Garcinia cambogia water extract alleviates insulin resistance and hepatic lipid accumulation in mice fed a high-fat diet

  • Jinya Dong Yunnan Research Center for Advanced Tea Processing, Yunnan Agricultural University, Kunming, China; and College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
  • Wen Li Yunnan Rural Science and Technology Service Center, Kunming, Yunnan, China
  • Xiaocui Du Yunnan Research Center for Advanced Tea Processing, Yunnan Agricultural University, Kunming, China; College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
  • Xiaofang He Yunnan Research Center for Advanced Tea Processing, Yunnan Agricultural University, Kunming, China
  • Bin Deng Yunnan Rural Science and Technology Service Center, Kunming, Yunnan, China
  • Hongmei Zheng Yunnan Rural Science and Technology Service Center, Kunming, Yunnan, China
  • Yang Tian College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
  • Chongye Fang Yunnan Research Center for Advanced Tea Processing, Yunnan Agricultural University, Kunming, China; and College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
  • Jun Sheng Yunnan Research Center for Advanced Tea Processing, Yunnan Agricultural University, Kunming, China; and College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
Keywords: Garcinia cambogia, insulin resistance, non-alcoholic fatty liver disease, obesity, hepatic, lipid accumulation, hydroxycitric acid

Abstract

Background: Garcinia cambogia is widely used as a weight-loss supplement, and it is reported to be negatively associated with metabolic diseases including insulin resistance (IR), type 2 diabetes mellitus (T2DM), non-alcoholic fatty liver disease (NAFLD), and dyslipidemia.

Objective: This study aimed to investigate the effect of G. cambogia water extract (GE) on high-fat diet (HFD)-induced obesity, IR, and hepatic lipid accumulation.

Design: C57BL/6 male mice were fed HFD with or without GE, GED and GEP for 16 weeks, and the mice were subjected to insulin tolerance tests and liver histological analysis. The hydroxycitric acid (HCA) levels of GE, GED, and GEP were measured by high-performance liquid chromatography.

Results: The results showed that GE significantly reduced HFD-induced body weight gain (P < 0.001), alleviated IR (P < 0.01), reduced serum total cholesterol (TC) (P < 0.001), and attenuated HFD-induced hepatic lipid accumulation. To investigate the constituent that was responsible for these effects, we separated GE into the component that dissolved in ethanol (GED) and the component that was precipitated by ethanol (GEP). Further mouse experiments showed that both GED and GEP were effective, but GED (which was used at a dose of 4 g/L) was more effective than GEP (which was used at a lower dose of 1 g/L). The HCA levels in GED and GEP were similar, although less than in GE. HCA may be the effective component in GE.

Conclusion: This study provides evidence that G. cambogia can be used as a natural supplement to alleviate IR and hepatic lipid accumulation.

Downloads

Download data is not yet available.

References


1.
Fassina P, Scherer Adami F, Terezinha Zani V, Kasper Machado IC, Garavaglia J, Quevedo Grave MT, et al. The effect of Garcinia cambogia as co-adjuvant in the weight loss process. Nutr Hosp 2015; 32(6): 2400–8. doi: 10.3305/nh.2015.32.6.9587


2.
Semwal RB, Semwal DK, Vermaak I, Viljoen A. A comprehensive scientific overview of Garcinia cambogia. Fitoterapia 2015;102:134–48. doi: 10.1016/j.fitote.2015.02.012


3.
Han JH, Jang KW, Myung CS. Garcinia cambogia attenuates adipogenesis by affecting CEBPB and SQSTM1/p62-mediated selective autophagic degradation of KLF3 t-hrough RPS6KA1 and STAT3 suppression. Autophagy 2021; 8: 1–22. doi: 10.1080/15548627.2021.1936356


4.
Attia RT, Abdel-Mottaleb Y, Abdallah DM, El-Abhar HS, El-Maraghy NN. Raspberry ketone and Garcinia cambogia rebalanced disrupted insulin resistance and leptin signaling in rats fed high fat fructose diet. Biomed Pharmacother 2019; 110: 500–9. doi: 10.1016/j.biopha.2018.11.079


5.
Kim D, Kim J, Kim S, Yoon M, Um M, Kim D, et al. Arousal-inducing effect of Garcinia cambogia peel extract in pentobarbital-induced sleep test and eElectroencep-halographic analysis. Nutrients 2021; 13(8): 2845. doi: 10.3390/nu13082845


6.
Lewis YS, Neelakantan S. (-)-Hydroxycitric acid – the principal acid in the fruits of Garcinia cambogia desr. Phytochemistry 1965; 4: 610–52. doi: 10.1016/s0031-9422(00)86224-x


7.
Márquez F, Babio N, Bulló M, Salas-Salvadó J. Evaluation of the safety and efficacy of hydroxycitric acid or Garcinia cambogia extracts in humans. Crit Rev Food Sci Nutr 2012; 52(7): 585–94. doi: 10.1080/10408398.2010.500551


8.
Chuah LO, Ho WY, Beh BK, Yeap SK. Updates on antiobesity effect of Garcinia origin (-)-HCA. Evid Based Complement Alternat Med 2013; 2013: 751658. doi: 10.1155/2013/751658


9.
Kim KY, Lee HN, Kim YJ, Park T. Garcinia cambogia extract ameliorates visceral adiposity in C57BL/6J mice fed on a high-fat diet. Biosci Biotechnol Biochem 2008; 72(7): 1772–80. doi: 10.1271/bbb.80072


10.
Loe YC, Bergeron N, Rodriguez N, Schwarz JM. Gas chromatography/mass spectrometry method to quantify blood hydroxycitrate concentration. Anal Biochem 2001; 292(1): 148–54. doi: 10.1006/abio.2001.5046


11.
Li L, Zhang H, Yao Y, Yang Z, Ma H. (-)-Hydroxycitric acid suppresses lipid Droplet accumulation and accelerates energy metabolism via activation of the adiponectin-AMPK signaling pathway in broiler chickens. J Agric Food Chem 2019; 67(11): 3188–97. doi: 10.1021/acs.jafc.8b07287


12.
Downs BW, Bagchi M, Subbaraju GV, Shara MA, Preuss HG, Bagchi D. Bioefficacy of a novel calcium-potassium salt of (-)-hydroxycitric acid. Mutat Res 2005; 579(1–2): 149–62. doi: 10.1016/j.mrfmmm.2005.02.021


13.
Kim YJ, Choi MS, Park YB, Kim SR, Lee MK, Jung UJ. Garcinia Cambogia attenuates diet-induced adiposity but exacerbates hepatic collagen accumulation and inflammation. World J Gastroenterol 2013; 19(29): 4689–701. doi: 10.3748/wjg.v19.i29.4689


14.
Vasques CA, Schneider R, Klein-Junior LC, Falavigna A, Piazza I, Rossetto S. Hypolipemic effect of Garcinia cambogia in obese women. Phytother Res 2014; 28(6): 887–91. doi: 10.1002/ptr.5076


15.
Julibert A, Bibiloni MDM, Tur JA. Dietary fat intake and metabolic syndrome in adults: a systematic review. Nutr Metab Cardiovasc Dis 2019; 29(9): 887–905. doi: 10.1016/j.numecd.2019.05.055


16.
Engin A. The definition and prevalence of obesity and metabolic syndrome. Adv Exp Med Biol 2017; 960: 1–17. doi: 10.1007/978-3-319-48382-5_1


17.
Arrieta F, Pedro-Botet J. Recognizing obesity as a disease: a true challenge (Reconocer la obesidad como enfermedad: todo un reto). Rev Clin Esp (Barc) 2021; 221(9): 544–6. doi: 10.1016/j.rceng.2020.08.005


18.
World Health Organization. Obesity and overweight. Key facts. 2021. [cited 2021 June 09]. Available from: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight


19.
Derosa G, Cicero AF, Murdolo G, Piccinni MN, Fogari E, Bertone G, et al. Efficacy and safety comparative evaluation of orlistat and sibutramine treatment in hyperte-nsive obese patients. Diabetes Obes Metab 2005; 7(1): 47–55. doi: 10.1111/j.1463-1326.2004.00372.x


20.
Yun JW. Possible anti-obesity therapeutics from nature – a review. Phytochemistry 2010; 71(14–15): 1625–41. doi: 10.1016/j.phytochem.2010.07.011


21.
Feng Z, Chen J, Feng L, Chen C, Ye Y, Lin L. Polyisoprenylated benzophenone derivatives from Garcinia cambogia and their anti-inflammatory activities. Food Funct 2021; 12(14): 6432–41. doi: 10.1039/d1fo00972a


22.
Vuppalanchi R, Bonkovsky HL, Ahmad J, Barnhart H, Durazo F, Fontana RJ, et al. Garcinia cambogia, either alone or in combination with green tea, causes moderate to severe liver injury. Clin Gastroenterol Hepatol 2022; 20(6): e1416–25. doi: 10.1016/j.cgh.2021.08.015


23.
Fujii H, Kawada N, Japan Study Group of Nafld J-N. The role of insulin resistance and diabetes in nonalcoholic fatty liver disease. Int J Mol Sci 2020; 21(11): 3863. doi: 10.3390/ijms21113863


24.
European Association for the Study of the Liver (EASL), European Association for the Study of Diabetes (EASD), European Association for the Study of Obesity (EASO). EASL-EASD-EASO clinical practice guidelines for the management of non-alcoholic fatty liver disease. J Hepatol 2016; 64: 1388–402. doi: 10.1016/j.jhep.2015.11.004


25.
Nakajima T, Naito H. Mechanism analysis and prevention of pathogenesis of nona-lcoholic steatohepatitis. Nihon Eiseigaku Zasshi 2015; 70(3): 197–204. doi: 10.1265/jjh.70.197


26.
Milic S, Mikolasevic I, Krznaric-Zrnic I, Stanic M, Poropat G, Stimac D, et al. Non-alcoholic steatohepatitis: emerging targeted therapies to optimize treatment options. Drug Des Devel Ther 2015; 9: 4835–45. doi: 10.2147/DDDT.S64877


27.
Weiss J, Rau M, Geier A. Non-alcoholic fatty liver disease: epidemiology, clinical course, investigation, and treatment. Dtsch Arztebl Int 2014; 111(26): 447–52. doi: 10.3238/arztebl.2014.0447


28.
Kuswandi A, Tarawaan VM, Goenawan H, Muchtaridi M, Lesmana R. Potential roles of Garcinia family as antimetabolic syndrome. J Adv Pharm Technol Res 2022; 13(1): 1–6. doi: 10.4103/japtr.japtr_218_21


29.
Hayamizu K, Hirakawa H, Oikawa D, Nakanishi T, Takagi T, Tachibana T, et al. Effect of Garcinia cambogia extract on serum leptin and insulin in mice. Fitoterapia 2003; 74(3): 267–73. doi: 10.1016/s0367-326x(03)00036-4


30.
Cha JY, Nepali S, Lee HY, Hwang SW, Choi SY, Yeon JM, et al. Chrysanthemum indicum L. ethanol extract reduces high-fat diet-induced obesity in mice. Exp Ther Med 2018; 15(6): 5070–6. doi: 10.3892/etm.2018.6042


31.
Yang J, Ran Y, Yang Y, Song S, Wu Y, Qi Y, et al. 4-Hydroxyisoleucine alleviates macrophage-related chronic inflammation and metabolic syndrome in mice fed a high-fat diet. Front Pharmacol 2020; 11: 606514. doi: 10.3389/fphar.2020.606514


32.
Fang C, Cai X, Hayashi S, Hao S, Sakiyama H, Wang X, et al. Caffeine-stimulated muscle IL-6 mediates alleviation of non-alcoholic fatty liver disease. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864(3): 271–80. doi: 10.1016/j.bbalip.2018.12.003


33.
Guan H, Wang Y, Li H, Zhu Q, Li X, Liang G, et al. 5-Bis-(2,6-difluoro-benzyliden-e) Cyclopentanone acts as a selective 11beta-hydroxysteroid dehydrogenase one inhibitor to treat diet-induced nonalcoholic fatty liver disease in mice. Front Pharmacol 2021; 12: 594437. doi: 10.3389/fphar.2021.594437


34.
Ardaiz N, Gomar C, Vasquez M, Tenesaca S, Fernandez-Sendin M, Di Trani CA, et al. Insulin fused to apolipoprotein A-I reduces body weight and steatosis in DB/DB mice. Front Pharmacol 2020; 11: 591293. doi: 10.3389/fphar.2020.591293


35.
Kyrou I, Randeva HS, Tsigos C, Kaltsas G, Weickert MO. Clinical problems caused by obesity. South Dartmouth, MA: MDText.com, Inc; 2000–2018.


36.
Mir FA, Ullah E, Mall R, Iskandarani A, Samra TA, Cyprian F, et al. Dysregulated metabolic pathways in subjects with obesity and metabolic syndrome. Int J Mol Sci 2022; 23(17): 9821. doi: 10.3390/ijms23179821


37.
Zaman CF, Sultana J, Dey P, Dutta J, Mustarin S, Tamanna N, et al. A Multidisciplinary approach and current perspective of nonalcoholic fatty liver disease: a systematic review. Cureus 2022; 14(9): e29657. doi: 10.7759/cureus.29657


38.
Tchernof A, Després JP. Pathophysiology of human visceral obesity: an update. Physiol Rev 2013; 93(1): 359–404. doi: 10.1152/physrev.00033.2011


39.
Sullivan AC, Triscari J, Hamilton JG, Miller ON. Effect of (-)-hydroxycitrate upon the accumulation of lipid in the rat. II. Appetite. Lipids 1974; 9(2): 129–34. doi: 10.1007/BF02532137


40.
Sullivan AC, Triscari J, Hamilton JG, Miller ON, Wheatley VR. Effect of (-)-hydro-xycitrate upon the accumulation of lipid in the rat. I. Lipogenesis. Lipids 1974; 9(2): 121–8. doi: 10.1007/BF02532136


41.
Sripradha R, Sridhar MG, Maithilikarpagaselvi N. Antihyperlipidemic and antioxidant activities of the ethanolic extract of Garcinia cambogia on high fat diet-fed rats. J Complement Integr Med 2016; 13(1): 9–16. doi: 10.1515/jcim-2015-0020


42.
Han JH, Jang KW, Park MH, Myung CS. Garcinia cambogia suppresses adipogenes-is in 3T3–L1 cells by inhibiting p90RSK and Stat3 activation during mitotic clonal expansion. J Cell Physiol 2021; 236(3): 1822–39. doi: 10.1002/jcp.29964


43.
Sripradha R, Magadi SG. Efficacy of Garcinia cambogia on body weight, inflammation and glucose tolerance in high fat fed male Wistar rRats. J Clin Diagn Res 2015; 9(2): BF01–4. doi: 10.7860/JCDR/2015/12045.5577


44.
Maia-Landim A, Ramirez JM, Lancho C, Poblador MS, Lancho JL. Long-term effects of Garcinia cambogia/glucomannan on weight loss in people with obesity, PLI-N4, FTO and Trp64Arg polymorphisms. BMC Complement Altern Med 2018; 18(1): 26. doi: 10.1186/s12906-018-2099-7


45.
Bilal T, Gursel FE, Ates A, Altiner A. Effect of Garcinia cambogia extract on body weight gain, feed intake and feed conversion ratio, and serum non-esterified fatty acids and C-reactive protein levels in rats fed with atherogenic diet. Iran J Vet Res 2012; 13(4): 330–3. doi: 10.22099/IJVR.2012.614


46.
Clouatre DL, Preuss HG. Hydroxycitric acid does not promote inflammation or liver toxicity. World J Gastroenterol 2013; 19(44): 8160–2. doi: 10.3748/wjg.v19.i44.8160


47.
Hayamizu K, Ishii Y, Kaneko I, Shen M, Okuhara Y, Shigematsu N, et al. Effects of garcinia cambogia (Hydroxycitric Acid) on visceral fat accumulation: a double-blind, randomized, placebo-controlled trial. Curr Ther Res Clin Exp 2003; 64(8): 551–67. doi: 10.1016/j.curtheres.2003.08.006


48.
Onakpoya I, Hung SK, Perry R, Wider Barbara, Ernst E. The use of Garcinia extract (hydroxycitric acid) as a weight loss supplement: a systematic review and meta-analysis of randomised clinical trials. J Obes 2011; 2011: 509038. doi: 10.1155/2011/509038


49.
Han N, Li L, Peng M, Ma H. (-)-Hydroxycitric acid nourishes protein synthesis via altering metabolic directions of amino acids in male rats. Phytother Res 2016; 30(8): 1316–29. doi: 10.1002/ptr.5630


50.
Hill MA, Yang Y, Zhang L, Sun Z, Jia G, Parrish AR, et al. Insulin resistance, cardiovascular stiffening and cardiovascular disease. Metabolism 2021; 119: 154766. doi: 10.1016/j.metabol.2021.154766


51.
Zagayko AL, Shkapo AI, Fylymonenko VP, Briukhanova TO. The impact of hydroxycitric acid on the lipid metabolism profile under experimental insulin resistance syndrome of Syrian hamsters. Ukr Biochem J 2016; 88(3): 78–82. doi: 10.15407/ubj88.03.078


52.
Gluvic Z, Zaric B, Resanovic I, Obradovic M, Mitrovic A, Radak D, et al. Link between metabolic syndrome and insulin resistance. Curr Vasc Pharmacol 2017; 15(1): 30–9. doi: 10.2174/1570161114666161007164510


53.
Amin KA, Kamel HH, Abd Eltawab MA. The relation of high fat diet, metabolic di-sturbances and brain oxidative dysfunction: modulation by hydroxy citric acid. Lipids Health Dis 2011; 10: 74. doi: 10.1186/1476-511X-10-74


54.
Han JH, Park MH, Myung CS. Garcinia cambogia ameliorates non-alcoholic fatty liver disease by inhibiting oxidative stress-mediated steatosis and apoptosis through NRF2-ARE activation. Antioxidants (Basel) 2021; 10(8): 1226. doi: 10.3390/antiox10081226
Published
2023-03-14
How to Cite
Dong J., Li W., Du X., He X., Deng B., Zheng H., Tian Y., Fang C., & Sheng J. (2023). <em>Garcinia cambogia</em&gt; water extract alleviates insulin resistance and hepatic lipid accumulation in mice fed a high-fat diet. Food & Nutrition Research, 67. https://doi.org/10.29219/fnr.v67.8977
Section
Original Articles