Protein/energy ratios of current diets in developed and developing countries compared with a safe protein/energy ratio: implications for recommended protein and amino acid intakes." <u>Public Health Nutrition</u> 7(3): 387-405.	Review
Millward, D. J., et al. (2008). "Protein quality assessment: impact of expanding understanding of protein and amino acid needs for optimal health." <u>American Journal of Clinical Nutrition</u> 87(5): 1576S-1581S.	Review
Millward, D. J., et al. (2010). "Plenary Lecture 3: Food and the planet: nutritional dilemmas of greenhouse gas emission reductions through reduced intakes of meat and dairy foods." <u>The Proceedings of the Nutrition</u> <u>Society</u> 69(1): 103-118.	Review
Misra, D., S. D. Berry, <i>et al.</i> (2011). "Does dietary protein reduce hip fracture risk in elders? The Framingham Osteoporosis Study." <u>Osteoporosis</u> <u>International</u> 22(1): 345-349	To the elderly group
Mittendorfer, B., et al. (2001). "Whole body and skeletal muscle glutamine metabolism in healthy subjects." <u>American Journal of Physiology -</u> <u>Endocrinology and Metabolism</u> 280(2): E323-E333.	Acute study
Moghaddam, E., et al. (2006). "The effects of fat and protein on glycemic responses in nondiabetic humans vary with waist circumference, fasting plasma insulin, and dietary fiber intake." Journal of Nutrition 136(10): 2506-2511.	Short term and after consuming glucose, not meals

Mohanty, P., et al. (2002). "Both lipid and protein intakes stimulate increased generation of reactive oxygen species by polymorphonuclear leukocytes and mononuclear cells." <u>American Journal of Clinical Nutrition</u> 75(4): 767-772.	Acute study
Mohr, S. B., et al. (2006). "Are low ultraviolet B and high animal protein intake associated with risk of renal cancer?" <u>International Journal of Cancer</u> 119(11): 2705-2709.	Cross-sectional
Mojtahedi, M., et al. (2002). "Nitrogen balance of healthy Dutch women before and during pregnancy." <u>American Journal of Clinical Nutrition</u> 75(6): 1078-1083.	Short term, small study
Morens, C., et al. (2003). "Increasing habitual protein intake accentuates differences in postprandial dietary nitrogen utilization between protein sources in humans." Journal of Nutrition 133(9): 2733-2740.	Short term
Mosoni, L., et al. (2003). "Type and timing of protein feeding to optimize anabolism." <u>Current Opinion in Clinical Nutrition and Metabolic Care</u> 6(3): 301-306.	Review
Myers, V. H., et al. (2007). "Nutritional effects on blood pressure." <u>Current</u> <u>Opinion in Lipidology</u> 18(1): 20-24.	Review
Nagata, C., et al. (2002). "A prospective cohort study of soy product intake and stomach cancer death." <u>British Journal of Cancer</u> 87(1): 31-36.	Japanese
Nakamura, T., et al. (2009). "Beneficial potential of casein hydrolysate containing Val-Pro-Pro and Ile-Pro-Pro on central blood pressure and hemodynamic index: a preliminary study." <u>Journal of Medicinal Food</u> 12(6): 1221-1226.	Hypertensive subjects
Newsholme, P. (2001). "Why is L-glutamine metabolism important to cells of the immune system in health, postinjury, surgery or infection?" <u>Journal</u> <u>of Nutrition</u> 131(9:Suppl): Suppl-22S.	Review
Nguyen, Q. V., et al. (2001). "Sensitivity to meat protein intake and hyperoxaluria in idiopathic calcium stone formers." <u>Kidney International</u> 59(6): 2273-2281.	Short term, stone formers

Nicolosi, R. J., et al. (2001). "Dietary effects on cardiovascular disease risk factors: beyond saturated fatty acids and cholesterol." <u>Journal of the American College of Nutrition</u> 20(5:Suppl): 421S-427S.	Review
Nussberger, J. (2007). "Blood pressure lowering tripeptides derived from milk protein." <u>Therapeutische Umschau</u> 64(3): 177-179.	Review
O'Keefe, J. H., et al. (2008). "Dietary strategies for improving post-prandial glucose, lipids, inflammation, and cardiovascular health." <u>Journal of the American College of Cardiology</u> 51(3): 249-255.	Review
Pal, S. & Ellis V (2010). "The acute effects of four protein meals on insulin, glucose, appetite and energy intake in lean men." <u>British Journal of Nutrition</u> 104(8): 1241-1248.	Acute study
Papapolychroniadis, C. (2004). "Environmental and other risk factors for colorectal carcinogenesis." <u>Techniques in Coloproctology</u> 8: 7-9.	Review
Paul, G.L. (2009) The rationale for consuming protein blends in sports nutrition. Journal of the American College of Nutrition 28:Suppl-472S.	Protein blends
Pencharz, P. B., et al. (2007). "Aromatic amino acid requirements in healthy human subjects." <u>Journal of Nutrition</u> 137(6:Suppl:1): 1576S-1578S.	Review
Phillips, G. C. (2007). "Glutamine: the nonessential amino acid for performance enhancement." <u>Current Sports Medicine Reports</u> 6(4): 265-268.	Review
Phillips, S. M., D. R. Moore, <i>et al.</i> (2007). "A critical examination of dietary protein requirements, benefits, and excesses in athletes. [Review]." International Journal of Sport Nutrition & Exercise Metabolism 17(76)	Review
Phillips, S.M. (2006) "Dietary protein for athletes: from requirements to metabolic advantage." Applied Physiology, Nutrition, and Metabolism 31(6):647-54.	Review
Potier, M., et al. (2009). "A high-protein, moderate-energy, regular cheesy snack is energetically compensated in human subjects." <u>British Journal of Nutrition</u> 102(4): 625-631.	Acute study

Potier, M., et al. (2009). "Protein, amino acids and the control of food intake." <u>Current Opinion in Clinical Nutrition and Metabolic Care</u> 12(1): 54-58.	Review
Preis, S. R., M. J. Stampfer, <i>et al.</i> (2010). "Dietary protein and risk of ischemic heart disease in middle-aged men." <u>American Journal of Clinical Nutrition</u> 92(5): 1265-1272	Doublet from initial search
Prentice, A. (2004). "Diet, nutrition and the prevention of osteoporosis." <u>Public Health Nutrition</u> 7(1A): 227-243.	Review
Prentice, R. L., et al. (2009). "Biomarker-calibrated energy and protein consumption and increased cancer risk among postmenopausal women." <u>American Journal of Epidemiology</u> 169(8): 977-989.	Focus on new equations from a biomarker study within in the WHI
Promintzer, M., et al. (2006). "Effects of dietary protein on glucose homeostasis." <u>Current Opinion in Clinical Nutrition and Metabolic Care</u> 9(4): 463-468.	Review
Raben, A., et al. (2003). "Meals with similar energy densities but rich in protein, fat, carbohydrate, or alcohol have different effects on energy expenditure and substrate metabolism but not on appetite and energy intake." <u>American Journal of Clinical Nutrition</u> 77(1): 91-100.	Acute study
Ratamess, N.A., et al. (2007) "The combined effects of protein intake and resistance training on serum osteocalcin concentrations in strength and power athletes." Journal of Strength and Conditioning Research 21(4):1197-203.	Athletes
Ratliff, J., et al. (2010). "Consuming eggs for breakfast influences plasma glucose and ghrelin, while reducing energy intake during the next 24 hours in adult men." <u>Nutrition Research</u> 30(2): 96-103.	Acute study Eggs, not protein
Reitelseder, S., J. Agergaard, <i>et al.</i> (2011). "Whey and casein labeled with L- [1-13C]leucine and muscle protein synthesis: effect of resistance exercise and protein ingestion." <u>American Journal of Physiology Endocrinology &</u> <u>Metabolism</u> 300(1)	Acute study
Rennie M.J., and Tipton, K.D. (2000) "Protein and amino acid metabolism during and after exercise and the effects of nutrition." Annual Review of Nutrition 20:457-83.	Review

Rennie, M. J., et al. (2002). "Latency, duration and dose response relationships of amino acid effects on human muscle protein synthesis." <u>Journal of Nutrition</u> 132(10): 3225S-3227S.	Review
Rennie, M. J., et al. (2006). "Branched-chain amino acids as fuels and anabolic signals in human muscle." <u>Journal of Nutrition</u> 136(1:Suppl): Suppl-8S.	Review
Reynolds, K., et al. (2006). "A meta-analysis of the effect of soy protein supplementation on serum lipids." <u>American Journal of Cardiology</u> 98(5): 633-640.	Isolated soy protein supplementation
Riazi, R., et al. (2003). "The total branched-chain amino acid requirement in young healthy adult men determined by indicator amino acid oxidation by use of L-[1-13C]phenylalanine." <u>Journal of Nutrition</u> 133(5): 1383-1389.	Amino acid recommendation not included
Rizzoli, R. (2008). "Nutrition: its role in bone health." <u>Best Practice and</u> <u>Research Clinical Endocrinology and Metabolism</u> 22(5): 813-829.	Review
Robinson, F., et al. (2002). "Changing from a mixed to self-selected vegetarian dietinfluence on blood lipids." <u>Journal of Human Nutrition and Dietetics</u> 15(5): 323-329.	Vegetarian diet. Not protein (Protein E% didn't change)
Rodriguez, N.R., et al. (2007) "Dietary protein, endurance exercise, and human skeletal-muscle protein turnover." Current Opinion in Clinical Nutrition and Metabolic Care 10(1):40-5.	Review
Roughead, Z. K., et al. (2003). "Controlled high meat diets do not affect calcium retention or indices of bone status in healthy postmenopausal women." Journal of Nutrition 133(4): 1020-1026.	High vs low meat intake, thus food based
Roughead, Z. K., et al. (2005). "Controlled substitution of soy protein for meat protein: effects on calcium retention, bone, and cardiovascular health indices in postmenopausal women." <u>Journal of Clinical Endocrinology and</u> <u>Metabolism</u> 90(1): 181-189.	Meat vs soy protein isolate and a small number of mildly hypercholesterolemic women
Rozenek, R., et al. (2002). "Effects of high-calorie supplements on body composition and muscular strength following resistance training." Journal of Sports Medicine and Physical Fitness 42(3):340-7.	High calorie supplement (CHO+PRO vs. CHO vs. CON)
Ryan-Harshman, M., et al. (2006). "New dietary reference intakes for macronutrients and fibre." <u>Canadian Family Physician</u> 52: 177-179.	Report about Canadian DRI.

Saito, T. (2008). "Antihypertensive peptides derived from bovine casein and whey proteins." <u>Advances in Experimental Medicine and Biology</u> 606: 295-317.	Review
Salazar-Martinez, E., et al. (2002). "Nutritional determinants of epithelial ovarian cancer risk: a case-control study in Mexico." <u>Oncology</u> 63(2): 151- 157.	Mexican diet
Salazar-Martinez, E., et al. (2005). "Dietary factors and endometrial cancer risk. Results of a case-control study in Mexico." <u>International Journal of</u> <u>Gynecological Cancer</u> 15(5): 938-945.	Mexican diet
Sallinen, J., et al. (2004) "Relationship between diet and serum anabolic hormone responses to heavy-resistance exercise in men." International Journal of Sports Medicine 25:627-33.	Acute study
Sanders, T. A., et al. (2002). "Moderate intakes of intact soy protein rich in isoflavones compared with ethanol-extracted soy protein increase HDL but do not influence transforming growth factor beta(1) concentrations and hemostatic risk factors for coronary heart disease in healthy subjects." <u>American Journal of Clinical Nutrition</u> 76(2): 373-377.	High or low isoflavone diet, not protein study
Satia-Abouta, J., et al. (2003). "Associations of total energy and macronutrients with colon cancer risk in African Americans and Whites: results from the North Carolina colon cancer study." <u>American Journal of</u> <u>Epidemiology</u> 158(10): 951-962.	African Americans
Saunders, M. J. (2007). "Coingestion of carbohydrate-protein during endurance exercise: influence on performance and recovery. [Review]." International Journal of Sport Nutrition & Exercise Metabolism 17(103)	Review
Shaffer, E. A. (2006). "Gallstone disease: Epidemiology of gallbladder stone disease." <u>Best Practice and Research in Clinical Gastroenterology</u> 20(6): 981-996.	Review
Shoveller, A. K., et al. (2005). "Nutritional and functional importance of intestinal sulfur amino acid metabolism." <u>Journal of Nutrition</u> 135(7): 1609-1612.	Review
Siani, A., et al. (2000). "Blood pressure and metabolic changes during dietary L-arginine supplementation in humans." <u>American Journal of Hypertension</u> 13(5:Pt:1): 547-551.	Short term

Siener, R. (2006). "Impact of dietary habits on stone incidence." <u>Urological</u> <u>Research</u> 34(2): 131-133.	Review
Silventoinen, K., et al. (2009). "Modification effects of physical activity and protein intake on heritability of body size and composition." <u>American</u> <u>Journal of Clinical Nutrition</u> 90(4): 1096-1103.	Cross-sectional
Sirtori, C. R., et al. (2007). "Hypocholesterolaemic effects of soya proteins: results of recent studies are predictable from the anderson meta-analysis data." <u>British Journal of Nutrition</u> 97(5): 816-822.	Review
Smit, E., et al. (2007). "Protein and legume intake and prostate cancer mortality in Puerto Rican men." <u>Nutrition and Cancer</u> 58(2): 146-152.	Puerto Rico population
Soenen, S., et al. (2008). "Proteins and satiety: implications for weight management." <u>Current Opinion in Clinical Nutrition and Metabolic Care</u> 11(6): 747-751.	Review
Soenen, S., G. Plasqui, <i>et al.</i> (2010). "Protein intake induced an increase in exercise stimulated fat oxidation during stable body weight." <u>Physiology & Behavior</u> 101(5): 770-774	Fat oxidation
Soenen S, Westerterp-Plantenga MS. Changes in body fat percentage during body weight stable conditions of increased daily protein intake vs. control. Physiology & Behavior 2010; 101: 635-638.	Supplement with protein powder
Sonn, G. A., et al. (2005). "Impact of diet on prostate cancer: a review." <u>Prostate Cancer and Prostatic Diseases</u> 8(4): 304-310.	Review
Spaaij, C. J., et al. (2004). "New dietary reference intakes in the Netherlands for energy, proteins, fats and digestible carbohydrates." <u>European Journal of Clinical Nutrition</u> 58(1): 191-194.	About DRI Netherlands
Spector, D., et al. (2003). "Soy consumption and colorectal cancer." <u>Nutrition and Cancer</u> 47(1): 1-12.	Review
Stamler, J., et al. (2009). "Glutamic acid, the main dietary amino acid, and blood pressure: the INTERMAP Study (International Collaborative Study of Macronutrients, Micronutrients and Blood Pressure)." <u>Circulation</u> 120(3): 221-228.	Cross-sectional

Stein, T. P. and S. Blanc (2011). "Does protein supplementation prevent muscle disuse atrophy and loss of strength?. [Review]." <u>Critical Reviews in</u> <u>Food Science & Nutrition</u> 51(9): 828-834	Review
Straub, M., et al. (2005). "Developments in stone prevention." <u>Current</u> <u>Opinion in Urology</u> 15(2): 119-126.	Review
Sun, C. L., et al. (2002). "Dietary soy and increased risk of bladder cancer: the Singapore Chinese Health Study." <u>Cancer Epidemiology, Biomarkers and</u> <u>Prevention</u> 11(12): 1674-1677.	Chinese
Swain, J. H., et al. (2002). "Iron indexes and total antioxidant status in response to soy protein intake in perimenopausal women." <u>American</u> <u>Journal of Clinical Nutrition</u> 76(1): 165-171.	Soy protein isolate and iron status
Tapiero, H., et al. (2002). "II. Glutamine and glutamate." <u>Biomedicine and</u> <u>Pharmacotherapy</u> 56(9): 446-457.	Review
Tarnopolsky, M. A. (2000). "Gender differences in metabolism; nutrition and supplements." Journal of Science and Medicine in Sport 3(3): 287-298.	Review
Tarnopolsky, M.A. (2008) Nutritional consideration in the aging athlete. Clinical Journal of Sport Medicine 18(6):531-8.	Athletes
Tarnopolsky, M.A., et al. (2001) Creatine-dextrose and protein-dextrose induce similar strength gains during training. Medicine and Science in Sports and Exercise 33(12):2044-52.	Creatine-dextrose vs. protein-dextrose
Thalacker-Mercer, A. E., et al. (2007). "Nutrient ingestion, protein intake, and sex, but not age, affect the albumin synthesis rate in humans." <u>Journal</u> of Nutrition 137(7): 1734-1740.	Albumin synthesis rate
Thalacker-Mercer, A. E., J. C. Fleet, <i>et al.</i> (2010). "The skeletal muscle transcript profile reflects accommodative responses to inadequate protein intake in younger and older males." <u>Journal of Nutritional Biochemistry</u> 21(11): 1076-1082	Short term
Thorp, A. A., et al. (2008). "Soy food consumption does not lower LDL cholesterol in either equol or nonequol producers." <u>American Journal of Clinical Nutrition</u> 88(2): 298-304.	Hypercholesterolemic subjects

Thorpe, D. L., et al. (2008). "Effects of meat consumption and vegetarian diet on risk of wrist fracture over 25 years in a cohort of peri- and postmenopausal women." <u>Public Health Nutrition</u> 11(6): 564-572.	Foods, not protein
Thorpe, M. P. and E. M. Evans (2011). "Dietary protein and bone health: harmonizing conflicting theories. [Review]." <u>Nutrition Reviews</u> 69(4): 215- 230	Review
Tipton, K. D. (2011). "Efficacy and consequences of very-high-protein diets for athletes and exercisers. [Review]." <u>Proceedings of the Nutrition Society</u> 70(2): 205-214	Review, symposia
Tipton, K.D., and Witard, O.C. (2007) "Protein requirements and recommendations for athletes: relevance of ivory tower arguments for practical recommendations." Clinics in Sports Medicine 26(1):17-36.	Review
Tipton, K.D., and Wolfe, R.R. (2001) "Exercise, protein metabolism, and muscle growth." International Journal of Sport Nutrition and Exercise Metabolism 11(1):109-32.	Review
Tome, D., et al. (2007). "Lysine requirement through the human life cycle." Journal of Nutrition 137(6:Suppl:2): Suppl-1645S.	Review
Tome, D., et al. (2009). "Protein, amino acids, vagus nerve signaling, and the brain." <u>American Journal of Clinical Nutrition</u> 90(3): 838S-843S.	Review
Torres, N., et al. (2006). "Regulation of lipid metabolism by soy protein and its implication in diseases mediated by lipid disorders." <u>Journal of</u> <u>Nutritional Biochemistry</u> 17(6): 365-373.	Review
Tovar, A. R., et al. (2010). "The role of dietary protein on lipotoxicity." <u>Biochimica et Biophysica Acta</u> 1801(3): 367-371.	Review
Travis, R. C., et al. (2008). "A prospective study of vegetarianism and isoflavone intake in relation to breast cancer risk in British women." International Journal of Cancer 122(3): 705-710.	Vegetarian vs non-veg. diets
Tremblay, F., et al. (2007). "Role of dietary proteins and amino acids in the pathogenesis of insulin resistance." <u>Annual Review of Nutrition</u> 27: 293-310.	Review

Trevisan, M. C., J. M. Souza, <i>et al.</i> (2010). "Influence of soy protein intake and weight training on the resting energy expenditure of postmenopausal women." <u>Revista Da Associacao Medica Brasileira</u> 56(5): 572-578	Brazil and overweight/obese women
Trock, B. J., et al. (2006). "Meta-analysis of soy intake and breast cancer risk." <u>Journal of the National Cancer Institute</u> 98(7): 459-471.	Asian and Western countries
Trumbo, P., et al. (2002). "Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids." <u>Journal of the American Dietetic Association</u> 102(11): 1621-1630.	RDI overview
Turner-McGrievy, G. M., et al. (2008). "Changes in nutrient intake and dietary quality among participants with type 2 diabetes following a low-fat vegan diet or a conventional diabetes diet for 22 weeks." <u>Journal of the</u> <u>American Dietetic Association</u> 108(10): 1636-1645.	Diabetes patients
Um, S. H., et al. (2006). "Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1." <u>Cell Metabolism</u> 3(6): 393-402.	Review
van Wijk, J. P., et al. (2001). "Effects of different nutrient intakes on daytime triacylglycerolemia in healthy, normolipemic, free-living men." <u>American</u> <u>Journal of Clinical Nutrition</u> 74(2): 171-178.	Short term.
Vatanparast, H., et al. (2007). "The effects of dietary protein on bone mineral mass in young adults may be modulated by adolescent calcium intake." Journal of Nutrition 137(12): 2674-2679.	Children 8-15 yr at study entry
Vega-Lopez, S., et al. (2005). "Dietary protein type and cardiovascular disease risk factors." <u>Preventive Cardiology</u> 8(1): 31-40.	Review
Vega-Lopez, S., et al. (2005). "Plasma antioxidant capacity in response to diets high in soy or animal protein with or without isoflavones." <u>American</u> <u>Journal of Clinical Nutrition</u> 81(1): 43-49.	Hypercholesterolemic subjects
Veldhorst, M. A., et al. (2009). "A breakfast with alpha-lactalbumin, gelatin, or gelatin + TRP lowers energy intake at lunch compared with a breakfast with casein, soy, whey, or whey-GMP." <u>Clinical Nutrition</u> 28(2): 147-155.	Acute study
Veldhorst, M. A., et al. (2009). "Comparison of the effects of a high- and normal-casein breakfast on satiety, 'satiety' hormones, plasma amino acids and subsequent energy intake." <u>British Journal of Nutrition</u> 101(2): 295-303.	Acute study
Veldhorst, M. A., et al. (2009). "Dose-dependent satiating effect of whey relative to casein or soy." <u>Physiology and Behavior</u> 96(4-5): 675-682.	Acute study
---	---
Veldhorst, M. A., et al. (2009). "Effects of high and normal soyprotein breakfasts on satiety and subsequent energy intake, including amino acid and 'satiety' hormone responses." <u>European Journal of Nutrition</u> 48(2): 92- 100.	Acute study
Veldhorst, M., et al. (2008). "Protein-induced satiety: effects and mechanisms of different proteins." <u>Physiology and Behavior</u> 94(2): 300-307.	Review
Venho, B., et al. (2002). "Arginine intake, blood pressure, and the incidence of acute coronary events in men: the Kuopio Ischaemic Heart Disease Risk Factor Study." <u>American Journal of Clinical Nutrition</u> 76(2): 359-364.	Dietary sources of arginine
Verdijk, L.B., et al. (2009) "Protein supplementation before and after exercise does not further augment skeletal muscle hypertrophy after resistance training in elderly men." American Journal of Clinical Nutrition 89(2):608-16.	To the Elderly group
Verheus, M., et al. (2008). "Soy protein containing isoflavones and mammographic density in a randomized controlled trial in postmenopausal women." <u>Cancer Epidemiology, Biomarkers and Prevention</u> 17(10): 2632- 2638.	Effect of isoflavones from soy vs milk protein
Verhoef, P., et al. (2005). "A high-protein diet increases postprandial but not fasting plasma total homocysteine concentrations: a dietary controlled, crossover trial in healthy volunteers." <u>American Journal of Clinical Nutrition</u> 82(3): 553-558.	Short term and homocysteine level
Vieillevoye, S., et al. (2010) "Effects of a combined essential amino acids/carbohydrate supplementation on muscle mass, architecture and maximal strength following heavy-load training." European Journal of Applied Physiology 110:479–88.	Essential amino acid supplementation.
Vieillevoye, S., J. R. Poortmans, <i>et al.</i> (2010). "Effects of a combined essential amino acids/carbohydrate supplementation on muscle mass, architecture and maximal strength following heavy-load training." <u>European</u> <u>Journal of Applied Physiology</u> 110(3): 479-488	Amino acid intervention
Villegas, R., et al. (2008). "Legume and soy food intake and the incidence of type 2 diabetes in the Shanghai Women's Health Study." <u>American Journal of Clinical Nutrition</u> 87(1): 162-167.	Chinese

Virtanen, J. K., et al. (2006). "High dietary methionine intake increases the risk of acute coronary events in middle-aged men." <u>Nutrition Metabolism</u> and Cardiovascular Diseases 16(2): 113-120.	Methionine, not protein
von Post-Skagegard, M., et al. (2006). "Glucose and insulin responses in healthy women after intake of composite meals containing cod-, milk-, and soy protein." <u>European Journal of Clinical Nutrition</u> 60(8): 949-954.	Acute study
Vozzo, R., et al. (2003). "Similar effects of foods high in protein, carbohydrate and fat on subsequent spontaneous food intake in healthy individuals." <u>Appetite</u> 40(2): 101-107.	Acute study
Wang, Y. F., et al. (2008). "The relationship between dietary protein intake and blood pressure: results from the PREMIER study." <u>Journal of Human</u> <u>Hypertension</u> 22(11): 745-754.	Cross-sectional
Ward, M., et al. (2000). "Fluctuations in dietary methionine intake do not alter plasma homocysteine concentration in healthy men." <u>Journal of</u> <u>Nutrition</u> 130(11): 2653-2657.	Not protein
Weaver, C. M., et al. (2006). "Measuring calcium absorption and utilization in humans." <u>Current Opinion in Clinical Nutrition and Metabolic Care</u> 9(5): 568-574.	Review
Weinstein, S. J., et al. (2006). "Dietary factors of one-carbon metabolism and prostate cancer risk." <u>Am J Clin Nutr</u> 84(4): 929-935.	Not protein
West, S. G., et al. (2005). "Effects of including soy protein in a blood cholesterol-lowering diet on markers of cardiac risk in men and in postmenopausal women with and without hormone replacement therapy." Journal of Women's Health 14(3): 253-262.	Hypercholesterolemic subjects
Westerterp-Plantenga, M. S. (2003). "The significance of protein in food intake and body weight regulation." <u>Current Opinion in Clinical Nutrition</u> and Metabolic Care 6(6): 635-638.	Review
Westerterp-Plantenga, M. S. (2008). "Protein intake and energy balance." <u>Regulatory Peptides</u> 149(1-3): 67-69.	Review

Westerterp-Plantenga, M. S., et al. (2004). "High protein intake sustains weight maintenance after body weight loss in humans." <u>International</u> <u>Journal of Obesity and Related Metabolic Disorders: Journal of the</u> <u>International Association for the Study of Obesity</u> 28(1): 57-64.	Weight maintenance after weight loss and short term (3 months)
Westerterp-Plantenga, M. S., et al. (2005). "Protein intake and body-weight regulation." <u>Appetite</u> 45(2): 187-190.	Review
Westerterp-Plantenga, M. S., et al. (2009). "Dietary protein, weight loss, and weight maintenance." <u>Annual Review of Nutrition</u> 29: 21-41.	Review
Williams, A.G., et al. (2001) "Is glucose/amino acid supplementation after exercise an aid to strength training?" British Journal of Sports Medicine 35(2):109-13.	Amino acid supplementation
Williams, G., et al. (2006). "High protein high fibre snack bars reduce food intake and improve short term glucose and insulin profiles compared with high fat snack bars." <u>Asia Pacific Journal of Clinical Nutrition</u> 15(4): 443-450.	Acute study
Wolfe, A. R., C. Arroyo, <i>et al.</i> (2011). "Dietary protein and protein-rich food in relation to severely depressed mood: A 10 year follow-up of a national cohort." <u>Progress in Neuro Psychopharmacology & Biological Psychiatry</u> 35(1): 232-238	Depression
Wolfe, R. R. (2001). "Effects of amino acid intake on anabolic processes." Canadian Journal of Applied Physiology 26: 220-227.	Review
Wolfe, R. R. (2002). "Regulation of muscle protein by amino acids." <u>Journal</u> of Nutrition 132(10): 3219S-3224S.	Review
Wolfe, R. R. (2006). "The underappreciated role of muscle in health and disease." <u>American Journal of Clinical Nutrition</u> 84(3): 475-482.	Review
Wolfe, R.R. (2000) "Protein supplements and exercise." American Journal of Clinical Nutrition 72(2:Suppl):Suppl-7S.	Review
Wu, A. H., et al. (2000). "A meta-analysis of soyfoods and risk of stomach cancer: the problem of potential confounders." <u>Cancer Epidemiology,</u> <u>Biomarkers and Prevention</u> 9(10): 1051-1058.	Isoflavones, not protein

Wu, A. H., et al. (2005). "A controlled 2-mo dietary fat reduction and soy food supplementation study in postmenopausal women." <u>American Journal of Clinical Nutrition</u> 81(5): 1133-1141.	Soy food supplements. Effect of varying fat (and CHO), not protein (kept constant in all three diet)			
Wu, G. (2009). "Amino acids: metabolism, functions, and nutrition." <u>Amino</u> <u>Acids</u> 37(1): 1-17.	Review			
Wu, G., et al. (2009). "Arginine metabolism and nutrition in growth, health and disease." <u>Amino Acids</u> 37(1): 153-168.	Review			
Xiao, C. W., et al. (2008). "Effect of soy proteins and isoflavones on lipid metabolism and involved gene expression." <u>Frontiers in Bioscience</u> 13: 2660-2673.	Review			
Xu, J. Y., et al. (2008). "Effect of milk tripeptides on blood pressure: a meta- analysis of randomized controlled trials." <u>Nutrition</u> 24(10): 933-940.	Milk tripeptides			
Yang, G., et al. (2009). "Prospective cohort study of soy food intake and colorectal cancer risk in women." <u>American Journal of Clinical Nutrition</u> 89(2): 577-583.	Chinese			
Yates, A. A. (2006). "Dietary reference intakes: concepts and approaches underlying protein and energy requirements." <u>Nestle Nutrition Workshop</u> <u>Series</u> 58: 79-90.	Review about US DRI.			
Zachwieja, J. J., et al. (2000). "Intravenous glutamine does not stimulate mixed muscle protein synthesis in healthy young men and women." <u>Metabolism: Clinical and Experimental</u> 49(12): 1555-1560.	Glutamine injection, not protein			
Zello, G.A. (2006) "Dietary Reference Intakes for the macronutrients and energy: considerations for physical activity." Applied Physiology, Nutrition, and Metabolism 31(1):74-9.	Review			
Zhan, S., et al. (2005). "Meta-analysis of the effects of soy protein containing isoflavones on the lipid profile." <u>American Journal of Clinical Nutrition</u> 81(2): 397-408.	Isoflavones, not protein			
Zhang, L., et al. (2009). "Diet-dependent net acid load and risk of incident hypertension in United States women." <u>Hypertension</u> 54(4): 751-755.	Net-acid load as an independent risk factor, not protein			

Zhong, Y., et al. (2009). "Association of total calcium and dietary protein intakes with fracture risk in postmenopausal women: the 1999-2002 National Health and Nutrition Examination Survey (NHANES)." <u>Nutrition</u> <u>(Burbank, Los Angeles County, Calif.)</u> 25(6): 647-654.	Cross-sectional
Zyriax, B. C., et al. (2005). "Nutrition is a powerful independent risk factor for coronary heart disease in womenThe CORA study: a population-based case-control study." <u>European Journal of Clinical Nutrition</u> 59(10): 1201- 1207.	Foods rather than protein.

Table 1. Evidence table, N-balance studies

Reference	Study design	Population	Outcome measures	Intervention/ exposure	Dietary assessment method	No of subjects analysed	Intervention	Results	Study quality and relevance, Comments A-C
Rand et al., 2003 (3)	Meta- analysis	19 balance studies of healthy persons	N-balance		Controlled nitrogen (protein) intake. Measured urine and faeces, correction for dermal and miscellaneous losses. At least 3 test protein intakes, given for 10-14 days, urinary and faecal excretion data for, the last 5 days, eucaloric diet studies and a adaption period \approx 5 days	N=235		The median estimated protein requirement of good quality protein: 0.65 g/kg BW/d and the estimated RDA: 0.83 g/kg BW/d No differences for adult age groups, sex or protein source	B Not sufficient power to detect possible differences between e.g. sex and age groups. Only one study with elderly available in the analysis. Data suggest a possible age difference in nitrogen utilization that needs to be further explored
Campbell et al., 2008 (8) USA	Controlled metabolic study	Healthy volunteers, young (n=27) 29- $30 \pm 7-8$ y and old (n=21) 72- $75 \pm 6-4$ y, 93% white. Young vs. old and men vs. women	N-balance	Low protein diet:0.5g /kg Medium: 0.75 g/kg High: 1.0 g /kg BW. Animal based egg and dairy protein	Strict dietary control. Duplicate portions of all foods and beverages on days 7-10 of each trial. Stool collections on day 7-9 of each trial. 24-h urine collections on day 7-10 and 74-17 of each trial.	Young n=23 Old n=19	Three 18-d periods, minimum 1 week habitual diet between the periods. 3-d rotation of menus Eucaloric diet (estimated energy intake from estimated REE times PAL.	Body weight unchanged. N- balance not different between the four groups. Estimated requirement expressed pr. kg BW was not significantly different for the young vs. old or	A The estimated adequate protein allowance was 0.85 ±0.21 g/kg BW/d and not significantly different from Rand et al

					Miscellaneous losses assumed to be 5 mg nitrogen/kg BW/d		Morning meal consumed at dining facility, lunch, dinner and weekend	men vs. women. Mean protein requirement was lower for older	
							meals were	women vs. older	
							home	expressed pr. kg	
								FFM there was no	
								significant	
								difference. For all	
								the adequate	
								protein allowance	
								was estimated to	
								be 0.85 ±0.21	
	AT	101 11		*** 1		10	10.1	g/kg BW/d	D
Walrand et	CT	10 healthy	N-balance,	High protein	All food was	10 young	10 days of HP $(\mathbf{X}_{\text{corr}} = 2.08 \pm 0.07)$	Unchanged BW.	B Sharttarra hat
(9)	blinded	young (5 men) and 10	filtration	(HP): 5.0 g/Kg FFM (22-24	metabolic ward	old	g/kg BW and old:	muscle protein	interesting
USA	billided	old (5 men)	rate	E%) and usual	24-h urine	olu	1.79 ± 0.1 g/kg BW)	synthesis did not	because of the
		volunteers	(GFR),	protein (UP):	collection at the end		or UP (young:	differ with age.	high protein
			muscle	1.5 g/kg FFM	of each 10-d trial.		1.04±0.03g/kg BW	GFR was lower in	intake. No age
			protein	(11-12 E%)	No stool collections		and old 0.89±0.05	older participants	related difference
			synthesis		and no estimate for		g/kg BW) protein	and they had a	in N-balance but
					miscellaneous		diets in a cross-over	lesser increase in	concern about a
					losses		design, separated	GFR during the	HP diet
							by 2-8 weeks	corresponding to	app 24F% in the
								77% of younger	elderly because of
								people at the UP	potential adverse
								and 58% of	effect on the
								younger people	kidney function
								during HP	

Table 2. Evidence table, protein intake and mortality

Reference	Study design	Population,	Outcome measures	Intervention/ exposure	Dietary assessment method	No of subjects analysed	Intervention	Follow- up period, drop-out rate	Results	Confoun- ders adjusted for	Study quality and relevance, Comments A-C
Fung et al., 2010 (10) USA	Cohort	Nurses' Health Study (NHS) 34- 59 y, n=? in 1980 used as baseline Health Professionals' Follow-up Study (HPFS) 51,529 males 40-75 y	All-cause mortality and mortality of CVD and cancers (lung, colorectal, breast and prostate) from death certificate s or medical records	E% of fat, protein and carbohydrate in deciles to create a low carbohydrate score (LC) and also an animal LC score (animal fat and animal protein and a vegetable LC score (vegetable fat and vegetable protein)	Baseline in 1980 a 61- item FFQ (NHS) expanded to 116-item FFQ in 1984 and used in HPFS. But dietary information collected in 1986 used in the analyses. Implausible energy intakes (< 500 kcal and > 3500 kcal) excluded. No sufficient information about validation	NHS: n=85,168 and 12,555 deaths HPFS: n=44,548 and 8,678 deaths 44	Range in intake of total protein: 15-23 E%	26 y in NHS and 20 y in HPFS	In pooled analysis hazard ratio (HR) comparing lowest vs highest decile All-cause mortality: LC score HR 1.12 (95% CI 1.01-1.24) Animal-based HR 1.23 (1.11-1.37) and vegetable- based HR 0.80 (0.75- 0.85). Cardiovascul ar mortality: Animal-based HR 1.14 (1.01-1.29) and	Age, physical activity, BMI, energy intake, alcohol, history of hypertensi on, smoking, multivita min use, menopaus al status and hormone use. For relevant outcomes also history and family history of the cancer and risk factors	B In the present LC scores animal- and plant-based food have differential effect on mortality The present LC scores not designed to mimic any particular versions of the low- carbohydrate diets in the popular literature
									vegetable- based HR		

									0.77 (0.68- 0.87). Cancer mortality: Animal-based HR 1.28 (1.02-1.60)		
Halbesma et al., 2009 (11) The Netherlan ds	e	Prevention of Renal and Vascular ENd- stage Disease (PREVEND) study All inhabitants of a city in the Netherlands invited. 48% responded. From these a random sample of 7,768 with 24 h urinary albumin ≥10 mg/L (6,000 participated) and another sample of 3,394 with 24 h urinary albumin < 10 mg/L (2,592 participated). Total in the two samples: 8,592. Gender distribution not given. Avg. Base-line age: 49-50 yrs. Exclusion	Cardiovas cular morbidity and mortality. Non- cardiovas cular mortality. Renal outcome = slope of decline in estimated glomerula r filtration rate eGFR (from gender, age, race and serum creatinine)	Continuous values and quintiles of estimated baseline protein intake in g per kg body "ideal" weight (BW) (after correcting the BMI to 22)	Protein intake estimated from two 24- h urinary N. No correction for possible loss of urine (PABA)	5,778 of 8,461 and 373 deaths	Mean protein intake = 1.20 g/kg BW/d, range in percentiles: 5 th : 0.8 95 th : 2.66	7.0 y and 7.2 y for different outcomes. Follow-up: 70% of survivors	Significant inverse trend for total (p<0.001) and non- cardiovascula r mortality (p<0.001) (univariate analysis). Similar results in Cox regression analyses	Age, gender cardiovasc ualor risk factors incl. sodium intake	C The intake level of protein could not be assessed because the values per kg BW are corrected to "ideal "BW and thus, probably higher than actual intake

		criteria: Type 1 diabetes, pregnancy, known kidney disease									
Kelemen et al., 2005 (12 USA	Cohort	Iowa Women's Health Study 41,836 (42% response rate), 55-69 y	Chronic disease, and mortality	Total, animal and vegetable protein E% in quintiles (Q) substituted isoenergetical ly for carbohydrate	At baseline FFQ during past year. Implausible energy intakes (< 600 kcal and > 5000 kcal) excluded. No sufficient information about validation	29,017 (70%) Death all causes n = 3,978, deaths CHD n = 739, deaths cancer n = 1,676, new cancers n= 4,843	Q1: 14 E% Q5: 22 E%	15 y	Highest vs. lowest quintile. All-cause mortality: Total, animal and vegetable protein were significantly inverse associated with all-cause mortality, but no significant associations in the multivariable models. Deaths CHD: no association to total protein, vegetable protein RR (95% CI) 0.70 (0.49- 0.99) and p for trend = 0.02 Cancer and cancer deaths: both animal and	Age, total energy intake, intake of animal/ve getable protein, fats, fibre, cholestero l, methionin e and alcohol, smoking, physical activity, BMI, education, history of hypertensi on, family history of cancer, use of hormones, multi vitamin and E vitamin	C Women only. No information about the total energy intake and limited information about the FFQ method and validation. Food based: Dietary proteins from animal and vegetable sources when substituted for carbohydrates are differently associated with mortality from CHD and all causes

									vegetable		
									protein was		
									significantly		
									inversely		
									associated		
									with cancer		
									and cancer		
									deaths in the		
									macronutrient		
									adjusted		
									models, but		
									no		
									associations		
									in the		
									multivariable		
									models.		
									Substituting		
									vegetable		
									protein for		
									animal		
									protein only		
									the inverse		
									association to		
									CHD		
									mortality		
									remained		
									significant in		
									the		
									multivariable		
									model: 0.70		
									(0.51-0.98		
									and p for		
									trend $= 0.02$		
Lagiou et	Cohort	The Women's	Mortality	A 1-10 score	80-item FFQ	42,237	Lowest decile :	12y	Increased	Height,	С
al., 2007		Lifestyle and	derived	based on	during 6	(86%) and	10 E%		protein intake	BMI,	Reported low
(13)		Health cohort	from	deciles of	months prior	592			was	smoking,	energy intake
Sweden		49,261, 30-49 y	Register	energy	to study	deaths	Highest decile:		associated to	physical	(median 6.4
			of Total	adjusted	entry.		23 E%		CVD	activity,	MJ).
			Populatio	protein intake	No sufficient				mortality:	education,	
			n and	and another	information				RR 1.10	energy	Results more

			from Swedish Cause of Death Register	based on deciles of carbohydrate (CH) intake and also a additive low CH-high protein score	about validation				(95% CI 1.01-1.20). The low CH- high protein score was positively associated with all cause mortality: RR 1.04 (95% CI 1.00-1.08) and especially cardiovascula r mortality: RR 1.15 (1.01-1.28) Relation to cancer deaths NS	intake, saturated fat, alcohol	pronounced for cardiovascular mortality among women +40 y at baseline
Preis et al., 2010 (14) USA	Cohort	Health Professionals Follow-Up Study 51,529 male professionals 40- 75 y at baseline	Physician verified ischemic heart disease (IHD) or from medical records, fatal and nonfatal	Quintiles of E% protein (total, animal and vegetable), substitution of protein for an isocaloric amount of carbohydrate (CH)	131-item FFQ Internal evaluation: the Pearson correlation for protein was 0.44	43,960 IHD n= 2,959 (1804 nonfatal and 155 fatal cases)	Lowest quintile 14.6 E% and highest quintile 22.5 E% substituted for CH	18 y	Inverse association between vegetable protein and fatal IHD Top quintile vs. bottom quintile RR 0.66 and 95%CI 0.49- 0.88 , p for trend =0.005 Excluding the men free of diabetes, hypertension and hypercholeste	Age, BMI, smoking, parental history of myocardiu m infarction before age 65, Energy intake, alcohol, multivita min, physical activity, glycemic index, folate, fibre,	B Higher intake of total and animal protein E% were associated with increased risk of IHD among "healthy" men (without baseline hypertension, diabetes and hypercholestero lemia)

			7.10					rolemia at baseline a higher intake of total (RR 1.21 (1.01- 1.44, p for trend 0.02), and animal protein (RR 1.25 (1.04- 1.51, P for trend 0.02) was associated with increased risk of total IHD	vitamin C, folate, magnesiu m, n-3. Baseline hypertensi on, diabetes and hyperchol esterolemi a	
et al., 2011 (15)	cohort s	Health Initiative (WHI) cohorts:	ported and	"Calibrated" Protein intake	FFQ	59,157 (88%) and		combined for the two	n included:	Energy intake
USA		Dietary	physician	in g per day	Subgroup n =	WHI-OS		cohorts.	energy	level only
		Modification trial	adjucated	and protein	544 urinary	n =			intake,	acceptable after
		(DMT) n =	myocardie	E%	biomarkers	59,157		Calibrated	age,	calibration.
		0 26,595 (91%)	infarction,		in order to	(88%)		protein in g	ethnicity,	
		and WHI	CHD		calibrate.	Total =		per day:	income,	Only
		Observational	deaths		Calibration	80,370 W		Coronary	education,	recreational
		Study (WHI-OS) n = 67.402.(88%)	and stroke		equations	and 3,917		deaths NS	Confound	physical activity
		II = 07,492 (00%) And 85 % white			data from	ular		Calibrated	ethnicity	allu measurement
		All			DMT after	disease		protein E%	education.	method not
		postmenopausal			one year	events		without BMI:	history of	described.
		and 50-79 y at			follow up			fatal CHD:	CVD,	
		baseline			and in the			0.74 (0.59-	family	Protein E%
					WHI-OS			0.93)	history of	inverse y
					after 3 y				premature	related to
					follow				CVD,	coronary heart
									smoking,	disease
									nypertensi	the relation to
									diabetes	protein in g per
									medicatio	day is NS

										n(statin aspirin prior hormone) recreation al physical activity and with/witho ut BMI in the model	
Trichopou lou et al., 2007 (16) Greece	Cohort	The Greek cohort of EPIC 28,572 volunteers, 20-86 y	Mortality from death certificate s	A low carbohydrate -high protein score (LC/HP) using deciles of energy adjusted intake	150-item FFQ during one year before study entry. Validation during pilot phase, but no further information Correlation of protein to LC/HP was low: absolute values R- Spearman 0.32 and energy- adjusted R- Spearman 0.28	22,944 (80%), 59% female and 455 deaths	Range in intake of total protein: app. 10-20 E%	5 y (range 1-125 months)	The LC/HP score was positively related to all- cause mortality: RR 1.08 (95% CI: 1.03-1.13). A 2-unit increase in the LC/HP score was positively related to cardiovascula r deaths: RR 1.09 (1.01- 1.23)	Gender, age, y of schooling, smoking, BMI, physical activity, alcohol, energy intake, saturated and unsaturate d lipids	B Many low- energy reporters among the women.

Table 3. Evidence table, protein intake and breast cancer

Reference	Study design	Population	Outcome measures	Intervention/ exposure	Dietary assessment method	No of subjects analysed	Follow- up period, drop-out rate	Results	Confoun- ders adjusted for	Study quality and relevance, Comments A-C
Holmes et al., 2003 (17) USA	Cohort	Nurses' Health Study In 1976: 121,700 women 30-55 y Baseline data from 1980 n = 88,647	Breast cancer verified by medical records	Quartiles of energy percentage (E%) of total, animal and vegetable protein and energy adjusted animal food sources as well	The 1980 edition of a 61-item FFQ over the past year Implausible energy intakes excluded (< 500 kcal or > 3500 kcal per day)	88,647 and 4,107 cases	18 y	No statistically significant associations to cancer of total, animal or vegetable protein	Age, history of benign breast disease, menopaus al status, hormone use, parity, weight change from age 18, BMI, energy intake, alcohol	C Heredity not mentioned as a confounder. No information about the energy intake and the validity of the protein intake assessment
Sala et al., 2000 (18) UK	Nested case- control	EPIC-Norfolk and the National Health Service Regional Breast Screening Programme for Norwich N = 9,484	Mammogr aphic parenchy mal pattern	Protein in g per day in tertiles	7-d food diaries. No information about validation 51	Cases n = 203 Controls n = 203		Highest versus lowest adjusted tertiles: OR 2.00 (95 % CI: 1.06- 3.77), trend test p = 0.004 and when adjusting for energy intake OR 2.30	Menopaus al status, parity, Hormone use, BMI and energy intake	B Heredity not mentioned as a confounder

Sieri et al., 2002 (19) Italy	Nested case- control	Italy, part of the ORDET prospective study. Healthy postmenopausal women 41-70 y, baseline data from 1987-1992. 83% of the cohort completed a FFQ n= 3367 After an average of 5.5 y follow up 56 cases with invasive breast cancer was found and matched with 214 controls	Histologic ally confirmed breast cancer cases	Energy adjusted intake in tertiles of total, animal and vegetable protein	107-item FFQ over the previous year Reproducibili ty after 1 y was 0.69 for protein	cases n=56 and controls n=214		(1.03-5.16), trend test p = 0.06 No significant relations. Highest vs lowest tertile: Total protein: OR 1.44 (95% CI 0.70-2.97) Animal protein: OR 3.78 (0.95-15.0) Vegetable protein: OR 0.97 (0.31-3.01)	Place of birth, parity, education (BMI, WHR eliminated again)	C Small study and short follow-up. No information about the energy intake. Heredity not mentioned as a confounder
-------------------------------------	----------------------------	---	--	---	---	--	--	---	--	---

Table 4. Evidence table, protein intake and colorectal cancer

Reference	Study design	Population	Outcome measures	Intervention/ exposure	Dietary assessment method	No of subjects analysed	Results	Confoun- ders adjusted for	Study quality and relevance, Comments A-C
Alexander et al., 2009 (20)	Meta- analysi s	3 cohort studies and 3 case- control studies included, just one study (cohort) included women	Colorectal cancer	Animal and meat protein in g per day			For animal protein no significant relation: summary relative risk estimate, SRRE 1.05 and 95% CI: 0.89-1.22		C The main focus was on fat in relation to cancer, and not protein. The included studies regarding protein were not described thoroughly and some of them not relevant in a nordic seeting. Only few included women. Few studies with animal protein, most studies included foods (meat)
Almendin gen et al., 2001 (21)	Case- control	Baseline data from a Norwegian RCT	histologic ally confirmed	Total and animal protein in g	Weighed 5- day dietary record. No	Cases n=87 Hospital	Intake divided in 3 groups: Low.	BMI, family history.	B Focus on two different control

Norway		study, including 116 polyp patients 50-76 y of which 87 patient with histologically confirmed adenomas were included. Two control groups: "Hospital" controls with polyp-free status n=35 and healthy controls n=35	adenomas	per day	information about validation	controls n=35 Healthy controls n=35	medium and high (tertiles?) NS relations between cases and the two control groups for total and animal protein	smoking and intake of energy, fat, fibre	groups. The NS differences were most marked when healthy controls were used as the comparison group Small study. No information about protein E% or g protein per kg BW
Breuer- Katschins ki et al., 2001 (22) Germany	Case- control	German study with cases who had identified and removed at least one colorectal adenomatous polyp verified histologically Two control groups: I: Hospital control:Patients without polyps after colonscopy II: Population controls from the general population	histologic ally confirmed adenomas	Quintiles of total protein and meat intake in g per day	Dietary history during the past year. The dietary history only evaluated against a similar method	Cases n= 182 (Response rate 69%) Hospital controls n=178 (response rate 66%) Populatio n controls n= 182 (response rate 50%)	No significant association between protein intake and colorectal adenoma risk for both control groups	Energy intake, social class, BMI	C Disagreement between numbers of participants in the text compared to the tables. Self-reported height and weight
Levi et al., 2002 (23) Switzerlan d	Case- control	Swiss study, cases with histologically confirmed colon cancer, age 26-74 y. Hospital controls		Energy adjusted total protein intake in tertiles	79-item FFQ 2 years prior to diagnosis. No information about validation	Cases n= 286 (rate 84%) Controls n=550 (rate 85%)	No significant relation to protein, lowest vs highest tertile	Age, sex, education, physical activity, energy intake (BMI,	C No information about energy intake level

age 27-74 y		(just as		family	
		references)		history,	
				parity, age	
				of first	
				birth)	

Table 5. Evidence table, protein intake and various cancers

Reference	Study design	Population,	Outcome measures	Intervention/ exposure	Dietary assessment method	No of subjects analysed	Follow- up period, drop-out rate	Results	Confoun- ders adjusted for	Study quality and relevance, Comments
							Tate			
Bosetti et al., 2003 (24) Italy	Case- control	Italy and Switzerland 1992-2000 Cases 30-79 Y Diagnosis no longer than 1 y before interview and diagnosis histologically confirmed Hospital controls 31-79 y non- neoplastic. a control-to-case ration of about five was chosen for women, as opposed for two males to compensate for the rarity of laryngeal cancer in women	Laryngeal cancer	Energy adjusted g per day of total, animal and vegetable protein in quintiles	78-item FFQ, diet 2 years before diagnosis	cases n=527 (91% male) and controls n=1297 (81% males)		Highest vs lowest quintile: OR and 95% CI Total protein: OR 1.62 (1.8- 2.43) Animal protein: OR 1.71 (1.16- 2.52) Vegetable protein: OR 0.51 (0.33- 0.77)	Age, sex, centre, education, BMI, smoking, alcohol, energy intake	C Hospital controls, response rate just mentioned in the discussion. Self-reported anthropometry Cases had higher tobacco and alcohol consumption
Zheng et al., 2004 (25) USA	Case- control	21-84 y women identified through Connecticut Tumor Registry and histologically	Histologic ally confirmed non- Hodgkin's	Energy adjusted intake in quartiles of total_animal	120-item FFQ prior year be 56 re interview Designed to	601 cases 717 controls		Highest vs lowest quartile of animal protein: OR	Age, BMI, family history, (race, education	C Women only. Insufficient information about validation

		confirmed in 1996-2000 Cases n=601 (response rate 72%). Population-based controls n=717 Response rate: random digit dialing: 69% (< 65 y) and Health care administration files: 47% (>65y)	lymphona	and vegetable protein in g per day	optimize estimation of fat intake		1.7 95 CI: 1.2-2.4). No association for total and vegetable protein	smoking, alcohol)	of the FFQ. No information about total energy intake No information about anthropometry
Mayne et al., 2001 (26) USA	Case- control	USA, multi centre English speaking 30-79 y cases, diagnosed 1993-1995. Population-based tumor registries and diagnoses histologically confirmed. Population-based controls	Histologic ally confirmed diagnoses. Target cases: I:Adenoca rcinomas of the esophagus and II:gastric cardia (response rate 80.6%). Comparis on case groups: esophageI II:al squamous cell carcinoma , IV: noncardia	Energy adjusted intake in quartiles of total, animal and vegetable protein	104-item FFQ, 3-5 y before diagnosis or interview. Insufficient information about validation of the FFQ.	Target cases n = 537 Comparis on case groups n= 558 and controls n= 687 After exclusion of implausibl e energy intake estimates (< 600 kcal/day, n=20 or > 5000 kcal/day, n=3)	75 th vs 25 th percentile of intake: OR and 95% CI Total protein: I: 1.49 (1.02- 2.18) II: 1.64 (1.11- 2.42) III: 1.75 (1.07-2.88) IV: 1.52 (1.08-2.15) Animal protein: I: 1.79 (1.33- 2.41) II: 1.60 (1.19- 2.15) III: 2.14 (1.47-3.12) IV: 1.58 (1.22-2.06) Vegetable protein: I: 0.39 (0.27-	Location, age, sex, race, proxy status, BMI, income, education, smoking, alcohol, energy intake	B No information about anthropometry ("usual adult body mass index"). Vegetable protein inversely associated with risk (not significant for II)

			gastric cancer (response rate 74.16%). Controls (response rate 70.2%)				0.58) II: 0.75 (0.53- 1.07) III: 0.34 (0.21-0.56) IV: 0.63 (0.45-0.87)		
2004 (27) Canada	control	National Enhanced Cancer	cancer registries	adjusted intake in	usual diet 2 y before data	442 (response	protein intake (quartiles of	location, education,	Low response rate.
		Surveillance	identified	quartiles of	collection.	rate	intake)	income,	Only 69-item
		System (NECSS)	cases	total protein	Weekly	56.5% of		marital	FFQ
		20-76 y participants.	by ICDO-	In g per week	Validation	d cases)		ethnic	
		Data collection	2, code		not	Controls:		group,	
		1994-1997 in 8-	C56 and		sufficiently	2135(resp		alcohol,	
		10 Canadian	histologic ally		taken into	onse rate 65.4% of		BMI, energy	
		Population-based	confirmed		account	ascertaine		intake,	
		controls				d cases)		smoking,	
						but		physical	
						204		vears of	
						excluded		menstruati	
								on,	
								menopaus al status	
								In Ontario	
								also:	
								family	
								oral	
								contracept	
								ive uses,	
								hormone	
								nt therapy	

Lucenfort e et al., 2010 (28) Italy	Case- control	Italian, hospital based. Cases diagnosed no longer than 1 year before interview (83% diagnosed 3 months before)	Cancer of pancreas excl. neuroendo crine tumours)		78-itemFFQ Diet during 2 years before diagnosis. No information about validation and total energy intake.	326 cases and 652 controls (34-80 y and 53% men)		No association with total and vegetable protein, but a significant positive association with animal protein for the highest vs. Lowest quintile of intake (OR = 1.85, 95% CI: 1.15-2.96)	Age, sex, location, education, smoking, diabetes, energy intake. Apparentl y not alcohol	C Hospital based. Association found for animal protein
Hu et al., 2010 (29) Canada	Case- control	Canadian National Enhanced Cancer Surveillance System (NECSS) 20-76 y participants. Data collection 1994-1997 in 8 Canadian provinces	Prostate cancer registries identified cases defined by ICDO- 2	Total protein g/week and in quartiles	69-item FFQ: usual diet 2 y before data collection. Weekly intake. Validation not sufficiently reported and taken into account	Cases: 1,797 (response rate 75.3%) Controls: 2,547 (response rate 64.5 %)		No relation for total proteins: 503.5 ± 277.3 vs. 500.3 ± 231.6 g/week And quartiles P for trend 0.15	Age, location, education, income, alcohol, energy intake, smoking BMI,	B Only 69-item FFQ
Lee et al., 2008 (30)	Pooled analysi s	13 prospective cohort studies	Renal cell cancer	Intake of total, animal and plant protein (E%) in quintiles	FFQ or dietary history	530,469 W 244,483 M	7-20 y	NS associations (p for trend) for total, animal and vegetable protein in the multivariate analysis	Age, hypertensi on, BMI, smoking, parity and intake of energy, fruit- vegetables and alcohol	B Not a SLR but a pooled analysis. No information about the intake level in the quintiles used in the analysis

Table 6. Evidence table, protein intake and coronary heart disease

Reference	Study design	Population	Outcome measures	Intervention/ exposure	Dietary assessment method	No of subjects analysed	Intervention	Follow- up period, drop-out rate	Results	Confoun- ders adjusted for	Study quality and relevance, Comments A-C
Halbesma et al., 2009 (11) Netherlan ds	e	Prevention of Renal and Vascular ENd- stage Disease (PREVEND) study All inhabitants of a city in the Netherlands invited. 48% responded. From these a random sample of 7,768 with 24 h urinary albumin \geq 10 mg/L (6,000 participated) and another sample of 3,394 with 24 h urinary albumin < 10 mg/L (2,592 participated). Total in the two samples: 8,592. Gender distribution not given. Avg. Base-line age: 49-50 y	Cardiovas cular morbidity and mortality. Non- cardiovas cular mortality. Renal outcome = slope of decline in estimated glomerula r filtration rate eGFR (from gender, age, race and serum creatinine)	Continuous values and quintiles of estimated baseline protein intake in g per kg body "ideal" weight (BW) (after correcting the BMI to 22)	Protein intake estimated from 24 urinary N. No correction for possible loss of urine (PABA).	5,778 of 8461 and 373 deaths 60	Mean protein intake = 1.20 g/kg BW/d, range in percentiles: 5 th : 0.8 95 th : 2.66	7.0 y and 7.2 y for different outcomes. Follow-up: 70% of survivors	No association with eGFR. Event rates: significant trend for high cardiovascula r and non- cardiovascula r mortality with low intake (univariate analysis). Apparently a U shaped association. Similar results in Cox regression analyses adjusted for age, gender and cardiovascula r risk factors. No association between protein intake	Age, gender cardiovasc ualor risk factors incl. sodium intake	C The intake level of protein could not be assessed because the values per kg BW are corrected to "ideal "BW and thus, probably higher than actual intake

		Exclusion criteria: Type 1 diabetes, pregnancy, known kidney disease						and rate of decline in eGFR		
Halton et al., 2002 (31) USA	Cohort	Nurses' Health Study, 98,462 female nurses 34- 59 y in 1980 with dietary data	Incident coronary heart disease (CHD), including nonfatal AMI or fatal events. Confirme d by medical records. Se-lipids from blood samples in a subgroup in 1990	Low- carbohydrate (CH) score (low CH and high fat and high protein diet) based on energy percentages (E%) and also based on animal or vegetable sources of fat and protein (total, animal and vegetable) in a separate analyses	61-item FFQ during previous year. From 1984 app. 120-items. Implausible energy intakes (< 500 kcal and > 3500 kcal) excluded Evaluation : correlation 0.56 for protein vs. six 1-week food records in 1980 and 1986	82,802 (84%) CHD n= 1994 Subgroup (n= 466)	20 y	Comparing the highest and lowest deciles of the score on the basis of E% from CH, vegetable protein and vegetable fat the RR (95%CI) was 0.70 (0.56- 0.88) and p for trend 0.002 The score was inversely associated with s- triglycerid, p for trend = 0.05. When examining the association for each macronutrient separately	Age, BMI, smoking, physical activity, postmeno pausal hormone use, alcohol, aspirin, supplemen ts (multivita min and E- vitamin), history of hypertensi on, hyperchol esterolemi a, parental MI	B No association with risk of CHD with a low CH and high fat-protein diet, and no association for protein separately. When vegetable sources of protein and fat were chosen in the score there was a 30% reduced risk of CHD. Thus difficult to separate the effect from protein <i>per se</i> .

									there was no significantly association between total, animal and vegetable protein and the risk of CHD		
Preis et al., 2010 (14) USA	Cohort	Health Professionals Follow-Up Study 51,529 male professionals 40- 75 y at baseline	Physician verified ischemic heart disease (IHD) or from medical records, fatal and nonfatal	Quintiles of energy percentage (E%) protein (total, animal and vegetable), substituted for an isocaloric amount of carbohydrate (CH)	131-item FFQ Internal evaluation: the Pearson correlation for protein was 0.44	43,960 IHD n= 2,959 (1804 nonfatal and 155 fatal cases)	Lowest quintile 14.6 E% and highest quintile 22.5 E% substituted for CH	18 y	Inverse association between vegetable protein and fatal IHD Top quintile vs. bottom quintile RR 0.66 and 95% CI 0.49- 0.88 , p for trend =0.005 Excluding the men free of diabetes, hypertension and hypercholeste rolemia at baseline a higher intake of total (RR 1.21 (1.01- 1.44, p for trend 0.02), and animal protein (RR 1.25 (1.04- 1.51, P for trend 0.02)	Age, BMI, smoking, parental history of myocardiu m infarction before age 65, Energy intake, alcohol, multivita min, physical activity, glycemic index, folate, fibre, vitamin C, folate, magnesiu m, n-3. Baseline hypertensi on, diabetes and hyperchol esterolemi	B Higher intake of total and animal protein E% were associated with increased risk of IHD among "healthy" men (without baseline hypertension, diabetes and hypercholestero lemia)

Prentice et al., 2011 (15)Two Women's s sSelf- ported mycardiaBiomarker "Calibrated" ported and mycardia (DMT n = 0 26,505 (19%) and Stroten rial Addification trial notervational beschine122-item ported sDMT n = 59,157 Subgroup n = (88%) and Studyroup n = (88%) and (0.51/57 (0.52/597) (0.52/597) (0.52/597) <b< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>was</th><th>9</th><th></th></b<>									was	9	
Prentice et al., cohortTwo Women's Health Initiative officiation trial addication trial holification trial officiation trial holification trial holification holification trial holific									associated	u	
Prentice et al., 2011 (15) Two Women's cohort s Self- Dietary (WH) cohorts: physician diversed (DMT) n = 0.26,595 (01%) and WHI (DMT) n = 0.26,595 (01%) and WHI (DMT) n = 0.26,595 (01%) and WHI (DMT) n = 0.26,595 (01%) and S % white All s seline Self- ported and ajucated myocardie (DMT) n = 0.26,595 (01%) and stroke (DMT) n = 0.26,595 (01%) (DMT) n = 0.26,505 (D1%) (DMT) n = 0.2									with		
Prentice (al., 2011 (15)) Two (WHI) cohorts: bietary (Detary) Self- ported (WHI) cohorts: bietary (Detary) Biomarker ("Calibration in g per day add protein infarcation, "Calibration in g per day differentiation, and protein infarcation, "Calibration in g per day differentiation, and protein infarcation, "Self-"" Biomarker ("Calibration" in g per day differentiation, and protein infarcation, and protein infarcation, and protein infarcation, and protein infarcation, and protein infarcation, and WHI Biomarker ("Calibration" infarcation, and protein infarcation, and protein infarcation, and protein infarcation, and wHI Biomarker ("Calibration" infarcation, and protein infarcation, and protein infarcation, and wHI Biomarker ("Calibration" infarcation, and softwarentiation, and wHI Biomarker ("CHD in order to 59, 157" calibrate. DMT n = ("Calibration" in order to 59, 157" calibrate. DAta ("Calibration" in order to 59, 157" calibrate. Data ("Calibration" in order to 59, 157" calibrate. Biomarker ("Calibration" in order to 59, 157" calibrate. Calibration" ("Calibration" in order to 59, 157" calibrate. Calibration" ("Calibration" in order to 59, 157" calibrate. Calibration" ("Calibrate" in order to 59, 157" calibrate. Calibration" ("Calibrate" in order to 59, 157" calibrate. Calibrate ("Calibrate" in order to 59, 157" c									increased risk		
Prentice et al., 2011 (15) Two Women's cohort Self- Health Initiative (WHI) cohorts: Dietary Modification trial (DMT) n = 0 26.595 (91%) and WHI 0 Observational Study (WHI-OS) n = 67.492 (88%) And 85 % white All postmenopusal and 50.79 y at baseline Biomarker "Calibrated" Protein intake in g per day sing per day in g per day in d protein in add in the WHI-OS Dust au portein 59,157 (88%) and Staff add and protein in add protein in add protein in add protein in add protein in add protein in add triat postmenopusal in add solve in add solve in add solve in add in the WHI-OS Dust au portein in add in add protein in add in the WHI-OS Dust au portein in add in add protein in add in the WHI-OS Dust au portein in add protein in add in the WHI-OS Dust au portein in add in the Dust									of total UID		
rental. cohort Hwo winen's self- biomarker 122-term Data Calibration B 2011 (15) s (WH1) cohorts: and Protein intake FFQ DMT n = cohort the two included: level only 2011 (15) s Dietary physician ing per day Subgroup n = (88%) and cohorts: included: level only acceptable after 2011 (15) s Modification tria adjucated sp per day Subgroup n = (88%) and cohorts: energy intake level only acceptable after 100 A fiftedin triative, adjucated in order to 59,157 sc fiftedin triative, cohorts: energy intake 100 A fiftedin triative, nad protein fota minarchort, nad protein fota acgeptable after 100 A fiftedin triative, nad protein fota minarchort, sc fiftedin triative, acceptable after 100 A fiftedin triative, nad stroke and stroke fota sc fiftedin triative, acceptable after 100 A fiftedin nd adjucatedin	Describes	T	T	G.16	D'	100 100				Cullin and	D
et al., cohor Heatth initiative ported "Calibrated" PFQ DMI n = combined tor n heregy intake 2011 (15) s (WH) cohorts: and Protein intake 59,157 in g per day Subgroup n = (88%) and in cludoci includoci level oly acceptable after USA (DMT) n = myocardio in g per day Subgroup n = (88%) and wHI-OS cohorts: energy intake acceptable after (DMT) n = myocardio infarction, in g per day Subgroup n = (88%) and wHI-OS calibrated acceptable after intake, includoci acceptable after (DMT) n = myocardio, infarction, infarction, in order to 59,157 calibrated calibrated gene cohorts acceptable after includoci acceptable after Study (WHI-OS) and WHI CHD calibrated gene calibrated acceptable after includoci acceptable after All and stroke and stroke and stroke calibrated poly adia from cardiovase ca	Prentice	1 WO	I wo women s	Self-	Biomarker	122-item			Data	Calibratio	B
2011 (15) s (WH) cohorts: and Protein mtake 59,157 the two included: level only USA USA betary physician ing protein Subgroup n = (S%) and cohorts encluded: level only USA Observational adjucated and protein Subgroup n = (S%) and WHI-OS ecohorts ecoptable after calibration age, accohorts ecoptable after calibration age, orecreational the two intake, calibration ecohorts ecohorts <td>et al.,</td> <td>cohort</td> <td>Health Initiative</td> <td>ported</td> <td>"Calibrated"</td> <td>FFQ</td> <td>DMT n =</td> <td></td> <td>combined for</td> <td>n</td> <td>Energy intake</td>	et al.,	cohort	Health Initiative	ported	"Calibrated"	FFQ	DMT n =		combined for	n	Energy intake
USADetary Modification trial (DMT) n = 026,595 (91%) and WHI Observational And 85% white All postmenopausal and 50-79 y at baselinein g per day study (WHI-OS) and strokeSubgroup n = (S44 urinary in order to calibrate. (Calibrate) (Calibrate)cohortsenergy intaction, in order to postmenopausal and 50-79 y at baselineacceptable after in order to calibration and strokecohortsenergy intact. in order to calibrate. (Calibrate)acceptable after in order to to to 29,157And 85% white AllCHDCHDCalibrate. equations and stroke(88%) calibration and 3,917Calibrate. and 3,917(88%) (0.82 - 0.98), (0.82 - 0.98), (0.81 - 0.88)ecceptable after in order to and 3,917And 85% white All postmenopausal and 50-79 y at baselineesceptable after in order to and in the WH-OS after 3 years followevents and in the WH-OS after 3 years followevents and in the WH-OS after 3 years followevents and in the WH-OS and fact a premature (CHD and on, treated apprint iecceptable after calibration, and ecceptable after in order to to 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,	2011 (15)	S	(WHI) cohorts:	and	Protein intake	a 1	59,157		the two	included:	level only
Modification trial (DMT) n = myocardie 0 26,595 (91%)adjucated myocardie 0 26,595 (91%)and protein infarction, and WHICHD calibrate.WHI-OS 59,157 calibrate.Calibrate. (88%)Calibrate. protein intake ethnicity.Calibrate. recreationalcalibration.Study (WHI-OS) n = 67,492 (88%) And 85 % white All postmenopausal and 50-79 y at baselineand stroke stroke.equations equations80,370 W and 3,917NS for CHD ers: equationsers: ers: measurementmeasurement ethnicity, ethnicity, ethnicity,MUH-OS and 50-79 y at baselineStroke: 0.89 stroke: 0.89intack, ethnicity, ethnicity,calibrate. ethnicity, equationscardiovasc and 3,917Calibrate. (0.82 - 0.98), (0.75 - 0.97)calibrate. ethnicity, ethnicity, ethnicity, ethnicity,calibrate. ethnicity, ethnicity	USA		Dietary	physician	in g per day	Subgroup n =	(88%) and		cohorts	energy	acceptable after
(DMT) n = 0 26,595 (91%) and WHImyocardie infarction, infarctional deaths and strokeE%biomarkers in order to 59,157 Calibrate.n = (88%)Calibrated protein intakeage, protein intakeCalibrated income, income, recreational Study (WHI-OS) and stroke and strokeProtein intake income, and strokeand stroke and strokeOnly recreational and stroken = 67,492 (88%) And 85 % white All postmenopausal and 50-79 y at baselinedeaths and strokestroke: and strokeand stroke and in the WHI-OS and in the which which which will be an interval and in the which which will be an interval and in the and in the and in the and in the and in the and in the <br< td=""><td></td><td></td><td>Modification trial</td><td>adjucated</td><td>and protein</td><td>544 urinary</td><td>WHI-OS</td><td></td><td></td><td>intake,</td><td>calibration.</td></br<>			Modification trial	adjucated	and protein	544 urinary	WHI-OS			intake,	calibration.
0 26,595 (91%) and WHI Observational Betady Study (WHI-OS) And 85 % white All postmenopausal and 50-79 y at baselinein order to calibrate.59,157 (88%) Calibrate.protein intake (88%) Calibrate.ethnicity, recreational physical activity and 3,917 data from cardiovascprotein intake without BMI: (0.82 - 0.98), (0.82 - 0.98), Confoundonly recreational physical activity and measurement method not describedAll postmenopausal and 50-79 y at baselineDMT after follow up after 3 years followular one yearCalibrate diseaseCalibrated protein E% without BMI: CVD, without BMI: CVD, distory of and fatal stroke: 0.89Confound measurement method not describedAll baselineImage: the total in the stroke: 0.99 eventsevents and in the WHI-OS after 3 years followCalibrated stroke: 0.89 (0.81-0.93)events method not describedevents and inter and in the WHI-OS after 3 years followCHD 0.85 after 3 years followfollowImage: transmitted baselineImage: transmitted baselineImage: transmitted baselineimage: transmitted baselineevents after 3 years followImage: transmitted baselineethnicity method not describedImage: transmitted baselineImage:			(DMT) n =	myocardie	E%	biomarkers	n =		Calibrated	age,	
and WHICHDcalibrate.(88%)without BMI:income, stroke: 0.89recreational physical activityObservational Study (WHI-OS) a n= 67,492 (88%)and strokeequations80,370 WStroke: 0.89education, physical activityphysical activity andAnd 85 % white All postmenopausal and 50-79 y at baselineImage: Chi and the stress of the			0 26,595 (91%)	infarction,		in order to	59,157		protein intake	ethnicity,	Only
Observational Study (WH-OS) n = 67,492 (88%)deaths and strokeCalibration equationsTotal =Stroke: 0.89education, (0.82 - 0.98), (0.82 - 0.98), OFIDphysical activity and and method notAnd 85 white All postmenopausal and 50-79 y at baselineImage: Calibration total =and 3,917NS for CHDers: ers: measurement method notMH-OS and 50-79 y at baselineImage: Calibration total =one year one yeardisease follow up and in the WHI-OS after 3 years followImage: Calibration total =calibration (0.75-0.97)distory of history of and fatal premature (0.75-0.97)distory of history of and fatal premature (0.75-0.97)distory of history of and fatal premature (0.75-0.97)distory of history of and fatal premature (0.75-0.97)MH-OS after 3 years followafter 3 years followFollowImage: Calibration after 3 years followImage: Calibration and in the WHI-OS after 3 years followImage: Calibration total =method not calibrationCHD 0.85 (0.75-0.97)Image: Calibration history of and fatal (0.75-0.97)method not 			and WHI	CHD		calibrate.	(88%)		without BMI:	income,	recreational
Study (WHI-OS) n = 67,492 (88%) And 85 % white All postmenopausal and 50-79 y at baselineand strokeequations applied to data from one year follow up and in the WHI-OS after 3 years follow80,370 W and 3,917 duar one year one year disease follow up after 3 years follow(0.82 - 0.98), ers: ers: withouts DMT after without BMI: CVD, tethnicity, on without BMI: CVD, (0.75-0.97) history of history of history of on, tracted cCHD 0.85 (0.75-0.97)and eduction, describedWHI-OS after 3 years followafter 3 years followistant after 3 years followistant after 3 years followafter 3 years followistant and fatal protein EW history of after 3 years followon, treated athetes, in the without BMI: (0.59-0.93)cVD, istory of and fatal smoking, total CVD hypertensi (CHD and stroke).089 (0.81-0.98)cond istory istory of istory of <b< td=""><td></td><td></td><td>Observational</td><td>deaths</td><td></td><td>Calibration</td><td>Total =</td><td></td><td>Stroke: 0.89</td><td>education,</td><td>physical activity</td></b<>			Observational	deaths		Calibration	Total =		Stroke: 0.89	education,	physical activity
n = 67,492 (88%) applied to and 3,917 medsurement And 85 % white All DMT after ular cardiovasc calibrated educint, method not All postmenopausal one year disease follow up events method described and 50-79 y at baseline and in the WHI-OS after 3 years follow follow follow follow follow after 3 years follow follow follow follow after 3 years follow			Study (WHI-OS)	and stroke		equations	80,370 W		(0.82 - 0.98),	Confound	and
And 85 % white All base base base base base calibrated education, described and 50-79 y at baseline and 50-79 y at baseline events and in the events and in the follow up events follow 100, 100, 100, 100, 100, 100, 100, 100			n = 67,492 (88%)			applied to	and 3,917		NS for CHD	ers:	measurement
All postmenopausal DMT after ular calibrated education, described and 50-79 y at baseline cVD, without BMI: CVD, baseline cHI net without BMI: cVD, iscare WHI-OS after 3 years follow after 3 years follow iscare ind fatal premaine CHD 0.85 smoking, rone year follow iscare iscare iscare iscare WHI-OS after 3 years follow iscare iscare iscare iscare iscare Image: CHD 0.85 smoking, rone, iscare iscare iscare iscare Image: CHD 0.85 iscare iscare iscare iscare iscare iscare Image: CHD 0.85 iscare iscare iscare iscare iscare iscare Image: CHD 0.85 iscare iscare iscare iscare iscare iscare Image: CHD 0.85 iscare iscare iscare iscare iscare iscare Image: CHD 0.85 <td></td> <td></td> <td>And 85 % white</td> <td></td> <td></td> <td>data from</td> <td>cardiovasc</td> <td></td> <td></td> <td>ethnicity,</td> <td>method not</td>			And 85 % white			data from	cardiovasc			ethnicity,	method not
postmenopausal and 50-79 y at baselineone year follow up and in the WHI-OS after 3 years followdisease eventsprotein E% without BMI: (CHD 0.85 family (0.75-0.97)history of amily (0.75-0.97)NHI-OS after 3 years followafter 3 years followafter 3 years followCHD 0.85 and fatalpremature (CHD 0.85)CHD: 0.74 (0.59-0.93)without BMI: prematureCVD, (0.59-0.93)without BMI: prematureCHD: 0.74 (0.59-0.93)premature stroke): 0.89cHD 0.85implementer (CHD and stroke): 0.89(CHD and (0.81-0.98)on, treated stroke): 0.89medicatio n (statin aspirin metor			All			DMT after	ular		Calibrated	education,	described
and 50-79 y at baseline			postmenopausal			one year	disease		protein E%	history of	
baseline and in the WHI-OS after 3 years follow follow (0.75-0.97) history of and fatal premature CHD: 0.74 CVD, (0.59-0.93) smoking, Total CVD hypertensi (CHD and on, treated stroke): 0.89 diabetes, (0.81-0.98) medicatio n (statin aspirin micro for the stroke) of the stroke of the			and 50-79 y at			follow up	events		without BMI:	CVD,	
WHI-OS after 3 years follow WHI-OS after 3 years follow WHI-OS after 3 years follow WHI-OS after 3 years follow WHI-OS after 3 years follow WHI-OS after 3 years follow WHI-OS after 3 years follow (0.59-0.93) Smoking, Total CVD Mypertensi (CHD and on, treated stroke): 0.89 diabetes, (0.81-0.98) medicatio n(statin aspirin Spirin			baseline			and in the			CHD 0.85	family	
after 3 years followand fatal CHD: 0.74 (0.59-0.93)premature CVD, (0.59-0.93)Total CVD (CHD and stroke): 0.89hypertensi diabetes, medicatio n(statin aspirin						WHI-OS			(0.75-0.97)	history of	
follow fo						after 3 years			and fatal	premature	
(0.59-0.93) smoking, Total CVD hypertensi (CHD and on, treated stroke): 0.89 diabetes, (0.81-0.98) medicatio n(statin aspirin prior						follow			CHD: 0.74	CVD.	
Total CVD hypertensi (CHD and on, treated stroke): 0.89 diabetes, (0.81-0.98) medicatio n(statin aspirin prior									(0.59-0.93)	smoking,	
(CHD and on, treated stroke): 0.89 diabetes, (0.81-0.98) medicatio n(statin aspirin prior									Total CVD	hypertensi	
stroke): 0.89 diabetes, (0.81-0.98) medicatio n(statin aspirin prior									(CHD and	on, treated	
(0.81-0.98) medicatio n(statin aspirin prior									stroke): 0.89	diabetes.	
n(statin aspirin prior									(0.81 - 0.98)	medicatio	
aspirin									(0.02 0.00)	n(statin	
										aspirin	
										prior	
hormone										hormone)	
recreation										recreation	
al nhyeical										al physical	
										activity	
and RM										and RM	

Table 7. Evidence table, protein intake and stroke

Reference	Study design	Population	Outcome measures	Intervention/ exposure	Dietary assessment method	No of subjects analysed	Intervention	Follow- up period, drop-out rate	Results	Confoun- ders adjusted for	Study quality and relevance, Comments A-C
Iso et al., 2001 (32) USA	Cohort	Nurses' Health Study 98,462 female nurses 34- 59 y	Fatal and non-fatal stroke. Self- reported strokes were confirmed by medical records. Subclassif ied in: intraparen chymal hemorrha ges, subarachn oidal hemorrha ges, ischemic strokes and unclassifi ed strokes	Baseline (1980) dietary intake data Quintiles of energy adjusted total, animal and vegetable protein in g per day	61-item FFQ Evaluation showed correlation 0.47 for protein	85,764 (87%) 64		14 y	No relation between total, animal or vegetable protein and strokes. Intraparenchy mal hemorrhage (n=21). After adjustment for fat and vegetable protein , RR for animal protein was 0.32 (0.10- 1.00), P for trend 0.04	Age, smoking, BMI, alcohol, menopaus e status, postmeno pausal hormone use, physical activity, aspirin, multivita min, Evitamin use, intake of energy, n-3, calcium, history of hypertensi on, diabetes and hyperchol esterolemi a	C No information about total energy intake Animal protein inversely associated with risk of intraparenchym al hemorrhage

Preis et	Cohort	Health	Physician	Quintiles of	131-item	43,960	Q1: 14.2 E%	18 months	For total	Age, BMI,	В
al., 2010		Professionals	verified	E%	FFQ		Q5: 23.2 E%		stroke the	smoking,	No association
(33)		Follow-Up Study	non-fatal	protein	-		-		relative risk	parental	after adjustment
USA		51,529 male	strokes	(total, animal	Internal				for the top	history of	for confounders
		health	and fatal	and	evaluation,				quintile vs	myocardiu	between protein
		professionals 40-	strokes	vegetable),	the Pearson				bottom of	m	and risk of any
		75 v	confirmed	substituted	correlation				energy	infarction	kind of stroke.
		5	by	for an	for protein				percentage	before age	In contrast to
			medical	isocaloric	was 0.44				protein was	65.	Japanese studies
			records	amount of	Implausible				1.14 (0.90:	Energy	1
				carbohydrate	energy				1.43) for	intake,	
				(CH)	intakes (<				total, 1.11	alcohol,	
				× ,	800 kcal and				(0.87;1.41)	multivita	
					> 4200 kcal)				for animal	min,	
					excluded				and	physical	
									0.82(0.60;	activity,	
									1.12) for	glycemic	
									vegetable	index,	
									protein	folate,	
									1	fibre,	
										vitamin	
										B6, B12	
										and C,	
										potassium,	
										magnesiu	
										m, n-3.	
										Baseline	
										hypertensi	
										on,	
										diabetes	
										and	
										hyperchol	
										esterolemi	
										а	

Table 8. Evidence table, protein intake and blood pressure

Referen	ce Study design	Population	Outcome measures	Time between baseline exposure and outcome assessment	Dietary assessment method	No of subjects analysed	Intervention	Follow- up period, drop-out rate	Results	Confoun- ders adjusted for	Study quality and relevance, Comments A-C
Appel e	Rando	The Omniheart	Systolic			164 16% drop	A diet with 15 E% protein vs		Protein diet vs		B Good quality
(34)	cross-	164 adults with	pressure				25 F%		Among		study but B
USA	over	prehypertension	and LDL-			outs	protein and		prehypertensiv		because of the
Con	study	or stage 1	cholestero				the 10 E%		es:		population.
	~~~~	hypertension, 40	1.				protein		Systolic BP:		F - F
		% Caucasians	Secondary				replaced with		-0.9 mm Hg		Both
		Subgroup	outcomes:				carbohydrate.		(p = 0.047)		prehypertensio
		analyses for race	diastolic				About half		Diastolic BP:		n and
		or BP	blood				protein from		-0.9		hypertension
			pressure,				plant sources		(p = 0.01)		stage 1, only
			HDL				Each feeding		LDL:		40 %
			cholestero				period lasted 6		-2.1 mg/dL		Caucasians.
			l and				weeks.		(p = 0.14).		Only 21%
			triglycerid						The second formal		normal
			es				All loods were		hut NS in		weight, but
							provided and		Caucasians		was kopt
							research		Caucasians		constant
							kitchen. Main				Subgroup
							meal was				analyses for
							eaten on-site.				race or BP,
							other meals				but not
							were				combined.
							consumed off-				Primary
						66	site.				interest in
											carbohydrate
											vs protein and

											carbohydrate vs fat, protein vs fat was of secondary interest.
Alonso al., 2006 (35) Spain	t Cohort	SUN cohort, university graduates, n= 6,686 (39% men), at baseline	Self- reported BP and informatio n about hypertensi on (HT)		36-item FFQ, intake during previous year. No information about the referred validation study	5,880 (88%)	E% of total, animal and vegetable protein in quintiles	12 % loss to 2 y follow up (median 28 months)	Highest vs. Lowest quintile of vegetable protein and risk of HT, hazard ration, and 95% CI: 0.5 (0.2-1.0) and p for trend = 0.06	Age, sex, BMI, physical activity, smoking, alcohol, sodium intake, personal history of hypercholes terolamia, intake of fruit, vegetables, fiber, caffeine, magnesium, potassium, low-fat dairy, MUFA and SFA	<b>B</b> No information about the intake level of protein E%
Dong et al., 2011 (38)	Mete- analysi s	25 studies with 27 RCT, 9 in USA, 8 in Europe and 10 in other countries, n= 1608, both normo-and hyperternsive subjects, incl. 11 trials with only normotensives	Systolic blodpress ure (SBP) and diastolic blodpress ure (DBP)	Duration of intervention lasted 4- 52 weeks, median 8 weeks Parallel (n=14) and cross-over design (n=13). Most control		N = 1,608	Soya protein ranged 18-66 g/day with median 30 g/day		Weighed mean difference (WMD) and (95%CI) Overall SBP: -2.21 (- 4.10 to -0.33) DBP: -1.44 (- 2.56 to -0.31) Hypertensives: SBP -8.58 (-		<b>B</b> Differences more pronounced in hypertensive groups, in trials using carbohydrate as control diet vs. casein/milk, in parallel design

				groups received casein/milk or carbohydrate					15.10 to -2.06) and DSP -5.24 (-9.40 to -1.08) and for Normotensives SBP-2.27 (- 3.77 to -0.76) and DBP -1.21 (-2.19 to -0.23)		and with intervention duration of at least 12 weeks
Liu et al., 2002 (37)	Meta- analysi s	11 cross-sectional (US and multi ethnic, 35% Chinese/Japanese ) and two longitudinal studies (US)	Systolic blood pressure (SBP) and diastolic blood pressure (DBP)		Mainly 24-h dietary recall and 24-h urine collection, few FFQ and 3-d records	9 cross- sectional studies Men: n=19,954 for SBP and 19,982 for DBP) women: n=950 for SBP and DBP Both sexes: n=12,716 for SBP and 12,508 for DBP) and 2 longitudin al studies, one with adults and one with children	Energy percentage (E%) or g per day of total , protein intake		Cross-sectional pooled regression coefficients (SE) Men: SBP 0.03 (0.001), p = 0.01 DBP 0.025 (0.01), p = 0.01 Women: SBP 0.014 (0.01), p = 0.022 DBP 0.021 (0.00), p = 0.01. Both sexes: SBP 0.029 (0.01), p = 0.01 DBP 0.016 (0.00), p = 0.01		C Mainly cross sectional studies. No information about level of protein intake Inverse association between dietary protein intake and blood pressure in both men and women. The association was depending on the dietary assessment method. Evidence from the longitudinal studies was limited.
Stamler et	Cohort	Chicago Western	Body		The mean of	Baseline	E% total,	8 y	Inverse relation	Age,	В
al., 2002		Electric Study	weight		two dietary	n=2,107	animal and		of vegetable	education,	No
(36)		Male employees	(BW) and		histories	At follow	vegetable		protein for both	height,	information
USA		40-55 y	blood		(DH) with 1	up	protein		SBP and DBP	smoking,	about salt

	pressure,	year apart at	n=1,714		alcohol,	intake.
	Systolic	baseline,	(81%)		weight	Limited
	(SBP) and	intake during			change	reproducibility
	diastolic	the preceding			-	of the two DH
	(DBP)	28 days.				thus an
		Limited				underestimate
		reproducibilit				strength of
		y				relation to BP.
						Baseline
						protein intake
						15 ±1.9 E%.
						Vegetable
						protein is a
						marker of
						potassium,
						magnesium
						and fibre and
						may not be
						related
						independently
						to BP

Table 9. Evidence table, protein intake and lipoproteins

Reference	Study design	Population	Outcome measures	Intervention/e xposure	Results	Study quality and relevance, Comments
Anderson et al., 2011 (40)	Meta-analysis	43 RCT with 59 treatment arms (20 parallel design and 23 crossover studies), graded for quality, primarily hypercholesterol emic men and women	Netto changes (soy minus control) of lipoproteins (LDL- and HDL- cholesterol, measurements obtained between 4 and 8 weeks of intervention	Soy consumption vs. non-soy control diets, less than 65 g soy protein/day, median 30 g/day	Parallel studies scored higher in study quality than crossover studies. Parallel: LDL-change -0.23 mmol/1 (95% CI -0.28to -0.18) a 5.5% reduction. HDL-change 0.044 (0.014-0.074, a 3.2% reduction Crossover: LDL-change -0.16 mmol/1 (95% CI -0.22 -0.11) a 4.2% reduction. Hypercholesterolemic individuals show greater reductions in LDL-cholesterol values (-8.6% to -20.3%) than normocholesterolemic (+0.8 to -2.1%)	A Results depend on study design. 15-30 g soy protein (1 to 2 servings per day) had a positive impact Studies with highest baseline LDL had greater reductions than studies with the lowest values, thus the effect may be smaller in normocholesterolemic subjects
Harland et al., 2008 (39)	Meta-analysis	30 RCT with 42 treatment arms (n= 2,913, 28% men) and	Se-lipids: total cholesterol, LDL and HDL, and	Daily intake of app. 25 g soya protein (range 15-40 g) from	Decrease in total cholesterol - 0.22 mmol/L (95%CI -0.142 to -0.291), p<0.0001 and in LDL cholesterol -0.23 mmol/L (-	<b>B</b> High quality study but missing information about conflict of interest.

	average intake	trigycerides	isolated soya	0.160 to -0.306), p<0.0001	The reduction in LDL
	of 26.9 g soya	(TG)	protein, soya	HDL non-significantly	corresponds to app. 6%
	protein	Secondary	protein	increased 0.071 (0.002 to	reduction in the general
	Healthy	outcomes:	concentrates or	0.144) p=0.057	population, after inclusion of
	volunteers, or	ApoA-I and	soya foods	TG -0.087 mmol/L (-0.004 to -	app. 25 g soya protein per
	mildly	ApoB		0.158), p = 0.04	day
	hypercholesterol				
	aemic, weight				
	loss < 2kg/d,				
	BMI<				
	30, duration min.				
	4 weeks				

Table 10. Evidence table, protein intake and bone health

Reference	Study design	Population	Outcome measures	Intervention/ exposure	Time between baseline exposure and outcome assessment	Dietary assessment method	No of subjects analysed	Intervention	Follow- up period, drop-out rate	Results	Confoun- ders adjusted for	Study quality and relevance, Comments A-C
Beasley et al., 2010 (41) USA	Cross section al and longitu dinal study. Only longitu dinal results includ ed	631 women, age 14-40 y at baseline.	Annual change in hip, spine, and whole body bone mineral density (BMD)	Baseline protein energy percentage (E%) in tertiles of total, animal and vegetable protein		Semiquantita tive FFQ from Women's Health Initiative. Implausible energy intakes (<500 or >5000 kcal) excluded, n=44	560		2-3 y	No longitudinal relation of total, animal or vegetable protein E% to changes in BMD	Age, BMI, physical activity, smoking recent contracept ive (DMPA) use, intake of energy intake, phosphoro us, and magnesiu m.	C Women only. The study had main focus on contraceptive use (DMPA) and BMD. Relation to protein intake was a secondary analysis. Not sufficient information about recruitment and response rate. Energy intake low. No data to evaluate lower and upper limits of recommended ranges of intake because interquartile range of protein
										intake at baseline was 13.4-17.6 E%.		
------------------------------------------------------	---------------------------	-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------------------------	----------------------------------	-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------		
Dargent- Molina et al., 2008 (45) France	Prospe ctive cohort	The E3N (Etude Epidémiologique de femmes de la Mutuelle Générale de l'Educatoin Nationale [MGEN] prospective cohort. 100,000 women, 40-65 y at baseline. Only postmenopausal women included in this study (n=40,224)	Fracture risk (Variation according to calcium intake in the associatio n between protein intake and overall acid-base equilibriu m (as renal net acid excretion [RNAE] estimate) of diet and fracture risk)	Intake of protein in g/kg BW and energy adjusted (per 1000 kcal ) intake of total, animal and vegetable protein in quartiles combined with calcium intake	Validated FFQ. Two parts: questions on quantity and frequency of food groups, and questions detailing the food groups into 208 food items. Booklet to facilitate portion sizes	36,217 and 2,408 fractures	15 y and 8.37 y in average	No overall association between fracture risk and total protein or RNAE. In the lowest quartile of Calcium (<400 mg/1000 kcal), high total protein intake was associated with increased fracture risk RR 1,51 (95% CI: 1.17-1.94) and also for animal protein RR1.66 (95% CI: 1.29- 2.13), while for vegetable protein the opposite direction was found : RR 0.68 (95% CI: 0.53- 0.87). Expressed by	BMI, physical activity at the dietary data assessmen t (METs) parity, maternal history of hip fracture, postmeno pausal hormonal therapy smoking, alcohol intake , total daily non- alcoholic energy intake	<b>B</b> Women only. Self-reported height, weight and PAL, but high quality study. No information about vitamin D and no control for baseline BMD and weight loss during follow up. Only increased fracture risk in the presence of low calcium intake for energy adjusted total and animal protein and also expressed as g per kg bodyweight The population had a habitual high protein intake.		

							body weight (g/kg) no overall association to fracture risk but increasing fracture risk in the lowest quartile of calcium RR 1.46 (95% CI: 1.03- 2.06)	
Darling et al., 2009 (44)	Syste matic review and meta- analysi s	Healthy human adults. 61 studies: 31 cross-sectional and cohort studies (22 from Western countries), and 19 randomized controlled trials (14 from Western countries) examining BMD ,BMC and bone markers, 11 cohort and case- control studies (9 from Western countries, one from China and one cross- cultural) examining fracture risk	Bone mineral density (BMD), bone mineral content (BMC), bone markers and fracture risk	Total protein intake (g/kg BW or g/day	11 studies used FFQ, 13 studies used dietary records 7 studies used recall or other methods. The 11 studies examining fracture risk used FFQ in 8 studies and national survey data in 3 studies. Overall no detailed information about quality assessment of the dietary methods		15 Cross- sectional surveys found a positive relation between protein intake and BMD while 18 found no significant correlation. The meta- analysis of RC Trials found a positive influence of protein on lumbar spine BMD but not on risk for hip fractures. No significant effect of	<b>B</b> The overall impression is a small benefit of protein on bone health but less clear conclusion on reducing fracture risk

Fenton et al., 2011 (47)	Syste matic review and a meta- analysi s	55 studies: 22 RCT, 2 meta- analysis, 11 cohort studies and 19 in vitro cell studies	Osteoporo sis (BMD, bone resorption markers)	Dietary acid load					protein on fracture risk was found in the cohort studies. The analysis did not find support for the hypothesis that "acid" from the diet causes osteoporosis or that an "alkaline" diet prevents osteoporosis. Higher protein intakes and animal protein were not detrimental to calcium retention. The ideal protein intake for bone health could not be determined	Most cohort studies not adjusted for important risk factors like weight loss during follow up, family history of osteoporos is, baseline BMD and estrogen status	C Focus on acid load (including protein). Fine systematic review but not sufficient information about the dietary intervention/int ake
Harringto n et al., 2004 (48) Ireland	Rando mized cross- over trial	26 postmenopausal women (50-67 y).	Bone and calcium metabolis m: Urinary Na, K, Ca, nitrogen and NTx	High Na-high protein diet vs low Na- usual-protein diet. Protein and sodium provided as protein-Na-	4 d estimated diet record data quantified using average portion sizes and a photographic	24 (2 women excluded)	High Na (180 mmol/d), high protein (90 g/d) intake (i.e., calciuric diet) vs low Na (65 mmol/d), usual protein (70g/d) (basal diet).	Two successive interventio n periods each of 4 weeks No "wash out" period	Calciuric diet: Increase in mean urinary Na, N, K, Ca, and NTx vs basal diet. No differences in serum		<b>B</b> Women only. Both high Na and high protein, thus difficult to separate the effect from protein

			(marker of bone resorption ) Fasting blood samples: PTH, s- 25(OH)D 3,, 1,25 (OH)2D3, osteocalci n, B-Alk. phosfatase	rich bread	album 24h-urine nitrogen collection at baseline and at the last two days of each intervention period		Calcium intake at normal levels in both diets (ca 800 mg/d)	Four weeks in each interventio n	markers of urinary minerals between diets in either VDR genotype groups. Calciuric diet increased urinary NTx in the $f$ + VDR groups (n = 10)	
Hunt et al., 2009 (49) USA	RCT, feedin g study, 2x2 factori al cross- over	34 healthy postmenopausal women (50-69 y)	Calcium retention Blood and urinary biomarker s of calcium and bone metabolis m	Low or high calcium intake combined with low or high protein intake	Controlled experimental diets using foods in a 2- d menu cycle. 48h urine collections at weeks 0,1,2,3,5 and 7. Fasting blood samples at week 1 and 7	27 N=7 dropped out	675 or 1510 mg calcium/d combined with: Low protein 10 E% (0.85 g/kg BW)) or high protein 20E% (1.66 g/kg BW)	2 x 7 weeks with each diet, 3 weeks washout period	High vs low protein intake increased calcium retention from low calcium diet (29.5% absorbed), but not high calcium diet (18% absorbed). For low- calcium diet the increased retention nearly balanced a protein related 0.5 mmol/1 greater urinary calcium excretion.	A Women only. High protein (meat) intake was not detrimental to calcium retention, and resulted in an increase in IGF- 1 which may be beneficial for bone formation

								High protein also increased IGF-1 with 27%		
Sahni et al., 2010 (46) USA	Cohort study	Framingham Offspring Study Baseline 5,124 men and women and 3,724 completed FFQ. Mean age app. 55 y	Self- reported fractures, confirmed by review of medical reports	Intake in tertiles of total, animal and plant protein (g/d) and also as a continuous variable. Then stratified by total calcium intake in low (< 800 mg calcium) and high > 800 mg calcium) intake	126-item semi- quantitative FFQ. Implausible energy intakes (< 600 kcal and > 4000 kcal) excluded. No further information about validation	3656 (53% women) and 44 hip fractures	12 y	No statistically significant associations between protein in tertiles and fracture risk. In the low calcium intake group highest vs. lowest tertile of animal protein had increased risk of fracture: HR 2.84 (95% CI 1.20- 6.74). In the high calcium intake group the highest vs. lowest tertile of animal protein had reduced risk of fracture: HR 0.15 (95% CI 0.02- 0.92).	Sex, height, body weight, energy intake, physical activity, smoking, menopaus e status, intake of total calcium and vitamin D	<b>B</b> Animal protein was related to fracture risk depending on the calcium intake level

Sellmeyer et al., 2001 (42) USA	Prospe ctive cohort	1061 postmenopausal white women. Aged >65 y The Study of Osteoporotic Fractures. Multi- centre	Bone mineral density (BMD), self- reported hip fractures confirmed by radiologis t reports	Energy adjusted protein intake (E%) and the ratio of animal to vegetable protein (A/V ratio) in tertiles	3.6 years later. Hip fractures were assessed every 4 months.	63 item FFQ from the second NHANES study. Food models to estimate portion sizes. No information about validation	1,035 n = 26 had no food data. Hip fractures n=48. Repeat BMD (bone loss) $n =$ 742	Median protein intake 17E%	Mean of 7 y	Baseline BMD not related to A/V ratio, but bone loss positively related to A/V ratio. Risk of hip fracture related to high animal protein intake and high A/V ratio	Age, weight, oestrogen use, tobacco use, exercise, energy intake, total calcium intake, total protein E%	C Women only EI quite low ( $\approx$ 5MJ), indicating under-reporting When adjusted for BMD in the model the relation of A/V ratio to fracture risk was NS (p=0.07)
Tucker et al., 2001 (43) USA	Prospe ctive cohort. The cross- section al analys es at baselin e not includ ed	Men and women 69-97 years at baseline, participants in the Framingham Osteoporosis Study (FOS). N = 855 cohort members. (Originally 5,209 men and women in FOS)	Bone mineral density (BMD) at femoral neck , lumbar spine and radius	E% of total and animal protein and in quartiles	Baseline and 4 y BMD.	Validated 126-item semi- quantitative FFQ at baseline Implausible energy intakes (< 600 kcal and > 4000 kcal) excluded. No sufficient information about validation	615		4 y	Lower E% of total and animal protein was associated with higher BMD loss at femur and spine after 4 years and likewise the lowest quartile of E% from total and animal protein showed the greatest bone loss. The highest quartile of total protein intake (1.2- 2.8 g/kg body	Body weight, weight change, BMI, PA, alcohol use, smoking, oestrogen use by women, dietary intake of Ca, vitamin D, and Ca and/or vit D supplemen ts, total EI intake at baseline, total EI, sex, caffeine,	C No information about the total energy intake, thus the absolute intakes cannot be assessed

					weight) showed the least BMD loss over four		
					years		

Table 11. Evidence table, protein intake and energy intake

Reference	Study design	Population	Outcome measures	Intervention/ exposure	Dietary assessment method	No of subjects analysed	Intervention	Follow- up period, drop-out rate	Results	Confoun- ders adjusted for	Study quality and relevance, Comments A-C
Koppes et al., 2008 (50) The Netherlan ds	Cohort The Amste rdam Growt h and Health Longit udinal Study	698 13 y-old boys and girls followed up at ages 14,15,16,21,32 and 36 y ( some only at the age of 32 and 36)	Energy intake, macronutr ient distributio n, body fatness (skinfolds ) and at age 36 DEXA	E% of total protein intake	Face-to-face dietary history method providing information about the preceding 4 weeks. At age 36 the method was computer- assisted. Inter-period correlations ranged from 0.31 to 0.62	N=350 (50%) 168 men and 182 women			Longitudinal development of the protein E% was inversely related to total energy intake. Men: -0.125 MJ per E%. Women: -0.152 MJ per E%. Protein E% at the ages 32 and 36 y was positively related to total fat mass at the age of 36	Age, education, smoking, physical activity, energy intake	<b>B</b> The paper only reported the total energy at age 36 y Maybe obesity- related underreporting The association between protein and energy intake was about 3 times larger than the association for fat and energy intake.
Rumpler et al., 2006 (51) USA	Contro lled crosso ver study	12 volunteers, men only, 39±9 y, normal weight and weight-stable	Ad libitum intake, body weight and body compositi on (DEXA)	Different macronutrient composition of <i>ad libitum</i> diets. The protein drink provide 50% of RDA	All foods were provided by the research centre. Subjects choose foods from menus.	12 Men	Two of three treatments in two 8 weeks periods: Drinks providing 2.1 MJ included in an <i>ad libitum</i>		During week 1 and 2 the average energy intake was significantly lower for CHO than		<b>B</b> Strictly controlled. Small study and young men only. Only 8 weeks duration of each diet

				(addition of	During week		diet:	FA, but the	
				27 g	days			effect	
				protein/day)	breakfast and		High	disappeared	
					dinner were		carbohydrate	after week 3.	
					eaten at the		(CHO)	No effect on	
					centre while		High fat (FAT)	EI of the	
					lunch and		and high	macronutrient	
					weekend		protein (PRO)	composition	
					foods were			over the	
					packed and			prolonged	
					eaten outside			period of	
					centre. All			time	
					uneaten food				
					was returned,				
					weighed and				
					recorded				
Weigle et	Strictl	19 healthy (3 M	Appetite,	Normal vs.	All meals	19	Weight-	Stable body	В
al., 2005	У	and 16 F)	body	high protein	prepared at	RMR only	maintaining	weight during	Small study but
(52)	control	volunteers, 27-62	weight,	diet with	the research	n=11.	diet: 15 E%	weight	strictly
USA	led	y, weight-stable	energy	constant	centres.	BMI 26.2	protein, 35 E%	maintenance	controlled, only
	study	for $\geq$ 3 month	intake,	carbohydrate	Typical food	$\pm 2.1$	fat, 50 E% CH	and isocaloric	12 weeks of ad
		before enrolment	Plasma	(CH) content	from a mixed		for 2 wk,	diet periods.	libitum)
		and lifetime	insulin,		American				
		maximal weight.	leptin and		diet in 3-d		Isocaloric diet:	During ad	Actually a high
		BMI > 30	ghrelin,.		cycle menus.		30 E% protein,	<i>libitum</i> diet	protein-low fat
		Two research	Resting		2-3 times a		20 E% fat, 50	weight loss	diet and thus
		centres	metabolic		week body		E% CH for 2	4.9±0.5 kg	difficult to
			rate		weight and		wk.	(body fat	separate the
			(RMR)		pick up the			$3.7\pm0.4$ kg),	effect of protein
					prepared		Ad libitum diet:	decreased	per se
					meals for the		30 E% protein,	energy intake	
					next 2 or 3		20 E% fat, 50	and	No information
					days. Daily		E% CH for 12	decreased	about side
					tood log and		wk	appetite	effects (renal
					appetite				function and
					related				calcium
					questions				balance)

Table 12. Evidence table, protein intake and body weight and body composition

Reference	Study design	Population	Outcome measures	Intervention/ exposure	Dietary assessment method	No of subjects analysed	Intervention	Follow- up period, drop-out rate	Results	Confoun- ders adjusted for	Study quality and relevance, Comments A-C
Adams & Rini, 2007 (53) USA	Cohort	116 college students 18-31 y	1-y change in BMI	Protein consumption frequency (per day/per week)	Short FFQ as a part of a health risk questionnaire	116		1 y	NS for protein intake as a predictor for BMI change	Age, months between screening, pain, chronic conditions , medical visits, smoking, body fatness, perceived health	C Not a dietary survey, only one frequency question about protein consumption
Bujnowski et al., 2011 (54) USA	Cohort	The Chicago Western Electric Study 2,107 healthy employed men aged 40-55 y in 1957/58	BMI ≥25 = overweigh t, BM ≥30 = obesity	Quartiles of E% animal and vegetable protein intake	Burkes dietary history method, obtained twice with one year between, the mean of the two examinations	1,730 (82%) 82		7 y	Lowest vs. highest quartile, animal protein: overweight 2.09 (95% CI 1.55-2.81) and obesity 4.62 (2.68- 7.98). vegetables protein obesity 0.58 (0 36-0 95)	Age, energy intake, education, smoking, heavy alcohol, energy percentage of saturated fat and carbohydr ate, history of	C Old data with some missing information. Animal and vegetable protein have different relations to BW

									chronic disease, diabetes	
Ferrara et al., 2006 (59) Italy	Rando mized control led study	15 physically active weight stable male volunteers 18-36 y	Body weight (BW), BMI, body compositi on (impedanc e), Blood pressure, Total cholestero l, HDL and TG	High protein diet (HP): 1.9 g/kg BW (22 E%) vs. Normal diet (NP): < 1.3 g /kg BW (15 E%)	7-day food record	7 on HP 8 on NP	6 months	During intervention HP group had a decrease in BW of 2 kg (3.5% of baseline BW) vs NP group of 0.7 kg (1% of baseline BW). No change in FFM and BMI		C Small study. Main focus and power calculation on vascular reactivity. The dietary intervention method not well described. Probably underreporting. (reported EI around 10 MJ for physically active young men) Prestudy diet was high in protein (21 E%)
Halkjær et al., 2006 (55) Denmark	Cohort	Danish Diet, Cancer and Health Study 57,053 (35%) men and women 50-64 y. 44,897 (83% of eligible) in the follow study	5-y change in waist circumfer ence (WC)	E% of total, animal and vegetable protein	192-item FFQ designed for the study. Validated against two 7-d weighed diet records. No further information about the validation	42,969 (47% men)	5 y	Men and women combined, total and animal protein were inversely associated with change in WC: RR (95% CI) : 0.26 (-0.49:-	Age, physical activity, smoking Baseline WC, BMI, alcohol	<b>B</b> Low response rate.

								0.04 and - 0.28 (-0.51;- 0.05) respectively		
Halkjær et al., 2011 (56) Europe	Cohort	EPIC Six cohorts from 5 countries and also participating in the Diogenes project 146,543 M & W	Change in body weight in g per year and waist circumfer ence (WC) in cm per year	Total, animal and vegetable protein in kcal per day and per 150kcal per day increments (equalling 37.5 g protein)	Country specific FFQ from the past year Evaluated against a 24- h recall in a subpopulatio n: Correlations ranged from 0.24 (animal protein) to 0.40 (plant protein)	89,432 (58% women)	6.5 y	Total and animal protein associated with weight gain: 52.9 g per year (95% CI: 25.9-79.9) and 56.2 g per year, respectively, especially in women and mainly form red and processed meat and poultry rather than form fish and dairy products. NS association to WC	Baseline weight, height and WC, age, follow-up time, smoking, physical activity, education, menopaus al status and hormone use	В
Iqbal et al., 2006 (57) Denmark	Cohort	Glostrup Population Studies and MONICA1 2025 M &W at base ages 30, 40,50 and 60	Change in BW Baseline BMI and follow up BW	Protein E%	Weighed 7- day food record. No information about validation	1,762 (51% W)	5 y	NS association between protein and change in BW	Baseline BMI, age, physical activity, smoking, education, cohort, volume and energy intake	В

Koppes et al., 2008 (50) The Netherlan ds	Cohort	The Amsterdam Growth and Health Longitudinal study 698 13 y-old boys and girls followed up at ages 14,15,16,21,32 and 36 y ( some only at the age of 32 and 36)	Energy intake, Macronutr ient distributio n, body fatness (skinfolds ) and at age 36 DEXA	E% of total protein intake	Face-to-face dietary history method providing information about the preceding 4 weeks. At age 36 the method was computer- assisted	N=350 (50%) 168 men and 182 women			Longitudinal development of the protein E% was inversely related to total energy intake. Men: -0.125 MJ per E%. Women: -0.152 MJ per E%. Protein E% at the ages 32 and 36 y was positively related to total fat mass at the age of 36	Age, education, smoking, physical activity, energy intake	<b>B</b> Total energy intake only reported at age 36. Maybe obesity- related underreporting
Sammel et al., 2003 (58) USA	Cohort	The Penne Study of Ovarian Aging.Prospectiv e Cohort study 1420 W, 75% of eligible, n= 436 Age at baseline 41 y	Body weight gain of $\geq$ 10 lb, yes or no	Protein intake in servings per day	FFQ with foods and transformed to food categories, e.g. "protein"	336 women, 51% Caucasian		4 y	NS association between weight gain and protein servings per day: 1.1 ±0.7 versus 1.7 ±2.6 and p= 0.086	BMI	C Only a very rough FFQ table used and protein only as "servings per day"
Weigle et al., 2005 (52) USA	Strictl y control led study	19 healthy (3 M and 16 F) volunteers, 27-62 y, weight-stable for $\geq$ 3 month before enrolment and lifetime maximal weight. BMI > 30	Appetite, body weight, energy intake, Plasma insulin, leptin and ghrelin,	Normal vs. high protein diet with constant carbohydrate (CH) content	All meals prepared at the research centres. Typical food from a mixed American diet in 3-d cycle menus.	19 RMR only n=11. BMI 26.2 ± 2.1	Weight- maintaining diet: 15 E% protein, 35 E% fat, 50 E% CH for 2 wk, Isocaloric diet: 30 E% protein,		Stable body weight during weight maintenance and isocaloric diet periods. During <i>ad</i> <i>libitum</i> diet		<b>B</b> Small study but strictly controlled, only 12 weeks of <i>ad</i> <i>libitum</i> No information about side

Two research	Resting	2-3 times a	20 E% fat, 50	weight loss	effects (renal
centres	metabolic	week body	E% CH for 2	4.9±0.5 kg	function and
	rate	weight and	wk.	(body fat	calcium
	(RMR)	pick up the		3.7±0.4 kg),	balance)
		prepared	Ad libitum diet:	decreased	
		meals for the	30 E% protein,	energy intake	
		next 2 or 3	20 E% fat, 50	and	
		days. Daily	E% CH for 12	decreased	
		food log and	wk.	appetite	
		appetite			
		related			
		questions			

Table 13. Evidence table, protein intake and renal function

Reference	Study design	Population	Outcome measures	Intervention/ exposure	Time between baseline exposure and outcome assessment	Dietary assessment method	No of subjects analysed	Intervention	Follow- up period, drop-out rate	Results	Confoun- ders adjusted for	Study quality and relevance, Comments A-C
Frank et all., 2009 (61) Germany	RC Cross- over study.	24 healthy young men. Incl.: No clinical or laboratory evidence of kidney, heart, liver or endocrine disease. Excl.: hypertension, body mass ≥25, microalbuminuria , antihypertensive treatment, regular alcohol consumption, smoking.	GFR (glomerul ar filtration rate; sinistrin ≈ inulin) FR( Filtration fraction) RPF (renal plasma flow; PAH) RVR (renal vascular resistance ) urinary albumin excretion. Blood pressure BP), renin, angiotensi n,	7 days dietary intervention by dieticians instruction, subjects living at home NP (Normal Protein) 1.2 g/kg per d. HP (High Protein) 2.4 g/kg per d. Mainly animal incl. dairy	7 days	Food records at home with assistance of dieticians. 24 h urinary N on day of examination. No correction for possible loss of urine (PABA). 87	24	Dose interval: 1.2 g/kg per d. Duration: 7 d. Compliance: Based on difference between measured 24 h urinary N excretions (increase from 9.1 g/d to 13.9 g/d) it can be calculated that the increase in intake was about 0.4 g protein/kg per d. This is much less than the planned increase of 1.2 g/kg per d.	No drop- outs	HP considerably increased GFR (124 $\rightarrow$ 141 ml/min), FR (25 $\rightarrow$ 28 %), and urinary albumin (9 $\rightarrow$ 18 mg/24 h). No changes in RPF, RVR, BP or RAA.	None (cross- over design)	B

			aldosteron e (RAA)									
Halbesma et al., 2009 (11) The Netherlan ds	cohort	All inhabitants of a city in the Netherlands invited. 48% responded. From these a random sample of 7768 with 24 h urinary albumin ≥10 mg/L (6000 participated) and another sample of 3394 with 24 h urinary albumin < 10 mg/L (2592 participated). Total in the two samples: 8592. Gender distribution not given. Avg. Base-line age: 49-50 yrs. Exclusion criteria: Type 1 diabetes, pregnancy, known kidney disease	Cardiovas cular morbidity and mortality. Non- cardiovas cular mortality. Renal outcome = slope of decline in estimated glomerula r filtration rate eGFR (from gender, age, race and serum creatinine ).	Quintiles of estimated baseline protein intake	7.0 y and 7.2 y for different outcomes.	Protein intake estimated from 24 urinary N. No correction for possible loss of urine (PABA).	5778 of 8592 (373 deaths), i.e. 70% of survivors	None	7.0 y and 7.2 y for different outcomes. Follow-up: 70% of survivors.	Mean protein intake = 1.20 g/d. No association with eGFR Event rates: significant trend for high cardiovascula r and non- cardiovascula r mortality with low intake (univariate analysis). Apparently a U shaped association. Similar results in Cox regression analyses adjusted for age, gender and cardiovascula r risk factors. No association between protein intake and rate of decline in eGFR. At base-line ( $\approx$ cross- sectional), a	Age, gender cardiovasc ualor risk factors incl. sodium intake.	С

										positive relationship between protein intake and 24 h urinary albumin excretion.		
Jakobsen et al., 2011 (63) Denmark	RCT	Inclusion: Healthy males, aged 20-40 yrs. Exclusion: smoking, BMI $\geq$ 25, use of any medication, strenuous physical activity > 4 h/week, chronic disease, impairment of shoulder, arm and/or hand. Setting: free living with daily visits to the laboratory 24 participants at base-line. All male. Mean age ± SD: 24 ± 4 yrs. Anthropometry: Mean BMI ± SD: 22 ± 1	N- balance, muscle function, cognitive function, creatinine clearance, urinary albumin excretion	Randimized to continuation of usual protein intake (UP: 1.5 g/kg per d) or a high protein diet (HP: 3.0 g/kg per d), mainly by increasing animal protein Isoenergetic diets by reduction of carbohydrate in high protein group	3 weeks	All food was prepared by the metabolic kitchen of the department. Lunch was eaten in the department on week- days and other meals for the day were provided as a package. For the week-ends, a package for all meals were provided. Leftovers were brought back for weighing. Energy provision was adjusted in increments of 0.5 to 1.0 MJ/d to keep body weight	23	After the 3 weeks' intervention period, the measured urinary N loss in the usual protein group corresponded to a protein intake = $1.3 \pm 0.2$ g/kg per d (mean $\pm$ SD) and in the high protein group= $2.6 \pm 0.2$ g/kg per d	One of 12 participants in the high protein group dropped out due to flu	No effect on renal function (creatinine clearance or albumin excretion). No effect on muscle function. A slight improvement in cognitive function (P = 0.015)	None. Baseline characteris tics quite similar in the two groups	Α

						stable. Protein intake was validated by collection of 24 h urinary N. Urine collection was validated by PABA tablets						
Knight et al., 2003 (60) USA	Cohort	A selected group from the 121.700 participants in the Nurses' Health study. The present 1624 women constitute a random sample among those who gave blood samples in 1989 and 2000 and who had no history of of analgesic abuse. Exclusion criteria: cancer, cardiovascular disease, pre- existing high plasma creatinine (estimated GFR <55 ml/min) or a history of abnormal kidney function. questionnaires and collection of	Questionn aires and collection s of blood samples eGFR estimated from plasma creatinine	Total protein intake, also of type of protein (vegetable, animal non- diary, diary) at baseline and at 4 y interim follow-up, analysed as a continuous variable and in quintiles	11 y	FFQ during previous year. Pearson r by correlation of FFQs with 4 y interval: 0.5. No further information about validation	1624 (selected because of complianc e)	No independent control of actual food intake	11 y follow-up, only of those with end of study blood sample	No association between protein intake, or type of protein intake, and rate of decline in estimated GFR among women with normal kidney function at baseline. Among women with mild kidney insufficiency at baseline, the decline in GFR was related to protein intake,	Age, weight, animal fat intake, phosphoru s intake, alcohol intake, hyperchol esterolemi a, diabetes, hypertensi on, smoking	C No information about the energy intake

		blood samples. Average age: 56 y Anthropometry: Average body weight: 70 kg								significant also for non- dairy protein intake		
Walrand et al., 2008 (9) USA	RCT in cross- over design.	Inclusion 10 young and 10 elderly participants. Healthy as judged from history, physical examination and laboratory tests. Exclusion: BMI $\geq$ 32, smoking, pregnancy, excercise > 30 min x 2/week, medications affecting metabolism . Setting: All food prepared by the metabolic kitchen of the department. Participants living at home (probably) but admitted to research unit for measurements. 10 young and 10 elderly. 5 women in each group. Age: y young: 24 $\pm$ 1 (mean $\pm$ SE),	N balance, insulin sensitivity glomerula r filtration rate, by iothalamat e meglumin e (GFR); protein metabolis m measured by stable isotopes. A number of other metabolic variables	Random allocation to Usual Protein intake (UP: 1 g/kg per d) or High Protein intake (HP: 2 g/kg per d), but adjusted for the differences in FFM. Followed by cross-over to opposite diet with 2-8 weeks' wash- out period. Isoenergetic diets by reduction of fat in high protein group	10 days	Food was provided to the participants from the metabolic kitchen and participants were weighed daily. Compliance was checked by (one?) 24 h urinary excretion at the end of each dietary period. No independent control of urine collection. Compliance was also evaluated from measured leucine oxidation, recalculated to total protein oxidation	19. One elderly participant dropped out for unknown reasons	24 h urinary N excretion data are not given. HP did increase calculated total protein oxidation, but the increase is only about 40% of reported increased intake (young) and 20% (elderly). A calculation of N balance is provided, but it is unclear whether this is calculated from N data or from stable isotope data. The N balance improved almost twice as much as the increase in protein intake and the absolute values are approximately twice as high as the reported	1 drop-out of 10 participants	GFR increased significantly in young participants and decreased (insignificantl y) in elderly. Insulin sensitivity was unaffected by HP. Other metabolic results are not considered relevant for the present review	None. Not necessary in this cross-over design.	В

elderly: $70 \pm 2$ y.	intakes.	
Anthropometry,	In summary it	
BMI: young: $23 \pm$	is difficult to	
1 (mean $\pm$ SE),	evaluate the	
elderly: $27 \pm 2$ ;	adherence to	
Fat free mass	dietary targets,	
(FFM), kg:	but the data do	
young: 49 ± 4	suggest an	
(mean $\pm$ SE),	increase in	
elderly: $46 \pm 4$ ;	protein intake	

Table 14. Evidence table, protein intake and kidney stones

Reference	Study design	Population	Outcome measures	Intervention/ exposure	Dietary assessment method	No of subjects analysed	Intervention	Follow- up period, drop-out rate	Results	Confoun- ders adjusted for	Study quality and relevance, Comments A-C
Curhan et al., 2004 (64) USA	cohort	A selected group from the 116.671 participants in the Nurses' Health Study II. The present 96.245 were those who had completed at least 1 FFQ. Exclusion criteria: date for stone formation not available, stone formation before first FFQ. Setting: Baseline and 4 y FFQ Missing FFQ .and biennial self- reporting of kidney stones. Age: 27-44 y, avg.: 36 y. Anthropometry: Average BMI: 25	Self- reported kidney stone formation	Spontaneous food intake with analyses of intakes of nutrients judged to be relevant for kidney stone formation, including energy adjusted g/day of protein and type of protein (animal) at baseline, analyzed in quintiles.sepa rately for the 0-4 y and the 4-8 y periods	FFQ. Validity referred to in references, but no data given in this paper. Knight et al 2003 (Fel! Bokmärket är inte definierat.): Pearson r by correlation of FFQs with 4 yrs interval= 0.5	96,245	No independent control of actual food intake	8 y. Drop- out not specified	No association between animal protein intake and risk of kidney stone formation	Age, BMI, family history of kidney stone formation, dietary calcium, calcium supplemen ts, potassium, sodium, sucrose, phytate, fluid intake	C
Taylor et al., 2004 (65)	Cohort	45.619 male participants in the Health	Biennal Self- reported	Spontaneous food intake with analyses	FFQ. Validity referred to in	<b>¥9</b> .619	No independent control of actual food	Avg 10 y. Only complete	Overall, no association between	BMI, alcohol, diuretics.	В

USA	Professionals	kidney	of intakes of	references,	intake	FFQs	animal	calcium	
	Follow Up Study	stone	nutrients	but no data		included	protein intake	supplemen	
	who provided full	formation	judged to be	given in this			and risk of	ts, intakes	
	information on	accompan	relevant for	paper			kidney stone	of fluid,	
	their diet. About	ied by	kidney stone				formation.	potassium,	
	2000 of original	pain or	formation,				Among those	calcium in	
	eligible sample	hematuria	including				with a BMI	food,	
	did not provide		animal				<25, a	sodium,	
	full information.		protein at 4				significantly	magnesiu	
	Exclusion:		yrs intervals.				higher RR for	m, vitamin	
	history of kidney		Corrected for				developing a	C	
	stone.		total Energy				kidney stone.		
	Avg age not		intake.				Not clear		
	given, range of		Analyzed in				whether this		
	age groups: 40-		quintiles				is only the		
	≥70.						age-adjusted		
	Anthropometry:						analysis or		
	Avg or range of						the		
	BMI not given						multivariate		
							analysis		

Table 15. Evidence table, protein intake and diabetes

Reference	Study design	Population	Outcome measures	Intervention/ exposure	Time between baseline exposure and outcome assessment	Dietary assessment method	No of subjects analysed	Intervention	Follow- up period, drop-out rate	Results	Confoun- ders adjusted for	Study quality and relevance, Comments A-C
Bowden et al., 2007 (70) USA	RCT	108 healthy, free- living, sedentary university students. No at baseline: 108. Of 94 who completed: 66% women, 34% men. Mean age $\approx$ 20 y (SD $\approx$ 1.5) Ethnicity not provided	Fasting blood glucose. Anthropo metry: BMI or similar not given. Initial body fat estimated by DEXA	Participants were stratified for initial % body fat < or $\geq$ 30% and then randomized into 2 groups. One group followed the AHA (American Heart Association) recommendat ions: 15 E% protein, 30 E% fat, 55 E% carbohydrate and the other group had more protein (25 E% protein, 30 E% fat and 45 E% carbohydrate)	12 weeks	Instruction and supervision in university department. Participants used software to record dietary intake 3 days/week (2 weekdays and 1 week- end day in consecutive order). Participants kept logs of their physical activity. For validation , participants met a counsellor every 2 95 weeks. The counsellor	94 out of 108 completed the trial	Participant groups who aimed at keeping their body weight stable, did keep their body weight and those meant to reduce body weight had a non-significant weight loss of 1 kg. Apart from this, no data on compliance	94 out of 108 completed the 12 weeks' trial (13% drop out). However, the four study groups ended with a large variation in number of participants with completed trials: from 7 to 34	Participants with body fat <30% and a high protein E% had a significant 6% decrease in 12 hours' fasting blood glucose, as compared to baseline (N = 15). Participants with body fat $\ge 30\%$ and a high protein E% had a similar decrease in blood glucose, but not significant due to small number of participants who completed	None	C Small numbers, especially in group 4. Low and not commented energy intakes. No information about body weight

				Those with %		checked the						
				hody fat <		completeness						
				30% were		of recordings						
				asked to		of food						
				maintain their		intake and						
				usual total		exercise logs						
				energy intake		Participants						
				and those		were						
				with % body		removed						
				fat $> 30\%$		from the						
				were asked to		study if logs						
				reduce their		were not						
				usual total		completed or						
				energy intake		if they did						
				by 500		not adhere to						
				kcal/d		the dietary						
				All		and exercise						
				participants		protocols.						
				were		protocols						
				instructed to		No						
				follow		biomarker						
				exercise		validation						
				recommendat		was applied						
				ions: 30		(e.g. 24 h						
				min/day and		urine						
				4-6		collection)						
				times/week								
				of aerobc								
				exercise								
				which								
				stimulated								
				heart rate to								
				60% - 85% of								
				of maximum								
				heart rate.								
				Duration of								
				intervention								
				was 12 weeks								
de Koning	cohort	Health	Biennal	Spontaneous	Follow-up	131-item	40,475	No independent	Max	Highest	Age,	В
et al.,		Professionals	Self-	food intake	time: max	FFQ.	and 2,689	control of	follow-up	versus lowest	smoking,	Average or
2011 (66)		Follow Up Study	reported	with analyses	20 yrs.	Validity	cases	actual food	time: 20 yr	quintile of the	physical	range of BMI

USA		51.529 M (40-75	health	of intakes of		examined in		intake		low	activity.	not given
		v)	status	macronutrient		a small			40.475 of	carbohvdrate/	coffee.	
		Exclusion:	incl. new	s.		subsample by			51.529 in	high total	alcohol.	
		history of T2D.	type 2	Data		comparison			the original	protein and	family	
		CVD, or cancer at	diabetes	rearranged in		to two 7			cohort were	fat score was	history of	
		baseline	(T2D)	'Carbohydrat		days' food			included in	associated	T2D, total	
				e scores':		recordings.			the analysis	with higher	energy	
				max score =		Pearson			5	frequencies	intake and	
				30 = 10 west		correlations				of T2D (P for	BMI	
				intake of		varied from				linear trend <		
				carbohydrate		0.4 (protein)				0.01 in a		
				and highest		to 0.7 (CH)				multivariate		
				intake of						analysis).		
				protein and		Those with				Same results		
				fat		implausible				for animal		
				based on E%		energy intake				based scores,		
				and also		(<800 kcal or				but not for		
				based on		> 4200 kcal)				vegetable		
				animal or		excluded				based scores.		
				vegetable						Within		
				sources of fat						animal		
				and protein.						protein, the		
				Data						association		
				analysed in						was mainly		
				quintiles of						with red and		
				scores						processed		
										meat		
Halton et	cohort	A selected group	Report of	Spontaneous	20 y follow-	FFQ.	85,059	Spontaneous	20 y	With 'low	Age,	В
al., 2008		from the 121,700	new	food intake	up, but each	Validity	and 4,670	food intake.	follow-up,	carbohydrate	smoking,	Energy intake
(67)		participants in the	incidence	with analyses	2 years'	stated as	cases	No independent	but each 2	intake + high	hormone	app. 6 MJ and
USA		Nurses' Health	of type 2	of intakes of	incidence of	'reported		control of	y incidence	protein and	use,	thus indication
		study aged 30-55	diabetes	macronutrient	T2D related	elsewhere		actual food	of T2D	fat intake'	physical	of some
		у.	in 2 y	s.	to previous	(ref to a		intake	related to	(high	activity,	underreporting
		The present	follow up	Data	4 years'	book)'.			previous 4	carbohydrate	alcohol,	
		sample of 85,059	questionn	rearranged in	SFFQ	Those with			y SFQQ.	score), a	family	
		women were	aires,	'Carbohydrat		implausibly				higher risk	history of	
		selected by	extended	e scores':		high (< 3500			Follow-up	for T2D.	T2D, BMI	
		exclusion of those	with a	max score =		kcal) or low			of 85,059	This		
		with: $\geq 10$ items	more	30 = 10 west		(<500 kcal)			out of	association		
		blank in the semi-	detailed	intake of		energy			original	disappeared		
		quantitative food-	questionn	carbohydrate		intakes			121,700	when BMI		

1								_
frequency	aire to	and highest	excluded		participants	was included		
questionnaire	confirrn	intake of			Unknown	in		
(SFFQ),	diagnosis.	protein and			how many	multivariate		
implausibly	Type 1	fat .			dropped out	analysis and		
energy intakes,	diabetes	Data			versus were	also when		
history of	and	analysed in			excluded	data were		
diabetes, cancer	gestationa	deciles of			by other	analyzed		
or cardiovascular	1 diabetes	scores			exclusion	separately in		
disease at	excluded				criteria	strata of		
baseline,						obese and		
Setting: FFQs						nonobese		
every 4 years and						women.		
questionnaire on						The higher		
disease status						risk for T2D		
every 2 years for						was related to		
a 20 yrs period.						'low		
						carbohvdrate		
Anthropometry:						intake + high		
Average BMI at						animal		
baseline: $\approx 24$						protein and		
						animal fat		
						intake'		
						(disappeared		
						with BMI).		
						However.		
						with 'low		
						carbohvdrate		
						intake + high		
						vegetable		
						protein and		
						vegetable fat		
						intake', there		
						was a lower		
						risk for T2D		
						(persisted		
						with BMI)		
						RR 0.82		
						(95% CI:		
						0.71-0.94)		
						For		
						individual		

										macronutrient s, multivariate analysis did not show any relation to protein intake, neither animal nor vegetable		
Schulze et al., 2008 (68) Germany	Cohort	Part of EPIC study (Potsdam, Germany). 10,904 M (40-65 y) and 16,644 W (35-65 y) Exclusion: DM at baseline, missing follow-up, missing baseline info on diet or confounders, Baseline values: BMI $\approx$ 27, Waist circumference $\approx$ 95 cm (M), 80 cm (F)	New type 2 diabetes (T2D) reported in questionn aires every 2-3 years and confirmed by diagnosin g physician	Intakes of macronutrient s in g/day and E%. Protein E% intake, substituted isoenergetical ly by 5 E% higher carbohydrate intake	9 y	148-item FFQ during 12 months before examination, calibrated according to earlier correlation analysis of FFQ versus 24 h recalls of food intake. Results presented in quintiles of protein intake. Those with implausible low or high energy intake excluded	9,702 M and 15,365 W and 844 cases	No independent control of actual food intake	9 y 10% drop out	Lower protein intake, substituted by higher carbohydrate intake, associated with decreased diabetes risk For each 5 energy% substitution of protein with carbohydrate: RR: 0.77 (95% CI: 0.64-0.91)	Age, sex, BMI, waist circumfere nce, education, activity, smoking, total energy intake, fibre intake, magnesiu m intake	В
Sluijs et al., 2010 (69) The Netherlan	Cohort	Part of EPIC study (NL), merged by two cohorts:	New type 2 diabetes (T2D) reported in	Protein intake per 10 g of intake and Quartiles of protein E%	10 y	79-item FFQ Earlier study showed a correlation between	38,094. Missing follow-up: 931 (2.5%)	No independent control of actual food intake.	10 y drop-out 2.5%	Higher protein intake associated with higher risk of T2D.	Sex, age, , energy- adjusted intake of saturated	В
ds		Prospect-EPIC:	questionn	intake		protein	and 918			Univariate	fat,	

17,357 W (40-79	aires	substituted	intake by	cases		analysis:	monounsa	
y)	every 3-5	isoenergetical	FFQ and by			Highest	turated fat,	
	y and	ly by 5 E%	24 h recall (r			quartile of	polyunsat	
MORGEN-EPIC:	confirmed	lower	= 0.69).			protein intake	urated fat,	
22,654 M & W	by	carbohydrate				vs. lowest:	cholestero	
(21-64 y)	diagnosin	intake	Those with			HR: 2.15	l, vitamin	
Total $N = 38,094$	g		implausibly			(95%CI:	Е,	
26% M.	physician.		high (< 5000			1.77-2.60).	magnesiu	
			kcal) or low			Intake per 10	m, fiber,	
Exclusion: DM at	Same as		(<6000 kcal)			g increased	glycemic	
baseline, missing	in Schulze		energy			protein intake	load,	
follow-up,	et al 2008		intakes			increased risk	diabetes	
Baseline values:	(68) but		excluded			HR: 1.16	risk	
BMI $\approx$ 25, Waist	more					(95% CI:	factors (	
circumference $\approx$	details on					1.06-1.26)	alcohol,	
55 cm (M & F)	animal					and also in	physical	
	versus					animal based	activity,	
	vegetable					protein HR	blood	
	protein					1.13 (95%	pressure,	
	-					CI: 1.04-	education,	
						1.22)	parental	
						Higher	history of	
						protein	DM),	
						intake,	BMI,	
						substituted by	waist	
						lower	circumfere	
						carbohydrate	nce	
						intake,		
						associated		
						with higher		
						diabetes risk		
						For each 5		
						energy%		
						substitution		
						of		
						carbohydrate		
						with protein:		
						RR: 1.28		
						(95% CI:		
						1.01-1.61)		
						Association		

					 attenuated	
					with	
					inclusion of	
					adiposity in	
					multivariate	
					analysis	
					(BML & woist	
					circumforono	
					C).	
					In stratified	
					analysis	
					association	
					only present	
					in lean	
					individuals.	
					Risk	
					approximatel	
					y the same	
					with total	
					protein and	
					animal	
					protein but	
					absent with	
					vegetable	
					protein.	
					·	
					Comment:	
					Range of	
					vegetable	
					protein intake	
					in quartiles:	
					22-33 σ	
					varsus range	
					of animal	
					or annual protoin intoko	
					in quartilage	
					in quartiles:	
	1	1	1		33-62 g	

Table 16. Evidence table, protein intake and exercise

Reference	Study design	Population, subject characteristics,	Outcome measures	Intervention/ exposure	Time between baseline exposure and	Dietary assessment method	No of subjects analysed	Intervention	Follow- up period, drop-out rate	Results	Confoun- ders adjusted for	Study quality and relevance, Comments A-C
Gaine et al., 2005 (71) USA	Clinic al trial	Untrained men (n=3) and women (n=4), 18–25 y	Whole body protein turnover. Substrate oxidation, DEXA, N- balance, fitness	Diet and exercise intervention (6 weeks) Protein 0.8 g/kg BW per day or 10 E%	assessment 4 weeks (pre- and post- training)	Diet records, length not indicated. During the study period, all meals were provided and assistants present	Seven (men and women grouped)	2 week dietary adjustment period followed by 4 week progressive aerobic exercise training program. Weight maintaining diet with 0.88 g protein/kg BW per day or 11E%	6 weeks	Post-training: Resting protein oxidation reduced, N- retention improved. Correlation between fitness and N- balance (more positive, when more fit) No changes in body composition, increased REE The observed energy intake was 9,688 kJ and the estimated PAL $\approx$ 1.4	None	C Small study. Some mentioning about power calculations in discussion in relation to the finding of no statistical significance in change of rate of appearance of leucine (estimate of protein breakdown) and non-oxidative leucine disposal. No non-exercise control group. Maybe some underreporting. No check of completeness of urine collections

Hartman et al., 2005 (72) Canada	Clinic al trial	Healthy, young untrained men	Nitrogen flux, protein synthesis (PS), protein breakdow n (PB), and net protein balance (NB = PS- PB), muscle strength and body compositi on	Whole body split resistance training, 12 weeks, 5 d/wk. Diet 15 E% protein. Periods of 5 days with strictly controlled diets (1.2 g/kg BW per day)	12 weeks. Measuremen ts pre-and post	3-day diet records at 6 and 11 wks	Eight	12 weeks whole body resistance training and diet with 1.2 g protein/kg BW	Muscle strength and LBM increased. N- flux, PS and PB decreased, but net protein balance increased. Increase in N-balance. 7% increase in energy intake	None	B Periods with strictly controlled diet. N-balance only assessed with urine
Thalacker- Mercer et al., 2009 (73) UK	Clinic al trial	Healthy untrained men and women; 20-35 y, and 60- 75 y	Change in m. vastus lateralis myofiber cross- sectional area (CSA) from before- after resistance training (RT). Protein intake in various groups of RT	Self-selected dietary intake and 16 wk Resistance training		4-day diet records	60 (32M, 28F; Non responder s, n=16; Moderate resp, n=29; and extreme resp, n=15)	16 wk, 3-d/wk Resistance training. Three lower body exercises. Habitual protein intake in three clusters: medium and extreme responders, and non-responders	60% myofiber hypertrophy in extreme responders. No effect of RT in non- resp. Mean daily intake of total, animal and, vegetable protein, essential amino acids, BCAA, or leucine NS between groups	Age, sex	B Probably substantial underreporting in all 3 clusters: BW of 71-81 kg and reported energy intake of 7.4-8.2 MJ

	responder			Mean total	
	S			protein intake	
				$\approx 1 \text{ g/kg BW}$	