Vitamin B6: a scoping review for Nordic Nutrition Recommendations 2023

  • Anne-Lise Bjørke Monsen Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5021 Bergen, Norway
  • Per Magne Ueland Department of Clinical Science, University of Bergen, Bergen, Norway
Keywords: vitamin B6, PLP, nutrition recommendations

Abstract

Pyridoxal 5´-phosphate (PLP) is the main form of vitamin B6 in animal tissue and functions as a coenzyme for more than 160 different enzymatic reactions in the metabolism of amino acids, carbohydrates, lipids, and neurotransmitters. Estimated dietary intake of vitamin B6 and plasma PLP values differ a lot between studies, something which may be due to variable use of supplements, variations in dietary assessment and analytical methods. These factors make it difficult to achieve precise data for setting a correct recommended intake of vitamin B6. In addition, a plasma PLP concentration of 30 nmol/L is considered to be sufficient and the current recommendations for vitamin B6 intake is based on this concept. However, the metabolic marker for vitamin B6 status, HK ratio (HKr), starts to increase already when plasma PLP falls below 100 nmol/L and increases more steeply below 50 nmol/L, indicating biochemical deficiency. Consequently, a plasma PLP concentration of 30 nmol/L, may be too low as a marker for an adequate vitamin B6 status.

Downloads

Download data is not yet available.

References


1.
Ueland PM, Ulvik A, Rios-Avila L, Midttun O, Gregory JF. Direct and functional biomarkers of vitamin B6 status. Annu Rev Nutr 2015; 35: 33–70. doi: 10.1146/annurev-nutr-071714-034330


2.
Bitsch R. Vitamin B6. Int J Vitam Nutr Res 1993; 63(4): 278–82.


3.
Ulvik A, Midttun O, McCann A, Meyer K, Tell G, Nygard O, et al. Tryptophan catabolites as metabolic markers of vitamin B-6 status evaluated in cohorts of healthy adults and cardiovascular patients. Am J Clin Nutr 2020; 111(1): 178–86. doi: 10.1093/ajcn/nqz228


4.
Sakakeeny L, Roubenoff R, Obin M, Fontes JD, Benjamin EJ, Bujanover Y, et al. Plasma pyridoxal-5-phosphate is inversely associated with systemic markers of inflammation in a population of U.S. adults. J Nutr 2012; 142(7): 1280–5. doi: 10.3945/jn.111.153056


5.
Dror DK, Allen LH. Interventions with vitamins B6, B12 and C in pregnancy. Paediatr Perinat Epidemiol 2012; 26 Suppl 1: 55–74. doi: 10.1111/j.1365-3016.2012.01277.x


6.
Ronnenberg AG, Goldman MB, Chen D, Aitken IW, Willett WC, Selhub J, et al. Preconception homocysteine and B vitamin status and birth outcomes in Chinese women. Am J Clin Nutr 2002; 76(6): 1385–91. doi: 10.1093/ajcn/76.6.1385


7.
Hansen CM, Shultz TD, Kwak HK, Memon HS, Leklem JE. Assessment of vitamin B-6 status in young women consuming a controlled diet containing four levels of vitamin B-6 provides an Estimated Average Requirement and Recommended Dietary Allowance. J Nutr 2001; 131(6): 1777–86. doi: 10.1093/jn/131.6.1777


8.
Bachmann T, Maurer A, Rychlik M. Development of a LC-MS/MS method using stable isotope dilution for the quantification of individual B6 vitamers in fruits, vegetables, and cereals. Anal Bioanal Chem 2020; 412(26): 7237–52. doi: 10.1007/s00216-020-02857-5


9.
Hustad S, Eussen S, Midttun O, Ulvik A, van de Kant PM, Morkrid L, et al. Kinetic modeling of storage effects on biomarkers related to B vitamin status and one-carbon metabolism. Clin Chem 2012; 58(2): 402–10. doi: 10.1373/clinchem.2011.174490


10.
Ulvik A, Theofylaktopoulou D, Midttun O, Nygard O, Eussen SJ, Ueland PM. Substrate product ratios of enzymes in the kynurenine pathway measured in plasma as indicators of functional vitamin B-6 status. Am J Clin Nutr 2013; 98(4): 934–40. doi: 10.3945/ajcn.113.064998


11.
Blomhoff R, Andersen R, Arnesen EK, Christensen JJ, Eneroth H, Erkkola M, et al. Nordic Nutrition Recommendations 2023. Copenhagen: Nordic Council of Ministers; 2023.


12.
Salam RA, Zuberi NF, Bhutta ZA. Pyridoxine (vitamin B6) supplementation during pregnancy or labour for maternal and neonatal outcomes. Cochrane Database Syst Rev 2015(6): CD000179. doi: 10.1002/14651858.CD000179.pub3


13.
Lockyer F, McCann S, Moore SE. Breast milk micronutrients and infant neurodevelopmental outcomes: a systematic review. Nutrients 2021; 13(11): 3848. doi: 10.3390/nu13113848


14.
Mocellin S, Briarava M, Pilati P. Vitamin B6 and cancer risk: a field synopsis and meta-analysis. J Natl Cancer Inst 2017; 109(3): 1–9. doi: 10.1093/jnci/djw230


15.
Myung SK, Ju W, Cho B, Oh SW, Park SM, Koo BK, et al. Efficacy of vitamin and antioxidant supplements in prevention of cardiovascular disease: systematic review and meta-analysis of randomised controlled trials. BMJ 2013; 346: f10. doi: 10.1136/bmj.f10


16.
Stein J, Geisel J, Obeid R. Association between neuropathy and B-vitamins: a systematic review and meta-analysis. Eur J Neurol 2021; 28(6): 2054–64. doi: 10.1111/ene.14786


17.
Zhang C, Luo J, Yuan C, Ding D. Vitamin B12, B6, or folate and cognitive function in community-dwelling older adults: a systematic review and meta-analysis. J Alzheimers Dis 2020; 77(2): 781–94. doi: 10.3233/JAD-200534


18.
Gregory JF, 3rd. Bioavailability of vitamin B-6. Eur J Clin Nutr 1997; 51 Suppl 1: S43–8.


19.
Nakano H, Gregory JF, 3rd. Pyridoxine and pyridoxine-5′-beta-D-glucoside exert different effects on tissue B-6 vitamers but similar effects on beta-glucosidase activity in rats. J Nutr 1995; 125(11): 2751–62. doi: 10.1093/jn/125.11.2751


20.
Andon MB, Reynolds RD, Moser-Veillon PB, Howard MP. Dietary intake of total and glycosylated vitamin B-6 and the vitamin B-6 nutritional status of unsupplemented lactating women and their infants. Am J Clin Nutr 1989; 50(5): 1050–8. doi: 10.1093/ajcn/50.5.1050


21.
Reynolds RD. Bioavailability of vitamin B-6 from plant foods. Am J Clin Nutr 1988; 48(3 Suppl): 863–7. doi: 10.1093/ajcn/48.3.863


22.
Dutta B, Huang W, Molero M, Kekuda R, Leibach FH, Devoe LD, et al. Cloning of the human thiamine transporter, a member of the folate transporter family. J Biol Chem 1999; 274(45): 31925–9. doi: 10.1074/jbc.274.45.31925


23.
Rajgopal A, Edmondnson A, Goldman ID, Zhao R. SLC19A3 encodes a second thiamine transporter ThTr2. Biochim Biophys Acta 2001; 1537(3): 175–8. doi: 10.1016/s0925-4439(01)00073-4


24.
Yamashiro T, Yasujima T, Said HM, Yuasa H. pH-dependent pyridoxine transport by SLC19A2 and SLC19A3: implications for absorption in acidic microclimates. J Biol Chem 2020; 295(50): 16998–7008. doi: 10.1074/jbc.RA120.013610


25.
Sygusch J, Madsen NB, Kasvinsky PJ, Fletterick RJ. Location of pyridoxal phosphate in glycogen phosphorylase a. Proc Natl Acad Sci U S A 1977; 74(11): 4757–61. doi: 10.1073/pnas.74.11.4757


26.
Rossignoli G, Phillips RS, Astegno A, Menegazzi M, Voltattorni CB, Bertoldi M. Phosphorylation of pyridoxal 5′-phosphate enzymes: an intriguing and neglected topic. Amino Acids 2018; 50(2): 205–15. doi: 10.1007/s00726-017-2521-3


27.
Coburn SP. Modeling vitamin B6 metabolism. Adv Food Nutr Res 1996; 40: 107–32. doi: 10.1016/s1043-4526(08)60023-6


28.
Bjørke-Monsen AL, Varsi K, Sakkestad ST, Ulvik A, Ueland PM. Assessment of vitamin B6 status in never-pregnant, pregnant and postpartum women and their infants. Eur J Nutr 2023; 62(2): 867–78. doi: 10.1007/s00394-022-03033-4


29.
Zempleni J, Link G, Kubler W. The transport of thiamine, riboflavin and pyridoxal 5′-phosphate by human placenta. Int J Vitam Nutr Res 1992; 62(2): 165–72.


30.
Moser-Veillon PB, Reynolds RD. A longitudinal study of pyridoxine and zinc supplementation of lactating women. Am J Clin Nutr 1990; 52(1): 135–41. doi: 10.1093/ajcn/52.1.135


31.
Daniels L, Gibson RS, Diana A, Haszard JJ, Rahmannia S, Luftimas DE, et al. Micronutrient intakes of lactating mothers and their association with breast milk concentrations and micronutrient adequacy of exclusively breastfed Indonesian infants. Am J Clin Nutr 2019; 110(2): 391–400. doi: 10.1093/ajcn/nqz047


32.
Allen LH. B vitamins in breast milk: relative importance of maternal status and intake, and effects on infant status and function. Adv Nutr 2012; 3(3): 362–9. doi: 10.3945/an.111.001172


33.
Chang SJ, Kirksey A. Pyridoxine supplementation of lactating mothers: relation to maternal nutrition status and vitamin B-6 concentrations in milk. Am J Clin Nutr 1990; 51(5): 826–31. doi: 10.1093/ajcn/51.5.826


34.
Ooylan LM, Hart S, Porter KB, Driskell JA. Vitamin B-6 content of breast milk and neonatal behavioral functioning. J Am Diet Assoc 2002; 102(10): 1433–8. doi: 10.1016/s0002-8223(02)90317-2


35.
Morrison LA, Driskell JA. Quantities of B6 vitamers in human milk by high-performance liquid chromatography. Influence of maternal vitamin B6 status. J Chromatogr 1985; 337(2): 249–58. doi: 10.1016/0378-4347(85)80038-4


36.
EFSA Panel on Dietetic Products NaAN. Dietary reference values for vitamin B6. EFSA Journal 2016; 14(6). doi: 10.2903/j.efsa.2016.4485


37.
Contractor SF, Shane B. Blood and urine levels of vitamin B6 in the mother and fetus before and after loading of the mother with vitamin B6. Am J Obstet Gynecol 1970; 107(4): 635–40. doi: 10.1016/s0002-9378(16)33952-7


38.
Kang-Yoon SA, Kirksey A, Giacoia G, West K. Vitamin B-6 status of breast-fed neonates: influence of pyridoxine supplementation on mothers and neonates. Am J Clin Nutr 1992; 56(3): 548–58. doi: 10.1093/ajcn/56.3.548


39.
Torsvik IK, Ueland PM, Markestad T, Midttun O, Monsen AL. Motor development related to duration of exclusive breastfeeding, B vitamin status and B12 supplementation in infants with a birth weight between 2000–3000 g, results from a randomized intervention trial. BMC Pediatr 2015; 15(1): 218. doi: 10.1186/s12887-015-0533-2


40.
Footitt EJ, Clayton PT, Mills K, Heales SJ, Neergheen V, Oppenheim M, et al. Measurement of plasma B6 vitamer profiles in children with inborn errors of vitamin B6 metabolism using an LC-MS/MS method. J Inherit Metab Dis 2013;36(1): 139–45. doi: 10.1007/s10545-012-9493-y


41.
Bates CJ, Pentieva KD, Prentice A. An appraisal of vitamin B6 status indices and associated confounders, in young people aged 4–18 years and in people aged 65 years and over, in two national British surveys. Public Health Nutr 1999; 2(4): 529–35. doi: S1368980099000713


42.
Ueland PM, McCann A, Midttun Ø, Ulvik A. Inflammation, vitamin B6 and related pathways. Mol Aspects Med 2017; 53: 10–27. doi: 10.1016/j.mam.2016.08.001


43.
Gregory JF, 3rd, Park Y, Lamers Y, Bandyopadhyay N, Chi YY, Lee K, et al. Metabolomic analysis reveals extended metabolic consequences of marginal vitamin B-6 deficiency in healthy human subjects. PLoS One 2013; 8(6): e63544. doi: 10.1371/journal.pone.0063544


44.
Rios-Avila L, Coats B, Ralat M, Chi YY, Midttun O, Ueland PM, et al. Pyridoxine supplementation does not alter in vivo kinetics of one-carbon metabolism but modifies patterns of one-carbon and tryptophan metabolites in vitamin B-6-insufficient oral contraceptive users. Am J Clin Nutr 2015; 102(3): 616–25. doi: 10.3945/ajcn.115.113159


45.
Green R, Allen LH, Bjorke-Monsen AL, Brito A, Gueant JL, Miller JW, et al. Vitamin B12 deficiency. Nat Rev Dis Primers 2017; 3: 17040. doi: 10.1038/nrdp.2017.40


46.
Bjorke-Monsen AL, Bjork MH, Storstein A, Ueland PM, Tysnes OB. Severe hyperhomocysteinemia in a patient with Parkinson Disease. Clin Chem 2022; 68(3): 396–401. doi: 10.1093/clinchem/hvab262


47.
Paul L, Ueland PM, Selhub J. Mechanistic perspective on the relationship between pyridoxal 5′-phosphate and inflammation. Nutr Rev 2013; 71(4): 239–44. doi: 10.1111/nure.12014


48.
Gregory JF, 3rd. Accounting for differences in the bioactivity and bioavailability of vitamers. Food Nutr Res 2012; 56. doi: 10.3402/fnr.v56i0.5809


49.
Brown MJ, Ameer MA, Beier K. Vitamin B6 Deficiency. Treasure Island, FL: StatPearls; 2020.


50.
Neufingerl N, Eilander A. Nutrient intake and status in adults consuming plant-based diets compared to meat-eaters: a systematic review. Nutrients 2021; 14(1): 29. doi: 10.3390/nu14010029


51.
Wilson MP, Plecko B, Mills PB, Clayton PT. Disorders affecting vitamin B6 metabolism. J Inherit Metab Dis 2019; 42(4): 629–46. doi: 10.1002/jimd.12060


52.
Lemming EW, Pitsi T. The Nordic Nutrition Recommendations 2022 – food consumption and nutrient intake in the adult population of the Nordic and Baltic countries. Food Nutr Res 2022; 66. Published 2022 Jun 8. doi: 10.29219/fnr.v66.8572


53.
Kaminiow K, Pająk M, Pająk R, Paprocka J. Pyridoxine-dependent epilepsy and antiquitin deficiency resulting in neonatal-onset refractory seizures. Brain Sci 2021; 12(1): 65. doi: 10.3390/brainsci12010065


54.
Ghatge MS, Al Mughram M, Omar AM, Safo MK. Inborn errors in the vitamin B6 salvage enzymes associated with neonatal epileptic encephalopathy and other pathologies. Biochimie 2021; 183: 18–29. doi: 10.1016/j.biochi.2020.12.025


55.
Ghavanini AA, Kimpinski K. Revisiting the evidence for neuropathy caused by pyridoxine deficiency and excess. J Clin Neuromuscul Dis 2014; 16(1): 25–31. doi: 10.1097/CND.0000000000000049


56.
Fonseca VA, Lavery LA, Thethi TK, Daoud Y, DeSouza C, Ovalle F, et al. Metanx in type 2 diabetes with peripheral neuropathy: a randomized trial. Am J Med 2013; 126(2): 141–9. doi: 10.1016/j.amjmed.2012.06.022


57.
Malouf R, Grimley Evans J. The effect of vitamin B6 on cognition. Cochrane Database Syst Rev 2003(4): CD004393. doi: 10.1002/14651858.CD004393


58.
Casper RC, Kirschner B, Sandstead HH, Jacob RA, Davis JM. An evaluation of trace metals, vitamins, and taste function in anorexia nervosa. Am J Clin Nutr 1980; 33(8): 1801–8. doi: 10.1093/ajcn/33.8.1801


59.
Kikuchi G, Kumar A, Talmage P, Shemin D. The enzymatic synthesis of delta-aminolevulinic acid. J Biol Chem 1958; 233(5): 1214–9. doi: 10.1016/S0021-9258(19)77371-2


60.
Redleaf PD. Pyridoxine-responsive anemia in a patient receiving isoniazid. Dis Chest 1962; 42: 222–6. doi: 10.1378/chest.42.2.222


61.
Aycock JE, Kirksey A. Influence of different levels of dietary pyridoxine on certain parameters of developing and mature brains in rats. J Nutr 1976; 106(5): 680–8. doi: 10.1093/jn/106.5.680


62.
Davis SD, Nelson T, Shepard TH. Teratogenicity of vitamin B6 deficiency: omphalocele, skeletal and neural defects, and splenic hypoplasia. Science 1970; 169(952): 1329–30. doi: 10.1126/science.169.3952.1329


63.
European Commission. Health and Consumer Protection Directorate General SCoF. Opinion of the Scientific Committee on Food on the tolerable upper intake level of vitamin B6. 2000. Available from: http://www.efsa.europa.eu/EFSA/Scientific_Document/upper_level_opinions_full-part33.pdf [cited 20 Febraury 2022].


64.
EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA); Turck D, Bohn T, Castenmiller J, de Henauw S, Hirsch-Ernst KI, Knutsen HK, et al. Scientific opinion on the tolerable upper intake level for vitamin B6. EFSA J. 2023 May 17; 21(5): e08006. doi: 10.2903/j.efsa.2023.8006


65.
Morris MC, Evans DA, Schneider JA, Tangney CC, Bienias JL, Aggarwal NT. Dietary folate and vitamins B-12 and B-6 not associated with incident Alzheimer’s disease. J Alzheimers Dis 2006; 9(4): 435–43. doi: 10.3233/jad-2006-9410


66.
Morris MC, Schneider JA, Tangney CC. Thoughts on B-vitamins and dementia. J Alzheimers Dis 2006; 9(4): 429–33. doi: 10.3233/jad-2006-9409


67.
Kado DM, Karlamangla AS, Huang MH, Troen A, Rowe JW, Selhub J, et al. Homocysteine versus the vitamins folate, B6, and B12 as predictors of cognitive function and decline in older high-functioning adults: MacArthur Studies of Successful Aging. Am J Med 2005; 118(2): 161–7. doi: 10.1016/j.amjmed.2004.08.019


68.
Nordic Nutrition Recommendations 2012. Integrating nutrition and physical activity: Nordic Council of Ministers; 2014. Available from: https://norden.diva-portal.org/smash/get/diva2:704251/FULLTEXT01.pdf [cited 1 February 2022].


69.
Nordic Council of Ministers. Nordic Nutrition Recommendations 2012 : integrating nutrition and physical activity. 5th ed. Copenhagen: Nordic Council of Minsters; 2014, 627 p.


70.
Morris MS, Picciano MF, Jacques PF, Selhub J. Plasma pyridoxal 5′-phosphate in the US population: the National Health and Nutrition Examination Survey, 2003–2004. Am J Clin Nutr 2008; 87(5): 1446–54. doi: 10.1093/ajcn/87.5.1446


71.
Ye X, Maras JE, Bakun PJ, Tucker KL. Dietary intake of vitamin B-6, plasma pyridoxal 5′-phosphate, and homocysteine in Puerto Rican adults. J Am Diet Assoc 2010; 110(11): 1660–8. doi: 10.1016/j.jada.2010.08.006


72.
Jungert A, Linseisen J, Wagner KH, Richter M, German Nutrition S. Revised D-A-CH reference values for the intake of vitamin B6. Ann Nutr Metab 2020; 76(4): 213–22. doi: 10.1159/000508618


73.
Haugen M, Brantsaeter AL, Alexander J, Meltzer HM. Dietary supplements contribute substantially to the total nutrient intake in pregnant Norwegian women. Ann Nutr Metab 2008; 52(4): 272–80. doi: 10.1159/000146274


74.
Bjorke-Monsen AL, Roth C, Magnus P, Midttun O, Nilsen RM, Reichborn-Kjennerud T, et al. Maternal B vitamin status in pregnancy week 18 according to reported use of folic acid supplements. Mol Nutr Food Res 2013; 57(4): 645–52. doi: 10.1002/mnfr.201200114


75.
Butte N, Lopez-Alarcon M.G., Garza C. Nutrient adequacy of exclusive breastfeeding for the term infnat during the first six months of life. Geneva: World Health Organization; 2002.
Published
2023-12-19
How to Cite
Bjørke Monsen A.-L., & Ueland P. M. (2023). Vitamin B6: a scoping review for Nordic Nutrition Recommendations 2023. Food & Nutrition Research, 67. https://doi.org/10.29219/fnr.v67.10259
Section
Nordic Nutrition Recommendations

Most read articles by the same author(s)