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Abstract

Background: Chukrasia tabularisis, a well-known tropical tree native to southeastern China, has anti-inflam-
matory and antioxidant activities, and contains large amounts of limonoids and triterpenoids.
Objective: The aim of this study was to investigate the potential anti-inflammatory activity of limonoids from 
C. tabularis on lipopolysaccharide (LPS)-mediated RAW264.7 cells.
Methods and results: Using a bioassay-guided approach, the chemical fraction with high anti-inflammatory 
activity was found and its chemical constituents were investigated. Phytochemical studies on active extracts 
resulted in the separation of three novel phragmalin limonoids (1–3), together with two known limonoids 
(4–5) and 11 tirucallane triterpenes (6–16). The activity of these isolated compounds in the production of 
nitric oxide (NO) on LPS-reated macrophages was evaluated. Limonoid 2 indicated significant anti-inflamma-
tory activities with IC50 value of 4.58 μM. Limonoid 2 notably inhibited the production of NO, interleukin- 6 
and tumor necrosis factor-α on macrophage. Signal transduction and activation of STAT and NF-κB activa-
tors were effectively blocked by limonoid 2.
Conclusions: These results indicate that limonoid 2 has an anti-inflammatory effect by the inhibiting JAK2/
STAT3, iNOS/eNOS, and NF-κB signaling pathways and regulating inflammatory mediators.
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Inflammation is an overreaction of the body to a stimu-
lus and uncontrolled inflammation has been proven to 
be related to many diseases, such as rheumatoid arthri-

tis, cardiovascular disease, and cancer (1–3). Glucocorticoid 
and non-steroidal anti-inflammatory drugs are representa-
tive anti-inflammatory medicines available in the market, 

but they may have serious side effects (4). In order to ame-
liorate these conditions, many anti-inflammatory medicinal 
plants have attracted attention, and a variety of plant-de-
rived medicines have been successfully developed (5–7). 
Research based on medicinal plants is considered an effec-
tive strategy for developing anti-inflammatory medicines.

Popular scientific summary
•  Chukrasia tabularis contains large amounts of limonoids, which have anti-inflammatory and antioxidant 

activities.
• Three novel limonoids (1–3) were isolated from the fruits of C. tabularis.
•  Limonoid 2 exhibited significant anti-inflammatory activities on the NO production of LPS-induced 

macrophages. Limonoid 2 decreased the expression level of proinflammatory cytokines in LPS-treated 
macrophages possibly by inhibiting STAT and NF-κB signaling pathways.
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Limonoids are a large class of natural substances in 
plants, which has aroused great interest due to its complex 
structure and multiple biological activities (8, 9). The plants 
belonging to the family Meliaceae are famous for their highly 
diverse structure of limonoids and broad range of bioac-
tivities (10). Chemical research on species belonging to the 
genus Chukrasia (Meliaceae) has led to separation of vari-
ous phragmalin limonoids (11). Previous research has shown 
that phragmalin limonin has extensive bioactivity, includ-
ing antifeedant (12), antibacterial (13), potassium chan-
nel blockade (14), and anti-inflammatory effects (15). As a 
medicinal plant, Chukrasia tabularis A. Juss is widely distrib-
uted in tropical Asia, including southern China (16). Its root 
bark has anti-influenza, astringent, and anti-diarrheal effects 
in Chinese medicine (17). According to reports, a variety of 
phragmalin limonoids with various structural characteristics 
have been found in the bark, seeds, and leaves of the plant 
(14, 18–20). In our previous studies, 14 limonoids were sep-
arated from root bark of C. tabularis (21), and 24 limonins 
were separated from the bark of C. tabularis (22).

The objective of this study was to investigate the poten-
tial anti-inflammatory activity of the fruits of C. tabu-
laris. Phytochemical studies on active extracts resulted in 
the separation of three novel phragmalin limonin orthoe-
sters (1–3), along with two known limonins (4–5) and 11 
tirucallane triterpenes (6–16). In the study, we reported 
the results of separation, structure elucidation and bioas-
say of the separated constituents.

The anti-inflammatory assay of 1–16 on LPS-stimulated 
macrophages indicated that limonin 2 exhibited nota-
ble inhibitory activity, with an IC50 value of 4.58 µM. 
In addition, we evaluated the effect of limonin 2 on the 
production of IL-6, NO and TNF-α by LPS-treated mac-
rophages and its possible anti-inflammatory mechanism.

Materials and methods

General information
NMR spectra were acquired on a Bruker AM-400 instru-
ment. HRESIMS was obtained in a Bruker APEX III mass 
spectrometer. High performance liquid chromatography 
(HPLC) was performed using Waters column (10 mm×250 
mm). Enzyme immunoassay kit for NO, IL-6 and TNF-α 
was provided by Nanjing Jiancheng Biotech (Nanjing, 
China). Lipopolysaccharide (LPS) and nitric oxide (NO) 
were provided by Sigma (Chemical Company in St. Louis, 
USA). Antibodies against JAK, STAT, NF-κB P65, IKBα, 
IKKα, iNOS, and eNOS were provided by Cell Signaling 
Technology (USA). Electronic circular dichroism (ECD) 
spectra were measured at JASCO J-1500 (J-1500, Japan) 
spectropolarimeter.

Plant materials
The fruits of Chukrasia tabularis A. Juss were harvested 
in October 2018 in Fuzhou, Fujian, China. The plant  

was authenticated by Dr. YHZ. A voucher speci-
men (ZYH20181002) was deposited in the Pharmacy 
Department, Fujian Medical University.

Chromatographic separation
The chipped dried fruit of C. tabularis (9.7 kg) was 
extracted with methanol. The methanol extract was par-
titioned by n-hexane, CH2Cl2, ethyl acetate and n-buta-
nol, respectively. The CH2Cl2 portion was fractionated 
to a silica gel column to give 8 fractions (A-H). Fraction 
C was fractionated to an MCI gel, further applied to 
Sephadex LH 20 to obtain 6, 7, 8, 9, 14, and 15. Fraction 
E was fractionated on the MCI gel to obtain 7 fractions  
(E1–E7). Fraction E3 was fractionated to the ODS column 
to give three fractions (E3a1–E3a3). Fraction E3a1 was 
fractionated on the silica gel to give 10 and 11. Fraction 
E3a2 was fractionated on the Sephadex LH 20 and then 
the silica column to yield 5. Fraction E3a3 was performed 
on HPLC to give 1, 2 and 3. Fraction F was performed 
on MCI gel to yield 5 fractions (F1–F5). Fraction F2 
were performed on Sephadex LH 20 to obtain 12 and 
13. Fraction F3 was performed on Sephadex LH 20 and 
applied to the HPLC to obtain 4 and 16.

Assessment of anti-inflammatory activity
The inhibitory activities of compounds 1–16 on LPS stimu-
lated macrophages was determined by Griess reaction. The 
NO content was detected by the NO kit according to the 
protocol described earlier (23). RAW264.7 cells obtained 
from the China Center for Cultivated Studies (Shanghai, 
China) were maintained in DMEM containing 10% FBS, 
and under 5% CO2 at 37°C. Briefly, the cells were seeded 
in a 96-well plate (1 × 105 cells/well), after 8 h of pre-in-
cubation under 5% CO2 at 37°C, compounds 1–16 were 
added to the well plate, respectively, for 12 h. Then the cell 
of administration group and model group were induced 
with LPS (2 µg/mL) and the control group was treated with 
DMSO as contrast. The supernatant of the cell culture 
were collected 24 h later.

Detection of cytokines
After 8 h of pre-incubation under 5% CO2 at 37°C, limo-
nin 2 was added to the well plate, respectively, for 12 h. 
Then the cell of administration group and model group 
were induced with LPS (2 µg/mL) and the control group 
was treated with DMSO as contrast. The cell supernatants 
of samples were collected to detect the content of IL-6 
and TNF-α by ELISA according to manufacturer proto-
col. And the normal range of IL-6 and TNF-αELISA kits 
is 3.75–120 pg/mL and 20–640 pg/mL, respectively.

Western blot analysis
Western blot analysis was performed to observe the activi-
ties of limonin 2 on NF-κB P65, JAK, STAT, IKBα, IKKα, 
iNOS and eNOS protein levels. Macrophages were dispersed 
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in 6 well plates for 24 h. After incubation, the cells were pro-
cessed by HFPS and treated with LPS for 24 h. After treat-
ment, cells were harvested and lysed. Western blot analysis 
was based on the methods described previously (24).

Statistical analysis
These values indicate the mean ± standard error (SEM) 
of three independent experiments. The difference between 
groups is analyzed by t-test and IBM SPSS statistical 
software.

Results

Bioassay guided separation of active constituents
The anti-inflammatory activity of methanol, n-hexane, 
CH2Cl2, ethyl acetate, and n-butanol extracts from fruits 
of C. tabularis was evaluated by xylene-induced mouse ear 
swelling assay. The anti-inflammatory activity assay indi-
cated that the CH2Cl2 extract displayed stronger anti-inflam-
matory effect than the ethyl acetate extract (Supplementary 
Table S1). Therefore, separation and purification was 
focused on the dichloromethane extract. Five phragmalin 
limonoids (1–5), including three novel limonoids (1–3) and 
11 tirucallane triterpenes (6–16), were isolated and identi-
fied from dichloromethane extract (Fig. 1).

Structural elucidation
Phragmalin A (1) was separated as a white powder. The 
molecular formula C37H48O15 was defined based on the 
negative HRESI-MS and pseudo-molecular ion peak 
at m/z 731.2919 [M-H]+ (calcd. 731.2914), indicating 14 
degrees of unsaturation. The IR spectra showed absorp-
tion, indicating the functionalities of hydroxyl (3,498 cm-1), 
ester (1,741 cm-1), and unsaturated carbonyl (1,696 cm-1). 
The 1H and 13C NMR spectra of 1 exhibited resonances 
of two 2-methylpropanoyl, three quaternary methyl, one 
carbomethoxy, a D ring lactone, a hemiactal group, and 
an ortho acetyl unit (Supplementary Table S2). The given 
spectral characteristics and their comparison with the 

simultaneous presence of spectrum 5 strongly suggested 
that 1 is a limonoid with a phragmalin skeleton. 1H and 
13C NMR spectra for 1 were highly similar to the data for 5 
in ring A, B, C, and D; the main difference in the 5 data of 
C-21, C-20, C-23, and C-22 in the E ring was the presence 
of a γ-hydroxybutenolactone group, rather than a furan 
group. In the HMBC spectra, a clear cross peak of H-18 / 
C-13, C-12, C-14 and C-17, H-19 /C-1, C-9, C-10 and C-5, 
H-28/C-3, C-5, C-4 and C-29, H-30 /C-1, C-2, C-3, C-8 and 
C-9 and H-15 /C-8, C-14, C-13 and C-16 were observed. 
Hence, the plane structure of 1 was deduced to be phrag-
malin 1, 8, 9, orthoacetate (25–27) (Supplementary Fig. 
S1), and the positions of two 2-methyl propanoyl and a 
methyl ester moiety were situated in C-3, C-30, and C-7, 
respectively. By comparing the 13C NMR spectra with a 
corresponding data model for part of Turrapubesin G (28) 
and 21- hydroxy- 20 (22) -ene-21, a 23-γ-lactone group was 
clearly identified. The HMBC correlation from H-22 to 
C-17 and from H-17 to C-20 clearly showed a connec-
tion of ring D with E. The relative configuration of C-3, 
C-30, and C-17 were confirmed with NOESY experiments 
(Supplementary Fig. S1). The ECD spectrum 1 calculated 
by TDDFT (29, 30) was very consistent with the experi-
mental spectrum and pointed to the absolute configura-
tion of 1R, 2S, 3S, 4R, 5S, 8R, 9S, 10R, 13S, 14R, 17R, 
21R, and 30R of 1 (Supplementary Fig. S2A). Thus, the 
absolute configuration of 1 was characterized as depicted 
in Supplementary Fig. S1 and named Phragmalin A.

Chukrasin F (2) was obtained as a white powder. 
The  HRESI-MS spectra of 2 indicated an ion peak at 
m/z 745.3094[M+H]+, corresponding to the molecular 
formula C38H48O15 (calcd. [C38H49O15]

 + for 745.3070). 
The IR spectra indicated absorption bands of γ-lactone 
(1,743 cm-1) and ester carbonyl (1,720 cm-1) functional-
ities. The 1H and 13C NMR of 2 contained signals rep-
resenting one propanoyl, three quaternary methyl, one 
carbomethoxy, one 2-ene-4-methyl-pentanyloxy, one D 
ring lactone, one hemiactal group, and an orthoacetyl 
group (Supplementary Table S2). The aforementioned 

Fig. 1. Chemical structures of compounds 1–3.
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spectral characteristics and the comparison with the 
co-occurrence of 1 strongly suggested that 2 is a limonoid 
with a phragmalin skeleton. The 1H and 13C NMR spec-
tra of 2 on the B, C, and D rings were very similar to 1, 
and the main difference between C-21, C-20, C-23, C-22, 
and compound 1 on the E ring was the presence of the 
γ-hydroxy butenolide group, as well as a propanoyloxy 
and a 2- ene-4-methyl-pentanyloxy moiety on the B and 
A rings at C-30 and C-3. The γ-hydroxybutenolide unit 
was proposed according to the four carbon atoms and the 
corresponding proton. The 23- hydroxy-20(22)-ene-23, 
21-γ-lactone group can be clearly observed by comparing 
the chromatographic values with the corresponding values 
model for part of the compound 17- (5-methoxy- 2-oxofu-
ran- 3- yl)- 28- deoxonimbolide (31). In the NOESY spec-
tra, the correlation of H-28 with H-5, H-5 with H-30, and 
H-28 with H-30 showed that H-28, H-30, and H-5 were all 
β-oriented. Furthermore, H-29 pro-s combined with H-3 
showed that H-3 was α-oriented. Thus, the α-orientation 
of C-17 of the γ-hydroxy butenolide group was estab-
lished. The experimental spectrum was very constant with 
the calculated spectra (Supplementary Fig. S2B), indicat-
ing that compound 2 has (1R, 2S, 3S, 4R, 5S, 8R, 9S, 10R, 
13S, 14R, 17R, 23S, and 30R) an absolute configuration.
Thus, the absolute configuration of 2 was constructed as 
shown in Supplementary Fig. S5.

Chukrasin G (3) was found to have the molecular for-
mula C37H48O15, which was in agreement with the [M]+ ion 
peak 732.2974 (calcd. 732.2992) in HRESI-MS. The molec-
ular formula of 3 was 12 mass units less than compound 2, 
which is consistent with the loss of a carbon atom. The 1H 
and 13C NMR spectrum of 3 exhibited high similarity to 
2 (Supplementary Table S2). The only difference was the 
presence of a 3-methylbutyryl moiety at C-3 of 3, substi-
tuted for a 2-ene-4-methyl-pentanyloxy moiety in 2 (Fig. 1). 
According to the similar 1H and 13C NMR chemical shift, 
the relative configuration of 3 was the same as that of the 
co-occurrence of 2. The calculated ECD spectra 3 were in 
agreement with the experimental curves (Supplementary 
Fig. S2C). Thus, the absolute configuration was designated 
as 1R, 2S, 3S, 4R, 5S, 8R, 9S, 10R, 13S, 14R, 17R, 23S, and 
30R of 3 (Supplementary Fig. S8).

The known compounds, phragmalin, 22, 23-dihy-
dro-23-hydroxy-21-oxo-3, 30- di- isobutyrates (4) (25), 
phragmalin, 3, 30-di-isobutyrates (5) (25), bourjotino-
lone A (6) (32), 21β-methoxy-25-ene-bitrinonediol (7) 
(33), (13a, 14b, 17a, 20S, 23R, 24R)- 23, 24-dihydro-xy-
lanosta-7, 25-dien-3-one (8) (34), 21β- methylmelianodiol 
(9) (35), 24-hydroxyl-7, 25-dien-3-one (10) (36), melian-
odiol (11) (35), 21α, 25- dimethyl- melianodiol (12) (37), 
21β, 25- dimethylmelianodiol (13) (37), 3R, 23S, 24R,  
25- tetraol- 7- glyoxiene (14) (38), piscidinol A (15) (39), 
andhispidone (16) (32), were determined by interpretation 
of their spectral data and comparison with literature.

Cytotoxic activity of compounds1–16
The cytotoxicity of the separated compounds was assessed 
against seven tumor cell lines, Huh7, HepG2, KB, H460, 
Hela, A-549 and MCF-7 (40, 41). The phragmalin 
limonoids 1-5 indicated weak cytotoxicity on these tumor 
cell lines, while tirucallane triterpenoids 6, 9, and 11 
showed potent inhibitory activities on seven human tumor 
cell lines. Tirucallane triterpenoid 7 showed moderate 
cytotoxicity to these seven cancer cell lines. Tirucallane 
triterpenoids (6–16) showed stronger cytotoxicity than the 
phragmalin limonoids (1–5) (Supplementary Table S3).

Effect of 1–16 on NO production
In order to find anti-inflammatory components, we tested 
the effect of all the isolates on the NO production of LPS-
induced macrophages. The results of 1–16 producing NO 
inhibitory activity on RAW264.7 cells are shown in Table 1. 
Compounds 1–16 exhibited significant to potent inhibitory 
activities. Phragmalin-type limonoid orthoesters (1–5) exhib-
ited potent anti-inflammatory effects, especially limonoids 
1–3, with inhibition rates between 4.58 and 10.45 μM, indi-
cating that the orthoester groups in phragmalin limonoids 
play a crucial role in anti-inflammation. Tirucallane tri-
terpenoids (6, 8–15) showed potent to moderate anti-in-
flammatory effect, with inhibition rate ranging from 11.15 
to 95.09 μM, indicating that phragmalin limonoids have 
stronger anti-inflammatory activity than tirucallane triter-
penoids. Limonin 2 showed the strongest anti-inflamma-
tory effect, with an IC50 value of 4.58 μM. Therefore, we 
further investigated the potential anti-inflammatory effect 
and molecular mechanisms of limonin 2.

Effect of limonin 2 on RAW264.7 cell viability
The cytotoxicity of limonin 2 to RAW264.7 cells was detected 
by SRB assay. After treatment with limonin 2 with 5 ~ 200 
μM for 24 h, the relative survival rate was 100.7, 96.3, 93.9, 
88.0, 76.4, 64.4, and 56.7%, respectively (Fig. 2), which indi-
cates that the viability of RAW264.7 cells was not notably 
affected by compound 2 within 24 h and the concentration 

Table 1. Inhibitory activity of compounds 1–16 on LPS-induced 
NO production in RAW264.7 cells

Compounds IC50(μM) Compounds IC50(μM)

1 10.29 ± 0.39 10 95.09 ± 9.40

2 4.58 ± 0.72 11 13.34 ± 2.67

3 10.45 ± 0.98 12 13.93 ± 5.33

4 21.92 ± 5.61 13 24.86 ± 4.60

5 35.60 ± 7.23 14 11.15 ± 1.12

6 35.60 ± 4.29 15 33.56 ± 4.77

7 >100 16 >100

8 46.07 ± 6.11 Indomethacina 26.18 ± 1.56

9 52.52 ± 8.98

aPositive control
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was 0–20 μm. Therefore, compound 2 of 0–20 μm was used 
in subsequent experiments to avoid the influence of cyto-
toxic and anti-inflammatory effect detection.

Effect of 2 on LPS treated production of IL-6 and TNF-α
The anti-inflammatory activity of limonin 2 on LPS 
treated IL-6, NO and TNF-α was detected (42). As shown 
in Fig. 3A, B and C, the addition of limonin 2 notably 
inhibited the production of NO, IL-6 and TNF-α. The 
result indicated that limonin 2 can inhibit the expressions 
of IL-6, TNF-α and NO in LPS-treated macrophages, 
and achieve an anti-inflammatory effect. The inhibitory 
activity of limonin 2 is better than that of indometha-
cin, indicating that limonin 2 could effectively inhibit the 
inflammatory response of LPS-treated macrophages.

Compound 2 blocked LPS-treated NF-κB activation
The NF-κB signaling cascade plays an important role in 
the adjustment of inflammation (43, 44). The expression 

of NF-κB P65, IKB, and IKKα were measured by Western 
blot to investigate the anti-inflammatory mechanism of 
limonin 2. The results exhibited that limonin 2 downreg-
ulates the expressions of NF-κB p-P65 (Fig. 4A, B and 
C). Limonin 2 inhibited the phosphorylation and degra-
dation of IKBα (Fig. 4A, D and E) and IKKα (Fig. 4A, 
F and G). These data indicate that limonin 2 blocks LPS-
stimulated activation of the NF-κB signaling.

Compound 2 blocked LPS-treated STAT3 activation
To study the effect of limonin 2 on the STAT signaling 
cascades of LPS-treated macrophage, the levels of JAK2 
and STAT3 was measured (45). As shown in Fig. 5A, B 
and C, the expression levels of STAT3 and JAK2 were 
increased notably in RAW264.7 cells compared with con-
trol group, while the expression level of STAT3 and JAK2 
was notably reduced in limonin 2 group.

Compound 2 blocked LPS-treated eNOS activation
To study the effect of limonin 2 on eNOS signaling cas-
cade on LPS treated macrophages (46), the level of eNOS 
was measured. The upregulation of iNOS expression in 
LPS-treated macrophage was observed (Fig. 6A and B). 
Compound 2 inhibited the expression of iNOS stimu-
lated by LPS in macrophage. At the same time, down-
regulation of eNOS protein expression was also found in 
LPS-stimulated macrophages (Fig. 6A and C). Similarly, 
eNOS protein expression was completely restored with 
compound 2. The effects of limonin 2 on expression of 
iNOS and eNOS in macrophages induced by LPS did not 
differ between doses.

Discussion
In this study, the biological activity of different chemical 
fractions of a methanol extract of C. tabularis was evalu-
ated. The results showed that the dichloromethane frac-
tion showed obvious anti-inflammatory activity and its 

Fig. 2. Effect of compound 2 on RAW264.7 cells viability. 
RAW264.7 cells were treated by assigned concentration of 
compound 2 or DMSO for 24 h. The data are expressed as the 
mean ± SEM (n = 3). The cells viability (%) = (ODcompound 2 – 
ODDMSO)/ODDMSO ×100. *P < 0.05,**P < 0.01 compared with 
control cells treated by DMSO. Statistical differences were 
analyzed by unpaired t-test.

Fig. 3. Effects of compound 2 on the production of TNF-α, NO and IL-6 in LPS-induced macrophages. The macrophages were 
incubated with LPS (1 μg/mL) and treated with compound 2 (2.3 and 9.2 μmol/L) for 24 h. Indomethacin (INM) was used as the 
positive control. (A) The levels of TNF-α, (B) NO, and (C) IL-6 in the supernatant were assayed using ELISA kits. All values 
given are the mean ± SEM. *P <0.05, **P <0.01 compared with the LPS group.
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phytochemical characteristics were further analyzed. Five 
phragmalin limonoids (1–5), including three novel limonoids 
(1–3) and 11 tirucallane triterpenes (6–16), were separated 
and identified from dichloromethane extract. All  isolated 

compounds (1–16) were measured for NO productions in 
LPS-treated macrophages and cytotoxic activity. 

We used further experiments to explore the inflam-
matory effect of compound 2 in macrophages in vitro. 

Fig. 4. Effect of compound 2 on inhibiting activation of the IKKβ/NF-κB signaling pathway induced by LPS. (A) Representative 
result of Western blot. Relative expression levels of p-P65(B), P65(C), p-IKBα (D), IKBα (E), p-IKKα/β(F), and IKKα/β(G). 
*P < 0.05, **P < 0.01 compared with model cells that treated by LPS. Statistical differences were analyzed by unpaired t-test.

Fig. 5. Effect of compound 2 on inhibiting activation of the JAK2/STAT3 signaling pathway induced by LPS. (A) Representative 
result of Western blot. Relative expression levels of p-JAK2 (B) and p-STAT3(C). *P < 0.05, **P < 0.01 compared with model 
cells that are treated by LPS. Statistical differences were analyzed by unpaired t-test.
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The results show that compound 2 significantly reduced 
the secretion levels of NO, IL-6, and TNF-α after treating 
macrophages with LPS (Fig. 3A, B and C). At the same 
time, as the dose of compound 2 increased, the secre-
tion level of NO, IL-6, and TNF-α against RAW264.7 
cells gradually reduced, indicating that compound 2 
helped to reduce inflammatory responses to LPS-induced 
macrophages.

To research the anti-inflammatory mechanism of limo-
nin 2, we tested NF-κB signaling proteins in macrophages. 
The NF-κB signaling cascade plays a key role in the 
inflammatory process (47). Research has indicated that 
in LPS-treated macrophages, the NF-κB signaling cas-
cades are activated (48, 49). The results indicated that the 
level of NF-κB p-P65, IKKα, and IKBα in macrophages 
treated with LPS were notably increased compared with 
control group (Fig. 4A, B, C, D and F), which indicates 
that the NF-κB signaling cascades in LPS-treated macro-
phages is notably activated. Limonin 2 treatment signifi-
cantly decreased the levels of these proteins with notable 
anti-inflammatory activities (Fig. 4A–G). The result indi-
cated that limonin 2 can inhibit LPS-stimulated macro-
phage inflammation by inhibiting the NF-κB signaling 
cascades.

The JAK and STAT signaling cascades are two major 
cascades that include transcription factors associated with 
pro-inflammatory cytokine responses in LPS-treated mac-
rophage inflammation (50). Proinflammatory cytokines 
are fundamental regulators of inflammation development 

(51). The improvement of cytokine and JAK and STAT 
expression was closely associated with the severity of 
LPS-treated macrophage inflammation. An important 
finding of our study was that compound 2 treatment 
reduced JAK2 and STAT3 phosphorylation, suggest-
ing that inhibition of the JAK2/STAT3 cascade may be 
involved in compound 2′s anti-LPS-induced inflamma-
tion effect, which is related to the expression of proin-
flammatory cytokine genes. At the molecular level, lower 
STAT3 signaling cascades downstream of added to the 
mild proinflammatory cytokines induced by compound 2. 
Compound 2′s downregulation of STAT3 may be associ-
ated with the destruction of upstream kinase JAK2.

iNOS are a sign of inflammation, previous studies 
showed that macrophages in the treatment of the LPS, 
iNOS are upregulated in the cells (52). Increased iNOS in 
tissue correlates with disease severity (53). Recent results 
have indicated that eNOS may be involved in protect-
ing cells from inflammation. In the present study, com-
pound 2 was found to upregulate eNOS expression and 
downregulate iNOS expression in macrophages, indicat-
ing that compound 2 could inhibit apoptosis and exert 
biological effects, which is positively correlated with the 
concentration.

Inflammatory bowel disease is caused by excessive 
immune system activation and multiple signaling path-
ways are involved in the innate and adaptive immune 
response processes. The JAK/STAT signaling path-
way and the NF-κB pathway, for example, are cytokine 

Fig. 6. Effect of compound 2 on inhibiting activation of the iNOS/eNOS signaling pathway induced by LPS. (A) Representative 
result of Western blot. Relative expression levels of iNOS (B) and eNOS (C). *P < 0.05, **P < 0.01 compared with model cells 
that treated by LPS. Statistical differences were analyzed by unpaired t-test.
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transport hubs and their activation is critical for the reg-
ulation of  inflammatory response (54). At the moment, 
most anti-inflammatory drugs for IBD work by regulat-
ing the immune system, with Chinese herbal medicines 
showing superior therapeutic effects and safety when 
compared with synthetic drugs. Many traditional Chinese 
medicines have been shown in studies to relieve disease 
by regulating the JAK/STAT signaling pathway and the 
NF-κB pathway (55, 56). We discovered that limonin 2 
has anti-inflammatory properties and plays anti-inflam-
matory role by regulating NF-κB signaling pathway in 
LPS-induced macrophages. Further studies are needed to 
determine the therapeutic efficacy, effective therapeutic 
dose and potential toxicity of  limonin 2 in animal models 
of  UC. Further research is expected to provide a better 
understanding of  limonin 2’s ability to treat UC.

Conclusions
A total of 16 compounds were isolated by screening the 
anti-inflammatory activity of extracts from C. tabularis 
fruits, including three novel limonins, two known limo-
nins and 11 triterpenoids. The data provided indicate 
that compound 2 can effectively inhibit the inflammatory 
responses by inhibiting the activation of STAT3, iNOS/
eNOS and NF-κB signaling pathways. Therefore, com-
pound 2 may be a valid agent for the development of 
anti-inflammatory medicines and can be determined as 
the source of natural anti-inflammatory molecule.
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