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Abstract 

Background: Wine is one of the oldest and most popular drinks worldwide, which is rich in phenolic com-
pounds. Epidemiological studies show that moderate consumption of wine can reduce the risk of certain 
diseases, and this effect is attributed to its phenolic compounds.
Objective: The objective of this review was to elaborate the effects of wine-derived phenolic compounds for 
preclinical anticancer therapeutics and their major mechanisms.
Methods: In this review, we discuss the classification and content of common phenolic compounds in wine 
and summarize previous studies that have evaluated the anticancer properties of wine-derived phenolic com-
pounds and their mechanisms.
Results: Wine-derived phenolic compounds have been proven to participate in several mechanisms against 
cancers, including deoxyribonucleic acid damage, oxidative stress, cell proliferation, cell cycle arrest, cell apop-
tosis, autophagy, cell invasion and metastasis, immunity and metabolism, regulation of multiple signaling 
molecules, and gene expression. However, the exact anticancer mechanisms of the phenolic compounds in 
wine need to be further investigated.
Conclusion: Wine-derived phenolic compounds are promising chemoprotective and chemotherapeutic agents 
for cancer.
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Wine is an alcoholic beverage obtained from 
the fermentation of the juice of freshly gath-
ered grapes. The composition of wine is sig-

nificantly different from that of grape juice. One of the 
reasons could be ascribed to the fact that some compo-
nents of grapes are discarded during winemaking. An-
other reason could be attributed to the complicated series 
of transformations and processes related to winemaking, 
which affect the final product. Red wine, especially, is a 
rich source of phenols and represents an important di-
etary ingredient for human consumption (1). The main 
phenolic compounds found in wine are flavonoids and 
non-flavonoids. The most common flavonoids in red wine 

are flavonols, flavanols, and anthocyanins, while the com-
monly occurring non-flavonoids are mainly derivatives of 
hydroxycinnamic and hydroxybenzoic acids, hydrolyzable 
tannins, and stilbene (2), as shown in Table 1. The chem-
ical structures of the phenolic compounds frequently 
found in wine are shown in Fig. 1.

Currently, the treatment modalities for cancer include 
surgery, immunotherapy, radiation therapy, targeted ther-
apy, and chemotherapy. The two most important factors 
considered during chemotherapy are the dose and toxicity 
of the drug. Many naturally occurring phenols are effica-
cious at low doses and are not associated with significant 
toxicities. Epidemiological and clinical studies show that 

Popular scientific summary
• � Wine phenolic compounds have an important impact on human health.
• � Wine phenolic compounds may act against cancers via modulating multiple biological mechanisms.
• � The relationship between wine consumption and health still remains controversy.
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moderate wine consumption has chemopreventive effects 
and also exhibits therapeutic effects in individuals with 
cardiovascular disease, hypertension, diabetes, and can-
cers (1). In 1997, Jang et al. (11) confirmed that phenols 
are the functional substances in wine. Since then, numer-
ous studies have shown that the positive effects of wine 
on health are attributed to its polyphenolic compounds, 
as these compounds exhibit antioxidant, anti-inflamma-
tory, hypotensive, anticoagulant, and even anticancer ef-
fects (12–14). The beneficial effects of these compounds in 
some diseases are related to the ability of phenolic com-
pounds to scavenge reactive oxygen species (ROS), nitro-
gen radicals, and chlorine species (15, 16). However, the 
chemopreventions of certain diseases, especially cancers, 
are challenging as they are related to the interaction of 
proteins and involve complex cell signaling pathways (17, 
18). In recent years, many phenolic compounds in wine 
have been proven to have prophylactic or therapeutic ef-
fects on various types of cancers, including cancers of the 
colon (19), ovary (20), breast (21), lung (22), and prostate 
gland (23).

The phenolic compounds in wine have been shown to 
have anticancer effects, and resveratrol is the most studied 
compound. The phenolic compounds in wine are known 
to play a role in inducing cell cycle arrest, apoptosis, au-
tophagy, deoxyribonucleic acid (DNA) damage, and p53 

Table 1.  The main phenolic compounds in red wine

Basic type Concentration Common  
component

Reference

Flavonols 50–200 mg/L Quercetin (3, 4)

Kaempferol

Myricetin

Flavanols 40–120 mg/L Catechin (3, 5, 6)

Epicatechin

Epigallocatechin

Epicatechin gallate

500–1,500 mg/L Proanthocyanidins

Anthocyanins 90–400 mg/L Cyanidin (3, 7)

Delphinidin

Peonidin

Malvidin

Petunidin

Hydroxycinnamic 
acids and  
hydroxybenzoic 
acids

60–240 mg/L Caffeic acid (3, 8)

Ferulic acid

Chlorogenic acid

Gallic acid

Vanillic acid

Coumalic acid

Hydrolyzable 
tannins

0–260 mg/L Ellagitannins (3, 9)

Gallotannins

Stilbene 0–7 mg/L Resveratrol (10)

Fig. 1.  Chemical structures of the phenolic compounds frequently found in wine.
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signaling, all of which eventually lead to the death of can-
cer cells (24). Grape seed extract or red wine polyphenolic 
compounds can inhibit certain cancer cells by regulating 
the immune and metabolic systems, such as targeting 
the enzymes involved in arachidonic acid metabolism in 
colorectal cancer (25). Several factors alter cell signaling 
pathways; however, the phenolic compounds in wine, such 
as flavonoids, can reverse and restore normalcy (18). Cur-
rently, more novel mechanisms are needed to prevent and 
treat cancers. The anticancer effects exhibited by the phe-
nolic components of wine appear complicated as many 
different pathways are involved and many unidentified 
mechanisms have yet to be studied.

In this review, we present recent findings pertaining to 
the anticancer properties of the phenolic compounds of 
wine. We also summarize protective effects and mecha-
nisms of main bioactive phenolic compounds in wine 
with a focus on flavonoids and resveratrol.

Wine consumption and health: controversy remains
A 12-year follow-up study showed that low to moderate 
alcohol consumption, namely 10–14 drinks peer week, 
was correlated with better total and individual cognitive 
functions, including word recall, mental status, and vocab-
ulary among 19,887 participants in United States adults 
(26). Moderate alcohol consumption such as a small glass 
of wine daily could reduce the risk of ischemic heart dis-
ease, diabetes, and ischemic stroke (27, 28). In addition, 

a systematic review and meta-analysis demonstrated that 
low to moderate alcohol consumption is associated with a 
reduced risk of 0.75 folds for cardiovascular disease and 
coronary heart disease mortality, and 0.71 folds for inci-
dent coronary heart disease (29). However, another study 
was conducted to analyze the relationship between life-
style and genetic risk with the incidence of dementia in 
a total of 196,383 participants with a mean age of 64.1 
years, and the results showed that both an unfavorable 
lifestyle like moderate alcohol consumption and high ge-
netic risk are strongly associated with higher dementia 
risk (30). A translational study indicated that chronically 
alcohol consumption expands mean diffusivity of brain 
gray matter among humans and rats and is positively as-
sociated with a clear decrease in extracellular space tortu-
osity caused by a microglial reaction (31). However, the 
relationship between wine consumption and cancer risk 
still remains elusive. Alcohol consumption is reported to 
be able to increased risks of cancer, including cancers of 
the breast, lip, and oral cavity (32). Similarly, a global sys-
tematic analysis study regarding the alcohol use and dis-
ease burden demonstrated that alcohol consumption is a 
leading risk factor of cancers (33). On the contrary, some 
studies suggest that alcohol intake of reasonable quanti-
ties, such as low to moderate consumption of wine, may 
be beneficial for the treatment of several types of cancer 
(27, 28). The anticancer properties of the phenolic com-
pounds in wine are shown in Fig. 2.

Flavonoids Non-�avonoids

Flavonols

Flavanols

Hydroxycinnamic acids

Anthocyanins

Hydroxybenzoic acids

Hydrolyzable tannins

Stilbene

Breast cancer

Lung cancer

Colon cancer

Cervical cancer

Liver cancer

Gastric carcinoma

Esophageal carcinoma

Brain cancer

Bladder cancer

Skin cancer

Ovarian cancer

Prostate cancer

Fig. 2.  The major phenolic compounds in wine and the types of cancer that phenolic compounds exert anticancer effects.
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The anticancer effects of flavonoids and their 
potential mechanisms
Flavonoids are characterized by a C6-C3-C6 skeleton, 
which contains two benzene rings that are connected by a 
pyran ring in the center. Most phenolic compounds in red 
wine are flavonoids. The total phenolic content is more 
than 85% in red wine but less than 20% in white wine (34). 
Flavonols, flavanols, and anthocyanins are the subclasses 
of flavonoids present in wine. The consumption of flavo-
noids may reduce the incidence of cancers and improve 
prognosis. They can inhibit the progression of several 
types of cancer through inducing programmed cell death, 
inhibition of cell growth and viability, cell cycle arrest (35, 
36), and interfering with the metabolic functions associ-
ated with the aberrant immune function (37).

Flavonols
Flavonols are a group of yellow phenolic pigments be-
longing to the flavonoid family that are found mostly as 
glycosides, such as glucosides and glucuronides. Flavonols 
have been shown to inhibit tumorigenesis in in vitro and 
in vivo models. The most common flavonol in grapes is 
quercetin, which is present in its skin and stem (38). In the 
past decades, several anticancer properties of quercetin 
have been discovered, such as its cell signaling, proapop-
totic, antiproliferative, antioxidant, and cell-growth sup-
pression effects. Quercetin exerts its primary antioxidant 
effect by providing electrons to reduce the levels of ROS, 
inhibiting tumor cell growth and preventing DNA dam-
age caused by mutations (39). In addition, quercetin 
exhibits proapoptotic effects in tumor cells through mi-
tochondria-mediated pathways or by increasing cytotox-
icity and oxidative stress (40, 41). Quercetin also inhibits 
the proliferation of human hepatoma cell line, HepG2, by 
altering the expression of the cytochrome P450 proteins 
A1 (CYP1A1) gene (42). At low concentrations, querce-
tin inhibits the proliferation of human breast cancer cells 
by arresting the cell cycle in G1 phase (43). Additionally, 
quercetin increases G2/M phase and the levels of p53 and 
p21 proteins and induces cytotoxicity and apoptosis in 
lung carcinoma cells (44). Several experimental studies 
indicate that quercetin may be a promising adjuvant in 
the chemotherapy of cancers. Quercetin promotes cispla-
tin-induced apoptosis in oral squamous cell carcinoma 
by reducing the nuclear factor κB (NF-κB) and x-linked 
inhibitor of apoptosis (xIAP) protein levels and results in 
the significant inhibition of tumor growth (45). NF-κB 
is important for the differentiation of immune cells and 
is involved in metabolic disorders (46). When combined 
with metformin, quercetin strongly inhibits the growth, 
migration, and invasion of prostate cancer cells both in 
vitro and in vivo through the vascular endothelial growth 
factor/AKT8 virus oncogene cellular homolog/phos-
phatidylinositol-3-kinase (VEGF/Akt/PI3K) signaling 

pathway (47). Furthermore, quercetin can regulate the ac-
tivity of several tyrosine kinases. In general, the antican-
cer effects of quercetin are owing to its ability to induce 
apoptosis, arrest the cell cycle, scavenge free radicals, and 
regulate proteins such as tyrosine kinases, p53, and heat 
shock proteins (HSPs) (48). Moreover, it is reported that 
quercetin modulates immunity to promote the anticancer 
response by regulating dendritic cells (DCs) activation 
and decreasing tumor necrosis factor (TNF), interleu-
kin-1β (IL-1β), IL-6, IL-10, and IL-12p70 secretion (49). 
Poor water solubility and low bioavailability of quercetin 
are the limiting factors of its application in a clinical set-
ting for cancer chemoprevention (50). However, quercetin 
is an indispensable food ingredient, and its bioavailabil-
ity increases when derived from sources, such as onions 
or grapes. In the future, nanoparticles or other modes of 
drug transport will be essential for the effective delivery of 
quercetin to cancer cells (51).

Besides quercetin, the common flavonols in wine in-
clude kaempferol and myricetin. The structures of these 
compounds are similar. Myricetin, also known as hydroxy-
quercetin, has an additional −OH group compared to kae-
mpferol. Epidemiological studies show that kaempferol 
and myricetin exhibit therapeutic potentials in different 
types of cancers, including cancers of the bladder, stom-
ach, colon, ovary, pancreas, lungs, breast, and the prostate 
gland (52–54). They inhibit growth, migration, and inva-
sion of cancer cells and induce apoptosis by activating or 
inhibiting different signaling pathways and reactivating 
various key genes involved in tumorigenesis. In breast can-
cer, kaempferol arrests the cell cycle in the G2/M phase by 
decreasing the level of cyclin-dependent kinase 1 (CDK1) 
(55) and inhibiting migration and invasion by blocking 
the PKCδ (protein kinase C)/mitogen-activated protein ki-
nase (MAPK)/activator protein 1 (AP-1) cascade and the 
expression of MMP-9 (matrix metalloproteinases) (56). 
Kaempferol induces apoptosis by regulating caspase-3 ex-
pression and the cleavage of poly-ADP-ribose polymerase 
(PARP), B-cell lymphoma-2 (BCL-2), and Bax (57). Other 
findings reveal that ROS are the reason for kaempferol in 
inducing apoptosis (58). Moreover, recent studies demon-
strate that kaempferol induces autophagy and cell death 
by increasing the conversion of light chain 3 (LC3)-I to 
LC3-II and decreasing the expression of p62 in gastric, he-
patic, and lung cancers (59–61). Kaempferol activates the 
inositol-requiring enzyme 1 (IRE1)1/Jun n-terminal kinase 
(JNK)/C/EBP homologous protein 10 (CHOP) pathway 
from the cytosol to the nucleus and promotes autophagic 
cell death by inhibiting the histone deacetylase (HDAC)/
G9a axis in gastric cancer (62). In hepatic cancer cells, kae-
mpferol induces autophagy through the AMP-activated 
protein kinase (AMPK)/AKT pathway and decreases the 
expression of CDK1/cyclin B (61). Myricetin may target a 
specific molecule or multiple signaling pathways to inhibit 
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tumor progression. It is reported that myricetin suppresses 
breast cancer metastasis by downregulating MMP-2/9 and 
mRNA ST6GALNAC5 levels in vitro and in vivo (63). 
Myricetin induces apoptosis in ovarian, skin, and colon 
cancer cells by upregulating the proapoptosis proteins in-
cluding Bax, BCL-2, cleaved PARP, and caspase-3 (54). 
In addition, myricetin was found to downregulate extra-
cellular signal-regulated kinase (ERK)/p90RSK/AP-1, ja-
nus-family tyrosine kinase 1 (JAK1)/signal transducer and 
activator of transcription (STAT), and PI3K/AKT path-
ways in cancer cells (64). Myricetin demonstrates the im-
munomodulatory effects by inhibiting T cell proliferation 
and reducing the secretion of interferon-γ (IFN-γ), IL-2, 
and IL-17 (65). However, the immunomodulatory effects of 
cancer immunity by myricetin in vivo are yet to be studied.

Flavanols
Flavanols, a subclass of flavonoids, are hydroxylated at C3 
in the heterocyclic ring. Flavanols are often referred to fla-
van-3-ols and comprise catechin, epicatechin, epigallocat-
echin, epicatechin gallate, and proanthocyanidins, which 
are present in red wine. They react with tannins and lend 
wines their characteristic flavor (66). Studies suggest that 
flavanols can reduce the risk of various diseases by main-
taining glucose homeostasis, exerting a prebiotic effect on 
gut microbiota, and enhancing insulin signaling (67). The 
inhibitory effects of catechin against cancers have been 
demonstrated in many studies, and prostate cancer is one 
of the most studied cancer types in anticancer research 
involving catechin. Catechin has direct as well as indirect 
effects on cancer cells, and the latter involves affecting the 
tumor microenvironment (68). The main anticancer in-
hibitory actions of catechins are by inducing apoptosis in 
different animal models, reducing the phosphorylation of 
c-Jun and Erk1/2 levels in lung tumorigenesis models, sup-
pressing phospho-Akt and nuclear β-catenin levels in colon 
cancer models, inhibiting the insulin-like growth factor-1 
(IGF1)/IGF1 receptor (IGF1R) axis in colon and prostate 
cancer models, and restraining the VEGF-dependent an-
giogenesis in lung and prostate cancer models (69–71). 

Epicatechin exerts antiproliferative effects in gastric, 
prostate, ovary, and lung cancers and is able to reduce 
cisplatin-induced toxicity (72). Epicatechin has been re-
ported to regulate mitochondrial activity by inhibiting 
phosphorylated Erk2 associated with Ras/MAPK sig-
naling pathway at low concentrations (73). Thus, epicate-
chin can induce cancer cell death by increasing cell stress 
and sensitivity. Mitochondrial respiration, ROS produc-
tion, and Warburg metabolism are the likely mechanisms 
of action. In addition, epicatechin was found to inhibit 
the expression of NF-κB, AP-1, Akt, and nuclear factor 
erythroid-2 related factor 2 (Nrf2) pathways, which are 
important in cell proliferation and survival (74). Mice 
were treated with either vehicle control group, 1 mg/kg 

epicatechin group, or 5 mg/kg naltrindole (a δ-opioid re-
ceptor antagonist) for 10 days, and the results showed that 
mice of epicatechin-treated group had the highest respira-
tion rates, suggesting that epicatechin has the potential to 
augment mitochondrial function (75). Epigallocatechin 
and epicatechin gallate, which have structural similarities 
with epicatechin, also showed inhibitory effects in oral 
and prostate cancer through different signaling path-
ways (76). Epigallocatechin gallate has been reported to 
inhibit cancer by modulating immune by decreasing Th1 
and CD8+ T cells and increasing Tregs (77).

Proanthocyanidins comprise a group of oligomers and 
polymers of flavanols in grape seeds, which have potent 
antioxidant and antitumorigenic properties owing to their 
ability to target multiple oncogenic signaling pathways 
(78). Epidemiological and clinical studies show an inverse 
association between proanthocyanidin intake and prostate 
cancer risk in 43,000 men and in 3,974 incidences of pros-
tate cancers (79). It has been reported that proanthocyan-
idin administration significantly inhibits cell proliferation 
and induces apoptosis in oral squamous cell carcinoma, 
skin cancer, and colon cancer cells by attenuating the PI3K 
pathway and decreasing phosphorylated Protein Kinase 
B (PKB) ser(473) levels (80, 81). Proanthocyanidins in-
hibit the growth of prostate cancer cells by reducing the 
expression of MMP-2 and MMP-9 proteins and regulating 
androgen receptor-mediated transcription by mediating 
anti-histone acetyltransferase activity (82). Proanthocy-
anidins arrest the G0/G1 phase of breast cancer and lung 
cancer cells by upregulating Cip1/p21 levels and downreg-
ulating cyclin levels (78, 83). Additionally, proanthocyani-
dins effectively suppressed the growth of prostate tumors in 
male transgenic adenocarcinoma of mouse prostate mice 
(84). However, further studies are required to elucidate the 
anticancer mechanisms of proanthocyanidins.

Anthocyanins
Anthocyanins are members of a complex group of natu-
ral phenolic glycosides that are responsible for the black 
and red color of grapes. Anthocyanins found in grapes 
are limited in number and consist of mixtures of pigment 
molecules that vary among grape species and varieties. 
The most common anthocyanins in red wine are cyanidin, 
delphinidin, peonidin, malvidin, and petunidin (85). Con-
sumption of wine that is rich in anthocyanins has been as-
sociated with a reduced risk of cardiovascular disease and 
cancer. This can be attributed to the regulation of several 
signaling pathways and crucial cellular processes, includ-
ing cell cycle, apoptosis, autophagy, and biochemical me-
tabolism, by anthocyanins (86, 87). The primary pathways 
targeted by anthocyanins by which it interferes with the 
growth of cancer cells include mitogen-activated protein 
kinase (MAPK), nuclear factor κB (NFκB ), AMP-acti-
vated protein kinase, and Wnt/β-catenin (88). It has been 
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demonstrated that anthocyanins induce apoptosis of can-
cer cells by activating caspases and mediating ROS and 
JNK/p38-MAPK pathway. Moreover, anthocyanins exert 
metastatic effects through regulating the VEGF signaling 
pathway and degradation of the extracellular matrix (89). 
Cyanidin is a common anthocyanidin, which is naturally 
existed in its glycosylated form as cyanidin-3-glucoside 
(C3G). C3G is reported to show efficacy in breast can-
cer, renal cell carcinoma, and colon cancer. C3G inhibits 
the migratory and invasion of breast cancer cells by in-
ducing mesenchymal to epithelial transition via increas-
ing epithelial-mesenchymal transition (EMT) and Sirt1 
expression (90). This glucoside also inhibits proliferation 
and tumor growth in breast cancer via caspase-3 cleavage 
and DNA fragmentation (91). A study shows that C3G 
could be potentially used for the prevention or therapy of 
colon cancer. This study also reveals that C3G exerts its 
effect by binding to talin and promoting the interaction 
of talin with β1A-integrin, which negatively correlates to 
the survival rate of patients with colon cancer (92). At 
concentrations of 25–100 μM, Cyanidin-3-O-glucoside 
(C3G) inhibits the proliferation of renal cell carcinoma 
cells and tumorigenesis by arresting the cell cycle, induc-
ing apoptosis and autophagy by regulating the expression 
of early growth response protein 1 (EGR1), selenoprotein 
W1 (SEPW1), p62 or sequestosome 1, and autophagy re-
lated gene 4 (ATG4) (93). C3G suppresses rheumatoid ar-
thritis by reducing IL-6 and IFN-γ, and increasing IL-10 
and Tregs (94). However, few studies reported about 
the immunomodulatory effects of C3G against cancer 
progression.

Delphinidin has potent antitumor properties associated 
with the proliferation, migration, and invasion of cancer 
cells. At low concentrations, delphinidin suppresses the 
migratory ability and invasiveness of colorectal cancer 
cells both in vitro and in vivo by inhibiting the integrin/
FAK axis and upregulating the expression of miR-204-3p 
(95). Delphinidin prominently inhibits the brain-derived 
neurotrophic factor (BDNF)-induced increase in cell mi-
gration and invasion of SKOV3 ovarian cancer cells by 
decreasing the expression of MMP-2, MMP-9, and AKT 
pathways (96) and also inhibits proliferation by partici-
pating in the PI3K/AKT and ERK1/2 MAPK signaling 
cascades (97). In addition, delphinidin induces apopto-
sis and autophagy by downregulating the expression of 
caspase-3, caspase-9, and AKT/mammalian target of 
rapamycin (mTOR) pathway in breast cancer cells (98). 
Finally, delphinidin has also been shown to induce apop-
tosis by mediating p53 acetylation and oligomerization in 
prostate cancer cells (99).

There are a few reports on the anticancer effects of 
peonidin, malvidin, and petunidin at the molecular level. 
Peonidin is naturally existed as peonidin 3-glucoside 
(P3G), its glycosylated form. A study shows that P3G can 

significantly suppress lung cancer metastasis by attenuat-
ing ERK 1/2 and AP-1 and activating the MAPK pathway 
(100). P3G inhibits the proliferation and tumor growth 
of lung cancer cells by arresting the G2/M phase via the 
downregulation of cell cycle-related proteins such as 
CDK-1, CDK-2, and cyclin B1 (101). Both P3G and C3G 
showed inhibitory effects on human epidermal growth 
factor receptor (HER)-positive breast cancer cells in vitro 
and in vivo. They also promoted the apoptosis of cancer 
cells and inactivated phospho-HER2 and phospho-AKT 
(102). Malvidin, at a dose of 200 mg/mL, inhibited the 
proliferation of several cancer cell lines, including human 
gastric adenocarcinoma cell line, human colon cancer cell 
line HCT-116 Michigan cancer foundation - 7 (MCF7)
(breast), NCI H460 (lung), and SF-268 (central nervous 
system) (103). Malvidin-3-galactoside (M3G) inhibited 
the proliferation, migration, and invasion of HepG2 cells 
and promoted apoptosis by regulating related proteins, 
including cleaved caspase-3, MMP-2 and MMP-9, and 
p-AKT. M3G has also been effective in vivo in inhibiting 
the growth of liver tumors (104). Petunidin-3-O-glucoside 
(P3OG) could exhibit a significant antiproliferative effect 
in glioblastoma multiforme (GBM) by regulating glyco-
lytic metabolism. Moreover, P3OG combined with a PI3K 
inhibitor could significantly induce GBM cell death by 
regulating the silent information regulator 3 (SIRT3)/p53 
and PI3K/AKT/ERK pathways (105). It is well known 
that the occurrence of cancer induced by persistent oxi-
dative stress is closely related to the inflammatory status. 
Phenolic compounds as dietary antioxidants exert a piv-
otal effect in cancer by preventing oxidative stress through 
scavenging free radicals (106).

Many studies have identified the molecular targets of 
these compounds and the effects of these compounds on 
the prevention and treatment of cancer. However, the un-
derstanding of molecular mechanisms in this field is still at 
an embryonic stage, and more studies are needed to better 
comprehend the anticancer properties of anthocyanins.

The anticancer effects of non-flavonoids and their 
potential mechanisms
Diverse non-flavonoids, which have a simpler structure 
compared to that of flavonoids, have been identified in 
wine. Derivatives of hydroxycinnamic and hydroxyben-
zoic acids are the main non-flavonoids present in wine 
that has not been aged in oak barrels. They are usually 
present in the vacuoles of grape cells and can be easily 
extracted when crushed. These compounds play an im-
portant role in the oxidation and subsequent browning 
of grape juice. Hydrolyzable tannins, such as ellagitannin 
and gallotannin, are present during the aging of wine in 
oak barrels. Stilbene in wine is produced in grape skin and 
leaves in response to the infections on grapevines caused 
by Botrytis cinerea and other fungi (2, 107).
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Hydroxycinnamic acids and hydroxybenzoic acid
The most common hydroxycinnamic and hydroxybenzoic 
acids in wine are caffeic, ferulic, chlorogenic, gallic, van-
illic, and coumalic acids. Numerous studies have demon-
strated the antitumor efficacy of phenolic acids in breast, 
ovarian, lung, and oral cancers, and in melanomas. Both 
caffeic and ferulic acid inhibit the proliferation of mel-
anoma cells by downregulating the CK2-induced phos-
phorylation of tyrosinase, which is important in melanin 
biosynthesis (108). Caffeic acid prevents the progression 
of breast cancer cells and promotes cell death by arrest-
ing the cell cycle and reducing cyclin D1, IGFIR, and 
p-AKT levels (109). Moreover, caffeic acid is capable of 
disrupting energy homeostasis and regulating oxidative 
metabolism and glycolysis in cervical tumor cells by acti-
vating the AMPK signaling pathway and suppressing the 
expression of hypoxia inducible factor-1α (HIF-1α), glu-
cose transporter type 1 (GLUT1), hexokinase 2 (HK2), 
protein kinase M (PKM), and lactate dehydrogenase 
(LDH) (110). Ferulic acid is a potential candidate for the 
treatment of several diseases, such as Alzheimer’s disease, 
cardiovascular diseases, diabetes mellitus, and cancers 
of the colon and breast. Ferulic acid suppresses the me-
tastasis of breast cancer cells by mediating epithelial to 
mesenchymal transition (111). It also suppresses cell pro-
liferation and induces apoptosis in osteosarcoma cells by 
suppressing the PI3K/AKT pathway and downregulating 
the cell cycle-related proteins, CDK2 and BCL-2 (112). 
Moreover, it inhibits the proliferation of human cervical 
carcinoma cells by inducing cell cycle and autophagy. The 
cell cycle-related proteins, such as cyclin D1, and the au-
tophagy-related proteins, including LC3II and autophagy 
associated genes (ATG) families, are reported to be regu-
lated by ferulic acid (113). In an in vivo study, ferulic acid 
was administered to male F344 rats with azoxymethane 
(AOM)-induced colon carcinogenesis, which resulted in 
the inhibition of tumor growth (114).

Besides caffeic and ferulic acids, several other phe-
nolic acids in wine show potential anticancer effects 
and the mechanism of  anticancer including the induc-
tion of  cell cycle arrest, inhibition of  cell proliferation, 
reduction of  ROS production, induction of  apoptosis 
and autophagy, and the reduction of  migration and in-
vasion. The primary mechanisms of  chlorogenic acid 
against cancer include inhibiting the AMPK, hypoxia 
inducible factor (HIF), VEGF, PI3K, and MAPK/
ERK pathways (115). For instance, chlorogenic acid 
motivates apoptosis in human renal cell carcinoma by 
activating the caspase protein and inhibiting the PI3K/
AKT/mTOR pathway (116). Gallic acid inhibits cancer 
cell growth by mediating the modulation of  genes that 
encode for cell cycle proteins, metastasis, angiogene-
sis, and apoptosis. The main mechanism of  gallic acid 
against cancer is by activating the NF-κB and AKT 

pathways and attenuating the activity of  cyclooxygen-
ase, ribonucleotide reductase, and glutathione (117). 
Gallic acid inhibited the migration and invasion of 
human nasopharyngeal carcinoma cells by decreasing 
the expression of  MMP-1, AP-1, and E26-AMV virus 
oncogene cellular homolog (ETS-1) (118). In addition, 
vanillic acid significantly arrested the G1 phase and in-
hibited the proliferation of  human colon cancer in vitro 
and in vivo by suppressing the HIF-1α expression and 
inhibiting the mTOR/p70S6K/eIF4E binding protein 
1 (4E-BP1) and Raf/MEK (Mitogen-activated protein 
kinase)/ERK pathways (119). Coumaric acid showed 
its inhibitory effect in the lung (A549), colon (Caco-2), 
breast (MCF7), hepatic (HepG2), and neuroblastoma 
(N2a) cancer cell lines. Coumaric acid exerts its anti-
cancer effect as an antioxidant, by depletion of  ROS, 
which has a distinct impact on cellular functions (120).

Hydrolyzable tannins
Hydrolyzable tannins in wine are only present in wine 
fermented in oak barrels and not in grapes. They hydro-
lyze into their respective acid and alcohol components 
during the aging of  wine, which is of  great importance 
for flavor development. Ellagitannins (ET) and gallotan-
nins (GT) are the most common hydrolyzable tannins 
in wine, which can be hydrolyzed into ellagic and gal-
lic acids, respectively. Many studies show that ET, GT, 
and their derivatives, such as ellagic and gallic acids, 
have chemopreventive and chemotherapeutic activities 
in prostate, colon, breast, oral, esophageal, gastric, liver, 
cervical, lung, and skin cancers (121–124). ET inhib-
ited the proinflammatory pathways by suppressing the 
NF-κB. The anti-inflammatory activity could enhance 
the antioxidant capacity of  ET by reducing the levels 
of  free radicals (125). The antiproliferative activity of 
ET is owing to other mechanisms, which involve its par-
ticipation in cell cycle arrest, apoptosis, mitochondrial 
pathways, migration and invasion, metastasis, and an-
giogenesis. For instance, ET inhibited the proliferation 
of  colon cancer cells and promoted the apoptosis of 
colon cancer cells by anti-inflammatory effect through 
activating the AKT pathway and suppressing the NF-κB 
pathway (126). Another study reports that ET and its 
derivatives inhibit the proliferation of  HT-29 cells by ar-
resting G0/G1 and G2/M phases and regulating the cell 
cycle-related proteins (127).

Similar to ellagitannins, gallotannins exert anticancer 
effects by virtue of multiple mechanisms, including the 
suppression of proliferation and colony formation, arrest-
ing cell cycle, inducing apoptosis and autophagy, increas-
ing p21 level and SA-β-Gal activity, and regulating the 
AIRT1/AMPK pathway (128). However, the health ben-
efits of gallotannins have rarely been discussed because 
they are not absorbable after consumption (129).
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Table 2.  Effects of the main phenolic compounds of wine in different cancer types

Phenolic 
compounds

Cancer type Biological effects Reference

Quercetin Esophageal squamous  
carcinoma cells

Proapoptotic effects through mitochondria-mediated pathways or by increasing 
cytotoxicity and oxidative stress

(40)

Hepatocarcinoma cells Proapoptotic effects by increasing the cytotoxicity and oxidative stress, and inhib-
its cell proliferation by altering the CYP1A1 level

(41, 42)

Breast cancer cells Inhibits proliferation by arresting the cell cycle in G1 phase (43)

Lung carcinoma cells Proapoptotic effects by increasing G2/M phase, p53 and p21 levels, and induces cytotoxicity (44)

Oral squamous cell carcinoma Proapoptotic effects by reducing the NF-κB and xIAP levels (45)

Prostate cancer Inhibits the growth, migration, and invasion through the VEGF/Akt/PI3K pathway (47)

Kaempferol Breast cancer cells Arrests the cell cycle, inhibits migration and invasion through the PKCδ/MAPK/
AP-1 pathway and the MMP-9 level, and induces apoptosis by regulating the cleav-
age of PARP, BCL-2, and Bax

(55–57)

Gastric, hepatic, and lung cancers Induces autophagy by increasing the conversion of LC3-I to LC3-II (59–61)

Myricetin Breast cancer Suppresses cancer metastasis by downregulating MMP-2/9 and mRNA ST6GAL-
NAC5 levels

(63)

Ovarian, skin, and colon 
cancer cells

Induces apoptosis by upregulating the Bax, BCL-2, cleaved PARP, and caspase-3 levels (54)

Catechin Lung cancer Induces apoptosis by reducing the levels of c-Jun and Erk1/2 (69)

Colon cancer Induces apoptosis by suppressing phospho-Akt and nuclear β-catenin levels (70)

Prostate cancer Inhibits the IGF/IGF1R axis and restrains the VEGF-dependent angiogenesis (71)

Epicatechin Hepatocarcinoma cells Inhibits proliferation by regulating the NF-κB, AP-1, Akt, and Nrf2 pathways (74)

Proanthocyanidins Oral squamous cell carcinoma, 
skin cancer, and colon cancer cells

Inhibits proliferation and induces apoptosis by regulating the PI3K pathway and 
decreasing PKB ser (473) phosphorylation levels

(80, 81)

Prostate cancer cells Reduces the MMP-2 and MMP-9 levels (82)

Breast cancer and lung 
cancer cells

Arrests the G0/G1 phase by increasing Cip1/p21 levels and decreasing cyclin levels (78, 83)

Cyanidin-3-glu-
coside

Breast cancer cells Inhibits migration and invasion by increasing the EMT and Sirt1 expression, and 
inhibits proliferation via caspase-3 cleavage and DNA fragmentation

(90, 91)

Renal cell carcinoma cells Inhibits proliferation by regulating the EGR1, SEPW1, p62, and ATG4 levels (93)

Delphinidin Colorectal cancer Inhibits the integrin/FAk axis and upregulates the expression of miR-204-3p (95)

Ovarian cancer cells Decreases the expression of MMP-2, MMP-9, AKT pathways, PI3K/AKT, and 
ERK1/2 MAPK pathways

(96, 97)

Breast cancer cells Induces apoptosis and autophagy (98)

Prostate cancer cells Mediates p53 acetylation and oligomerization (99)

Peonidin 
3-glucoside

Lung cancer Regulates ERK 1/2 and AP-1 levels, the MAPK pathway, and cell cycle-related 
proteins

(99, 101)

Malvidin 
3-galactoside

Hepatocellular carcinoma Regulates the cleaved caspase-3, MMP-2 and MMP-9, and p-AKT levels (104)

Petuni-
din-3-O-glucoside

Glioblastoma multiforme Inhibits proliferation by regulating glycolytic metabolism (105)

Caffeic acid Breast cancer cells Reduces cyclin D1, IGFIR, and p-AKT levels (109)

Cervical tumor cells Activates the AMPK pathway and the expression of HIF-1α, GLUT1, HK2, PKM, 
and LDH

(110)

Ferulic acid Osteosarcoma cells Suppresses the PI3K/AKT pathway and downregulates the CDK2 and BCL-2 levels (112)

Cervical carcinoma cells Induces cell cycle and autophagy (113)

Ellagitannins Colon cancer cells Inhibits the proinflammatory pathways, activates the AKT pathway, and suppresses 
the NF-κB pathway

(125, 126)

Gallotannins Hepatocellular carcinoma cells Increases p21 level and SA-β-Gal activity and regulates the AIRT1/AMPK pathway (128)

Resveratrol Lung cancer cells Decreases the NADPH activity and actuates the Nrf2 pathway (134)

Breast cancer cells Modulates the activity of FOXO3a and inhibits the expression of VEGF, EGFR, 
and FGF-2

(140, 146)

Epidermoid carcinoma Increases the caspase-3 level and the p21/WAF1/CIP pathway (143)

Colorectal cancer Increases the levels of IL-6, IL-8, and Th17 (147)
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Stilbenes (Resveratrol)
Resveratrol is the most biologically active stilbene mono-
mer in wine, which is generated when grapevines are in-
fected by Botrytis spp. and other fungi (2). All cis and trans 
isomers of resveratrol have been reported to be found in 
wine. The average concentration of total resveratrol is 7 
mg/L in red wine, 2 mg/L in rose wine, and 0.5 mg/L in 
white wine (130, 131). The first study in 1997 demonstrated 
the anticancer activity of resveratrol (11). Since then, for 
decades, numerous studies have reported the potent and 
protective effects of resveratrol against various types of 
cancers. Resveratrol has been shown to be effective in 
lung, breast, skin, gastric, colon, cervical, uterine, liver, 
eye, blood, kidney, prostate, brain, bladder, thyroid, head, 
esophageal, ovarian, and bone cancers (132). Resveratrol 
exhibits anticancer effects by modulating multiple cell sig-
naling molecules, proteins involved in cell survival and cell 
proliferation, and various cell signaling pathways. Resvera-
trol inhibits cancer in the initiation stage by suppressing the 
oxidative stress by increasing the activity of the antioxidant 
enzymes and preventing DNA damage by scavenging ROS 

(133). Resveratrol also decreases the nicotinamide adenine 
dinucleotide phosphate (NADPH) activity and actuates 
the Nrf2 signaling pathway (134). Studies show that res-
veratrol exerts antiproliferative effects at the tumor-promo-
tion stage by arresting the cell cycle via regulating the cell 
cycle-related proteins and p53-dependent pathway. It also 
induces apoptosis by activating the mitochondrial apopto-
some and the death receptor pathways (135, 136). Resvera-
trol triggers apoptosis by inhibiting the PI3K/AKT/mTOR 
pathway (137) and NF-κB activation (138), and activating 
the MAPK pathway (139). Resveratrol has also been found 
to modulate the activity of FOXO3a in human breast can-
cer cells (140). It shows an antiproliferative effect in lung 
cancer by suppressing the expression of phosphorylation 
of Rb protein and transcription factors, including AP-1 
and NF-κB (141), arresting the G1 phase of the cell cycle 
through mediating the transforming growth factor-β path-
way (142), and inducing the apoptosis by increasing the 
activities of caspase-3 and the p21/WAF1/CDK-interact-
ing protein (CIP) pathway (143). Resveratrol inhibits cell 
migration and invasion at the tumor-progression stage by 

Fig. 3.  The summary of major mechanisms by phenolic compounds in wine against cancer action.
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suppressing the extracellular matrix and basement mem-
brane by regulating matrix metalloproteinases (144). 

In addition, resveratrol has been reported to induce im-
mune response in tumor cells by reducing the Th17 pro-
duction and IL-17 secretion, which play a crucial role in 
immunologic processes (145). It is known that IL-17 can 
promote tumor angiogenesis by increasing VEGF levels in 
tumor cells. Studies also show that resveratrol inhibits angio-
genesis-related proteins such as VEGF, epidermal growth 
factor receptor and fibroblast growth factor 2 (FGF-2) 
(146). IL-17 can enhance the levels of IL-6 and IL-8, while 
Th17 has been demonstrated to inhibit the antitumor effect 
by decreasing T-CD8+ cells. Th17 also influences the expres-
sion of transforming growth factor β (TGF-β), CD39, and 
CD73 ectonucleotides (147, 148). In tumors, resveratrol has 
been shown to reduce the TGF-β level in vivo and increase 
the IFN-γ production in T-CD8+ cells (149, 150). Resver-
atrol enhances the function of T-cell by directly targeting 
programmed cell death 1 ligand 1 (PD-L1) as an immuno-
modulating mechanism in cancer cells (151). 

However, clinical studies on the tumor-inhibition effect 
of resveratrol in cancer patients are limited. Some stud-
ies suggest that patients with colon and prostate cancers 
treated with resveratrol prior to surgery are benefitted 
more than those not receiving resveratrol (152). The sam-
ple sizes in these clinical trials are not large or representa-
tive, therefore, additional studies are warranted.

Conclusion
Wine is the alcoholic drink rich in phenolic compounds. 
Several studies have suggested that the moderate consump-
tion of wine may have health benefits owing to its pheno-
lic compounds. These phytochemicals showed significant 
chemoprotective and chemotherapeutic effects in almost 
all types of human cancers. The major functions of wine 
phenolic compounds on different cancer types are summa-
rized in Table 2. The mechanisms of action of these pheno-
lic compounds against cancer in vitro and in vivo, including 
DNA damage and scavenging ROS, induction of cell pro-
liferation, arresting cell cycle, programmed cell death, inva-
sion and metastasis, immunity and metabolism, regulation 
of multiple signaling molecules, and gene expression have 
been discussed (Fig. 3). However, most of these mecha-
nisms are complex, and the effects and underlying molec-
ular mechanisms of some of the phenolic compounds in 
wine, such as phenolic acids, still remain to be investigated. 
In the future, the effects of wine on human health, includ-
ing its anticancer effects, need to be further explored. 

Despite the beneficial anticancer effects of phenolic 
compounds in wine, many challenges have yet to be over-
come. The first challenge is bioavailability, and there are 
still limited studies on their pharmacokinetics in humans. 
The absorption and bioavailability of wine-derived phe-
nolic compounds are not well but better with daily diet. 

Nanoparticles have been extensively studied to deliver 
anticancer drugs because of their enhanced anticancer 
potential and promising clinical application. The other 
challenge is the use of phenolic compounds as an adju-
vant in radiotherapy or chemotherapy with established 
anticancer drugs such as cisplatin and gefitinib. The com-
bined therapies have great prospects and potential because 
the use of phenolic compounds can reduce the dose of an-
ticancer drugs and, therefore, reduce side effects. In addi-
tion, experimental and clinical studies to further study the 
anticancer potential of wine-derived phenolic compounds 
and elucidate their mechanisms of action are required.
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