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Abstract

Background: Inflammatory bowel diseases (IBDs) are generally characterized by persistent abdominal pain 
and diarrhea caused by chronic inflammation in the intestine. Cathelicidins are antimicrobial peptides with 
pleiotropic roles in anti-infection, wound healing, and immune modulation. However, the sensitivity to the 
acidic environment and short half-life of cathelicidins limit their application in IBD treatment. Recombinant 
cathelicidin-related antimicrobial peptide (CRAMP)-producing Lactococcus lactis may represent a potential 
approach for IBD therapy.
Objective: The aim of this study was to develop recombinant CRAMP-producing L. lactis NZ9000 and 
explore the role and mechanism of recombinant L. lactis NZ9000 expressing CRAMP in colitis.
Design: We constructed two strains of CRAMP-producing L. lactis NZ9000 with different plasmids pMG36e 
(L.L-pMU45CR) or pNZ8148 (L.L-pNU45CR), which use a Usp45 secretion signal to drive the secretion 
of CRAMP. Bacterial suspensions were orally supplemented to mice with a syringe for 4 days after dextran 
sodium sulfate (DSS) treatment. Body weight change, disease active score, colon length, and colonic histology 
were determined. The expression of tight junction (ZO-1, ZO-2, and Occludin) and cytokines (IL-6, IL-1β, 
TNF-α, and IL-10) in colon was performed by qPCR. The expression of p-ERK, p-p38, and p-p65 was deter-
mined by Western blot analysis.
Results: Both CRAMP-producing L. lactis NZ9000 strains protected against colitis, as shown by reduced 
weight loss and disease activity score, improved colon shortening, and histopathological injury. In addi-
tion, CRAMP-producing L. lactis NZ9000 restored gut barrier by upregulating ZO-1, ZO-2, and occludin. 
Moreover, CRAMP-producing L. lactis NZ9000 regulated the colonic cytokines profile with reduced IL-6, 
IL-1β, and TNF-α production, and increased IL-10 production. By further analysis, we found that CRAMP-
producing L. lactis NZ9000 reduced the expression of p-p38 and p-p65.

Popular scientific summary
• � Two strains of  recombinant CRAMP-producing Lactococcus lactis NZ9000 were constructed 

with different plasmids pMG36e (L.L-pMU45CR) or pNZ8148 (L.L-pNU45CR), which use a 
Usp45 secretion signal to drive the secretion of  CRAMP.

• � CRAMP-producing L. lactis NZ9000 strains protected mice from colitis via suppressed activation 
of  p-p38/NF-κB signaling, thus resulting in a restored cytokines profile and an improved gut 
barrier integrity.

• � CRAMP-producing L. lactis NZ9000 represents a novel intervention strategy for colitis  
treatment.
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Introduction
Inflammatory bowel diseases (IBDs) are inflammatory 
conditions in the intestine, which generally include ul-
cerative colitis (UC) and Crohn’s disease (CD) (1). Both 
UC and CD are known to increase the risk of  colorec-
tal cancer (2).The prevailing symptoms of  IBDs include 
abdominal pain, diarrhea, and hematochezia, which 
have serious negative effects on the quality of  life (3). 
Current therapies of  IBD, such as 5-aminosalicylic acid 
and glucocorticoids, are principally aimed at inhibiting 
inflammation. However, using anti-inflammatory drugs 
may result in some side effects, involving diarrhea, head-
ache, and loss of  appetite (4, 5). In addition, antibiotics, 
which are commonly used as adjuvant therapy in IBD, 
could result in microbiota dysbiosis. Thus, it is necessary 
to develop a new approach for IBD treatment.

Cathelicidins are antimicrobial peptides found in hu-
mans and mice, which includes LL-37 and cathelici-
din-related antimicrobial peptide (CRAMP), that are 
homologous in nature, (6). These have multifaceted roles 
in wound healing, anti-inflammation, and anti-apopto-
sis, and have been reported to regulate gut microbes and 
intestinal homeostasis (7, 8). However, oral administra-
tion of LL-37 seems to be impossible due to its sensitivity 
to acidic environment in gaster (9, 10). CRAMP is also 
pH sensitive. The α-helical conformation of CRAMP is 
important for its bioactivity, and this can be lost at low 
pH conditions. The protonation of acidic side chains re-
sults in the loss of stabilizing complementary side chain 
ion pairs (10–12). However, its short half-life (1 h in cells) 
also limits systemic administration (13). Therefore, new 
cathelicidins-targeted approaches are necessary in the 
treatment of colitis.

The use of probiotics is a potential approach to treat or 
prevent IBD. Although most clinical trials indicate that 
probiotics are beneficial in treating IBD, in some cases, 
probiotics induce intestinal damage or bacteremia (14, 
15). Lactococcus lactis (L. Lactis) is widely used in food 
fermentation and oral delivery of therapeutic proteins 
(16). Lactococcus lactis NZ9000 (L. Lactis NZ9000) plays 
a key role in industrial fermentation (17) and has been 
used to develop genetically modified microorganisms for 
the treatment of colitis in mice (18, 19).

In this study, we constructed two recombinant 
L.  lactis NZ9000 strains, which used a Usp45 secretion 
signal to drive  the secretion of CRAMP, with pMG36e 
(L.L-pMU45CR) or pNZ8148 (L.L pNU45CR) plasmids, 
respectively. We also evaluated the role and mechanism of 
CRAMP-secreting L. lactis NZ9000 in experimental colitis.

Materials and methods

Plasmids, bacterial strains, and growth conditions
Lactococcus lactis NZ9000 (NIZO Food Research, 
Kernhemseweg, the Netherlands) was grown in M17 me-
dium (Solarbio, Beijing, China) containing 0.5% (w/v) 
glucose (Solarbio, Beijing, China) at 30°C. CRAMP 
gene (20) containing a Usp45 secretion signal gene (21) 
was synthesized by Sangon Biotech Co., Ltd (Shanghai, 
China) and was cloned into pMG36e (22) (pMG36e-
Usp45-CRAMP) and pNZ8148 (23) (pNZ8148-Usp45-
CRAMP) at the Xbal/Sphl sites, respectively. Lactococcus 
lactis NZ9000 was transformed with pMG36e-Usp45-
CRAMP (L.L-pMU45CR) and pNZ8148-Usp45-CRAMP 
(L.L-​pNU45CR) by electroporation (24). Lactococcus 
lactis NZ9000 was transformed with empty pMG36e 
(L.L-pMVectro) and empty pNZ8148 (L.L-pNVector) as 
controls. Nisin (1.25 ng/mL, Solarbio, Beijing, China) was 
used for 4 h to induce gene expression in L.L-pNU45CR 
and L.L-pNVector as controls (19). Bacterial suspen-
sions were prepared freshly and were orally administered 
with  syringe once daily for 4 days after dextran sodium 
sulfate (DSS) treatment. DSS was purchased from MP 
Biomedicals (Irvine, CA, USA), with a molecular weight 
of 36–50 kDa.

Mice
Male C57BL/6 mice (7–8 weeks old) were purchased 
from Su Pu Si Biotechnology Co. Ltd (Suzhou, Jiangsu, 
China) and were randomly divided into six groups 
(n = 5) as follows: [1] control (without DSS), [2] 3% DSS 
+ sterilized water, [3] 3% DSS + L.L-pMVector, [4] 3% 
DSS + L.L-pNVector, [5] 3% DSS + L.L-pMU45CR, 
and [6] 3% DSS + L.L- pNU45CR. After 7 days of 
DSS treatment, bacterial suspensions (1010 CFU) were 
orally administrated with syringe once daily for 4 days. 

Conclusions: Together, our data suggested that CRAMP-secreting L. lactis NZ9000 attenuated dextran 
sulfate sodium-induced colitis by colonic colonization and inhibiting p38/NF-κB signaling. Orally ad-
ministered recombinant CRAMP-secreting L. lactis NZ9000 represents a potential strategy for colitis 
therapy.
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Bacterial suspensions were prepared as described below. 
The bacterial cells were centrifuged at 3,000 g at 4°C for 
20 min and washed twice with PBS. These bacterial cells 
were resuspended at concentrations of  5 × 1010 CFU/mL 
based on optical density (OD600). Mice were gavaged 
with 200 µL of  bacterial suspension (1010 CFU) with 
syringe. To check the number of  CFUs, plate counts 
were performed on M17 agar supplemented with 0.5% 
glucose at 30°C without agitation. After 24 h, the plates 
were observed.

Disease activity index (DAI) score 
The degrees of bleeding, body weight change, and stool 
consistency were recorded to determine the disease activ-
ity score as previously described (25, 26): bleeding (score 
0, normal; score 1, stool hemoccult positive; score 2, 
hemoccult positive and visual pellet bleeding; and score 
4, gross bleeding, blood around anus), body weight loss 
(score 0, no weight loss; score 1, weight loss within 1–5%; 
score 2, within 5–10%; and score 3, >10%), and stool con-
sistency (score 0, normal; score 1, soft but firm; score 2, 
soft; and score 3, diarrhea).

ELISA
Colon tissues were homogenized, and the expression of 
CRAMP was analyzed with an ELISA kit (CUSABIO 
TECHNOLOGY LLC, Wuhan, Hubei, China) according 
to the manufacturer’s instructions.

Histology and immunostaining
Colon tissues were fixed and embedded in paraffin via 
standard methods (27), and sectioned into 5 µm slices 
and stained with hematoxylin-eosin (Yulu, Nanchang, 
Jiangxi, China). Histological scoring was performed as 
follows: epithelium (score 0, normal; score 1, crypt loss 
<10%; score 2, crypt loss 10–50%; score 3, crypt loss 
50–90%; score 4, crypt loss >90%; score 5, ulcer 1–50%; 
and score 6, ulcer >50%). Infiltration for mucosa (score 
0, normal; score 1, <10%; score 2, 10–50%; and score 3, 
>50%), submucosa (score 0, normal; score 1, 1–50% and 
score 2, >50%), and muscle or serosa (score 0, normal and 

score 1, >1%). Histological scores were sum of epithelial 
damage scores and inflammatory cell infiltration scores 
(28, 29). Immunostaining was performed as described in 
our previous study (30, 31). For immunofluorescent stain-
ing, anti-ZO-1 (1:100, A11417, ABclonal Technology Co., 
Ltd, Wuhan, Hubei, China) and anti-rabbit Alexa Fluor 
555 (1:500, A32732, Invitrogen, Carlsbad, CA, USA) 
were used. For nucleic acid staining, DAPI (Beyotime 
Biotechnology, Shanghai, China) was used according to 
the manufacturer’s instructions.

Real-time PCR
TRIzol reagent (CoWin Bioscience Co., Ltd, Beijing, 
China) was used for colonic RNA isolation. SuperRT 
cDNA synthesis kit (CoWin Bioscience Co., Ltd, Beijing, 
China) was used for reverse transcription. SYBR Green 
(CoWin Bioscience Co., Ltd, Beijing, China) was used 
for quantitation. The 2-∆∆ct method was used for calcula-
tion and normalized to β-actin. All primers were synthe-
sized by Thermo Fisher Scientific (Waltham, MA, USA). 
Primers were designed with Primer 5 software (Premier 
Biosoft, Palo Alto, CA, USA). To check the specificity of 
primers, blast program (32) was used, and PCR products 
were detected by agarose gel electrophoresis. Primers used 
for qPCR are shown in Table 1.

Western bolt
To compare the expression of secreted or intracellular 
CRAMP, Supernatant and cell fractions were prepared as 
described by Le Loir et al (33). Briefly, 2 mL of L. Lactis 
cultures at a given optical density of 600 nm (OD600) were 
harvested by centrifugation at 3,000´g for 20 min at 4°C. 
The equivalent of 1 mL of 1 OD600 unit of culture (cell 
or supernatant) was concentrated in a 100 μL final vol-
ume as described below, and 10 μL was loaded for SDS-
PAGE. Supernatants were precipitated by the addition of 
10% trichloroacetic acid, harvesting by centrifugation at 
10,000 × g at 4°C. The resulting pellet was dissolved in a 
1:20 volume of 50 mM NaOH. Cell pellets were resus-
pended in 70 μL of TES containing lysozyme (1 mg/mL). 
After 30 min of incubation at 37°C, cells were lysed with 30 

Table 1.  Primers used for qPCR.

Gene Forward (5’-3’) Reverse (5’-3’)

ZO-1 GCCGCTAAGAGCACAGCAA TCCCCACTCTGAAAATGAGGA

ZO-2 ATGGGAGCAGTACACCGTGA TGACCACCCTGTCATTTTCTTG

Occludin TTGAAAGTCCACCTCCTTACAGA CCGGATAAAAAGAGTACGCTGG

IL-6 GAGTCACAGAAGGAGTGGCTAAGG CGCACTAGGTTTGCCGAGTAGATCT

IL-1β TTCAGGCAGGCAGTATCACTC GAAGGTCCACGGGAAAGACAC

TNF-α CCACGCTCTTCTGTCTACTG ACTTGGTGGTTTGCTACGAC

IL-10 GGACCAGCTGGACAACATACTGCTA CCGATAAGGCTTGGCAACCCAAGT

β-Actin GGCTGTATTCCCCTCCATCG CCAGTTGGTAACAATGCCATGT
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μL of 20% SDS. Equal volumes of 2× loading buffer were 
added to all samples. RIPA buffer with phosphatase and 
protease inhibitors was purchased from Songon Biotech 
(Shanghai, China) and used in the preparation of colon 
samples. Electrophoresis and transfer were performed as 
described before (34). Primary antibodies were obtained 
from CST (Danvers, MA, USA): p-p38 (#4511), p-Erk1/2 
(#9101), p-NF-κBp65 (#3033), total-p38 (#8690), to-
tal-ERK (#4695), and total-NF-κB p65 (#4674) were 
used. Anti-rabbit secondary antibody was purchased from 
Thermo Fisher Scientific (31460, Waltham, MA, USA). 
An enhanced chemiluminescent (ECL) kit (Millipore, Bil-
lerica, MA, USA) was used for detection.

Statistical analysis
The data were expressed as mean ± standard error of 
mean (SEM) and statistically analyzed by GraphPad 
Prism software (San Diego, CA, USA) using one-way 
analysis of variance followed by Tukey’s post-hoc test. 
P ≤ 0.05 was considered to be statistically significant.

Results

Construction of recombinant CRAMP-secreting L. lactis NZ9000
Single colonies were picked and detected by polymerase 
chain reaction (PCR) to confirm whether CRAMP with 
secretion signal peptides (Usp45 + CRAMP) were ex-
pressed in L.L-pMU45CR or L.L-pNU45CR. As shown 
in Fig. 1A, Usp45 + CRAMP was expressed in recom-
binant bacterial cells. In addition, Western blot analysis 
showed that both L.L-pMU45CR and L.L-pNU45CR ex-
pressed CRAMP, and the levels of CRAMP were higher in 
supernatants than in bacterial cells (Fig. 1B). Collectively, 
these date data revealed that CRAMP was expressed in re-
combinant L.L-pMU45CR and L.L-pNU45CR strains, 
and both strains have higher levels of secreted CRAMP 
compared with intracellular CRAMP.

Recombinant CRAMP-producing L. lactis NZ9000 alleviates 
dextran sodium sulfate-induced colitis
To address the protective effect of recombinant 
CRAMP-producing L. lactis NZ9000 on colitis, we 
treated mice with recombinant L. lactis NZ9000 for 
4 days after dextran sodium sulfate (DSS)-induced colitis. 
We found that both L.L-pMU45CR and L.L-pNU45CR 
attenuated colitis in DSS-treated mice, as shown by re-
duced weight change (Fig. 2A) and disease activity score 
(Fig. 2B), which consists of stool consistency, body 
weight change and bleeding, and improved colon length 
(Fig. 2C). Furthermore, we found that two recombinant 
CRAMP producing L. lactis strains restored the expres-
sion of CRAMP, which was suppressed by DSS-induced 
colitis (Fig. 2D).

Recombinant CRAMP-producing L. lactis NZ9000 improves 
crypt morphology in colitis mice
By further histological examination, we found that 
CRAMP-encoding L. lactis NZ9000 resulted in reduced 
colonic mucosal injury, crypt destruction, and inflam-
matory cell infiltration than in vehicle-treated mice 
(Fig.  3A–B). In addition, CRAMP-secreting L. lactis 
NZ9000 restored the gut barrier, as shown by increased 
ZO-1 (Fig. 3C), ZO-2 (Fig. 3D), and occludin (Fig. 3E) 
expression. Consistently, we found ZO-1 were expressed 
in apical border under steady state. And two recombinant 
CRAMP producing L. lactis strains prevented the loss of 
apical ZO-1 in epithelium (Fig. 3F). Together, these data 
indicated that recombinant CRAMP-producing L. lactis 
NZ9000 reduced histological damage and tight-junction 
disruption.

Recombinant CRAMP-producing L. lactis NZ9000 promotes 
a modulatory cytokine profile in colitis
During colitis development, the production of cytokines 
was a central event. We detected several key cytokines in 
colitis. We found that treatment of both L.L-pMU45CR 

Fig. 1.  Construction of CRAMP-secreting L. lactis NZ9000. (A) Polymerase chain reaction (PCR) products of CRAMP con-
nected with a Usp45 signal peptide (Usp45 + CRAMP) in L.L-pMU45CR and L. L-pNU45CR were determined by agarose gel 
electrophoresis. L. L-pMU45CR was based on pMG36e plasmids, and L. L-pNU45CR was based on pNZ8148 plasmids. The 
product size of Usp45 + CRAMP is 243 bp. (B) Protein expression of CRAMP in recombinant bacterial cells and supernatant 
(Sup) was examined by Western blotting.
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and L.L-pNU45CR reduced IL-6 (Fig. 4A), IL-1β 
(Fig. 4B), and TNF-α (Fig. 4C) expression, and restored 
IL-10 production (Fig. 4D) which plays a regulatory role 
in colitis. Collectively, these data revealed that both L.L-
pMU45CR and L.L-pNU45CR treatment promotes a 
modulatory cytokine profile in DSS-induced colitis.

Recombinant CRAMP-producing L. lactis reduces the 
expression of p-p38 and p-p65
To further explore the underlying mechanism of L.L-
pMU45CR and L.L-pNU45CR treatment in DSS-
induced colitis, we next detected several key transcription 
factors in colons. As shown in Fig. 5A, we found that 

Fig. 2.  Recombinant CRAMP-producing L. lactis NZ9000 attenuates dextran sodium sulfate-induced colitis. (A) Weight change 
was recorded every day (g); (B) comparison of disease activity score on day 10; (C) colon length was measured on day 10. 
L.L-pMVector is recombinant L. lactis NZ9000 with pMG36e empty vector and L. L-pNVector is recombinant L. lactis NZ9000 
with pNZ8148 empty vector. (D) CRAMP expression in colonic tissues was detected by ELISA. Data are expressed as means 
± SEM, n = 5. ###P < 0.001 compared between Vehicle and L. L-pMU45CR group in Fig. 2A; &&&P < 0.001 compared between 
Vehicle and L. L-pNU45CR group in Fig. 2A; *P < 0.05, ***P < 0.001.
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L.L-pMU45CR treatment significantly reduced the ex-
pression of p-p38 and p-p65, and L.L-pNU45CR treat-
ment reduced the expression of p-ERK, p-p38, and p-p65 
(Fig. 5A). Collectively, these data indicated that recombi-
nant CRAMP-producing L. lactis inhibited colon inflam-
mation by suppressing p38 and p65 activation.

Discussion
In this study, we developed two strains of CRAMP-
producing L. lactis NZ9000, which use a Usp45 secretion 
signal to drive the secretion of CRAMP. The results of 
this study indicate that orally administered recombinant 
CRAMP-producing L. lactis protected mice from colitis 

Fig. 3.  Recombinant CRAMP-producing L. lactis NZ9000 improves crypt morphology in colitis. (A) Histological analysis was 
performed by hematoxylin-eosin (H&E) staining in colonic tissues. The scale bar is 100 μm; (B) the histological score of colon; 
relative mRNA levels of tight junctions in colon were determined by qPCR (C) ZO-1, (D) ZO-2, and (E) occludin. ZO-1, tight 
junction protein 1; ZO-2, tight junction protein 2. (F) Representative graphs showing immunofluorescence of ZO-1 (red) in 
colonic tissues (DAPI, blue). Scale bar: 50 μm. Data are expressed as means ± SEM, n = 5. *P < 0.05, ***P < 0.001.
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by suppressing the expression of p-p38 and p-p65 and 
subsequently decreasing the expression of proinflamma-
tory cytokines, thus improving the integrity of gut barrier.

Lactococcus lactis is suitable for expressing bioactive 
molecules in IBD therapy. Most (90–98%) L. lactis, which 
transit with diet, could survival through acidic conditions 
in gastric juice (16). Recombinant L. lactis NZ9000 is 
able to colonize the colon and has been used to express 
bioactive molecules in the treatment of colitis, such as 
theme oxygenase-1 and insulin-like growth factor I (18, 
19). The secretion efficiencies of heterologous proteins in 
recombinant L. lactis are varied due to the characteristics 
of heterologous proteins. Usp45 is a signal peptide widely 
applied in driving protein secretion (35). We achieved 
higher levels of secreted CRAMP in recombinant L. lactis 
NZ9000 with Usp45 signal peptides.

Cathelicidins have multifunctional roles, such as 
anti-microbial, anti-inflammation, anti-apoptosis ac-
tivities, and wound healing. Serum LL-37 levels are pos-
itively correlated with recovery in IBD patients (36). We 
observed elevated CRAMP expression in the colon of 
recombinant CRAMP producing L. Lactis-treated mice. 
However, the recombinant CRAMP producing L. lactis 
may not have a direct effect on serum CRAMP, because 
bioactive peptides were not able to cross the gut wall 
intact, except dipeptides and tripeptides (37). CRAMP 
has been reported to protect mice from colitis by resist-
ing bacteria invasion into colonic tissues and preventing 
colonic inflammation (38, 39). Consistent with our re-
sults, CRAMP has been reported to suppress the expres-
sion of  p-p38 and p-p65, thus alleviating inflammation 
(40, 41).

Fig. 4.   Recombinant CRAMP-producing L. lactis NZ9000 promotes a modulatory cytokine profile in colitis. Relative expres-
sion of (A) IL-6, (B) IL-1β, (C) TNF-α and (D) IL-10 in colon was determined by qPCR. IL-6, interleukin-6; IL-1β, interleu-
kin-1beta; TNF-α, tumor necrosis factor alpha. Data are expressed as means ± SEM, n = 5. *P < 0.05, **P < 0.01, ***P < 0.001.
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Cytokines exert major impacts on intestinal inflam-
mation and related clinical symptoms in IBD. The un-
balanced cytokines profile between proinflammatory and 
regulatory cytokines promotes mucosal inflammation. 
IL-10 regulates intestinal homeostasis, and its deficiency 
leads to spontaneous colitis in mice (42). We found that 
recombinant CRAMP-producing L. lactis increased the 
expression of IL-10. Similarly, cathelicidins increased the 
expression of IL-10 in human mononuclear cells (43, 44). 
Blockade of proinflammatory cytokines, such as TNF-
α, is recognized as a crucial strategy for IBD therapy (1). 
Cathelicidins were shown to reduce TNF-α expression 
in macrophages by suppressing the expression of p-p38 
and p-p65 (40, 45, 46). Similarly, we found that both L.L-
pMU45CR and L.L-pNU45CR reduced IL-6, TNF-α, 
and IL-1β expression by suppressing the expression of 
p-p38 and p-p65. These results revealed that recombinant 
CRAMP-producing L. lactis regulates proinflammatory 
cytokine expression by p-p38/NF-κB p-p65 signaling.

Epithelial tight junctions are crucial in regulating in-
testinal barrier and permeability. Disruption of intes-
tinal barrier results in the transfer of intestinal bacteria 
and antigens into submucosa, thus subsequently leading 
to inflammatory response, such as transcription factor 
activation and immune cell infiltration. Tight junctions 
are regulated by intestinal microbes and cytokines in 
IBD. Adherent-invasive Escherichia coli is increased in 
IBD patients and can disrupt tight junctions (47). Sev-
eral cytokines, such as TNF-α, IL-1β, and IL-6, disrupt 
tight junctions and IL-10 restores tight junctions (48). 
Previous studies have reported that cathelicidins upreg-
ulated tight junctions in bronchial epithelium (49) and 
epidermal keratinocyte (50). Together, the results of this 
study indicated that recombinant CRAMP-producing 
L. lactis restored the expression of tight junctions by reg-
ulating the cytokines profile in colitis, although it is un-
clear whether recombinant CRAMP-producing L. lactis 
regulates adherent-invasive E. coli.

Fig. 5.  Recombinant CRAMP-producing L. lactis reduces the expression of p-p38 and p-p65. (A) Expressions of p-ERK, p-p38 
and p-p65 in colons were determined by Western blot analysis. Total ERK, p38, and p65 were used as loading controls, and 
the gray value of each band (B–D) was normalized to loading controls. Data are expressed as means ± SEM, n = 5. *P < 0.05, 
**P < 0.01.
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Conclusions
Our data revealed that two CRAMP-secreting L. lactis 
NZ9000 strains protected mice from colitis via suppressed 
activation of p-p38/NF-κB p-p65 signaling, thus resulting 
in a restored cytokines profile and improved gut barrier 
integrity (Fig. 6). Our data suggested that orally adminis-
tered CRAMP-secreting L. lactis NZ9000 may represent 
a potential strategy for IBD therapy.
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