Vitamin C – a scoping review for Nordic Nutrition Recommendations 2023

  • Jens Lykkesfeldt Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
  • Anitra Carr Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
Keywords: vitamin C, ascorbic acid, antioxidants, nutrition recommendations

Abstract

Vitamin C has multiple metabolic functions in the body, but the available information on the exact relationship between these functions and the intake necessary to maintain them is very limited. However, most attempts to objectively measure adequacy of vitamin C status, including, for example, replacement of metabolic turnover, chronic disease prevention, urinary excretion, and saturation of immune cells and body compartment, currently point toward 50 µmol/L as a reasonable target plasma concentration. As a strong correlation between body weight and vitamin C status exists, recommended intakes (RIs) for other age groups may be extrapolated from the adult RI based on weight. However, as body weights above 70 kg are becoming increasingly common – also in the Nordic region – an RI of 140 mg/day for individuals weighing 100 kg or more should be considered to compensate for the larger volume of distribution. Finally, smoking continues to be a common contributor to poor vitamin C status; therefore, it is proposed that people who smoke increase their daily vitamin C intake by 40 mg/day to compensate for the increased metabolic turnover induced by smoking.

Downloads

Download data is not yet available.

References


1.
Carr AC, Frei B. Toward a new recommended dietary allowance for vitamin C based on antioxidant and health effects in humans. Am J Clin Nutr 1999; 69(6): 1086–107. doi: 10.1093/ajcn/69.6.1086


2.
Carr AC, Rowe S. Factors affecting vitamin C status and prevalence of deficiency: a global health perspective. Nutrients 2020; 12(1963): 19 pages. doi: 10.3390/nu12071963


3.
Medical Research Council (Great Britain) Accessory Food Factors Committee. Vitamin C requirement of human adults. London: Her Majesty’s Stationery Office; 1953.


4.
Hujoel PP, Hujoel MLA. Vitamin C and scar strength: analysis of a historical trial and implications for collagen-related pathologies. Am J Clin Nutr 2022; 115(1): 8–17. doi: 10.1093/ajcn/nqab262


5.
Wilson JX. Regulation of vitamin C transport. Ann Rev Nutr 2005; 25: 105–25. doi: 10.1146/annurev.nutr.25.050304.092647


6.
Carr A, Frei B. Does vitamin C act as a pro-oxidant under physiological conditions? FASEB J 1999; 13(9): 1007–24. doi: 10.1096/fasebj.13.9.1007


7.
Englard S, Seifter S. The biochemical functions of ascorbic acid. Ann Rev Nutr 1986; 6: 365–406. doi: 10.1146/annurev.nu.06.070186.002053


8.
Camarena V, Wang G. The epigenetic role of vitamin C in health and disease. Cell Mol Life Sci 2016; 73(8): 1645–58. doi: 10.1007/s00018-016-2145-x


9.
Tveden-Nyborg P, Lykkesfeldt J. Does vitamin C deficiency increase lifestyle-associated vascular disease progression? Evidence based on experimental and clinical studies. Antioxid Redox Signal 2013; 19(17): 2084–104. doi: 10.1089/ars.2013.5382


10.
Carr AC, Lykkesfeldt J. Discrepancies in global vitamin C recommendations: a review of RDA criteria and underlying health perspectives. Crit Rev Food Sci Nutr 2021; 61: 742–55. doi: 10.1080/10408398.2020.1744513


11.
Lykkesfeldt J, Tveden-Nyborg P. The pharmacokinetics of vitamin C. Nutrients 2019; 11(10): 2412. doi: 10.3390/nu11102412


12.
Lykkesfeldt J. On the effect of vitamin C intake on human health: how to (mis)interprete the clinical evidence. Redox Biology 2020; 34: 101532. doi: 10.1016/j.redox.2020.101532


13.
Pollard J, Wild CP, White KL, Greenwood DC, Cade JE, Kirk SF. Comparison of plasma biomarkers with dietary assessment methods for fruit and vegetable intake. Eur J Clin Nutr 2003; 57(8): 988–98. doi: 10.1038/sj.ejcn.1601634


14.
Blomhoff R, Andersen R, Arnesen EK, Christensen JJ, Eneroth H, Erkkola M, et al. Nordic Nutrition Recommendations 2023. Copenhagen: Nordic Council of Ministers; 2023.


15.
Christensen JJ, Arnesen EK, Andersen R, Eneroth H, Erkkola M, Høyer A, et al. The Nordic Nutrition Recommendations 2022 – principles and methodologies. Food Nutr Res 2020; 64: 4402. doi: 10.29219/fnr.v64.4402


16.
World Cancer Research Fund & American Institute for Cancer Research. Wholegrains, vegetables and fruit and the risk of cancer. London: Continuous Update Project; 2018, p. 140.


17.
Høyer A, Christensen JJ, Arnesen EK, Andersen R, Eneroth H, Erkkola M, et al. The Nordic Nutrition Recommendations 2022 – prioritisation of topics for de novo systematic reviews. Food Nutr Res 2021; 65: 7828. doi: 10.29219/fnr.v65.7828


18.
European Food Safety Authority Panel on Dietetic Products Nutrition and Allergies. Scientific opinion on dietary reference values for vitamin C. EFSA J Eur Food Saf Authority 2013; 11(11): 3418 (68 pp). doi: 10.2903/j.efsa.2013.3418


19.
Heinonen M, Kärkkäinen M, Riuttamäki M, Piironen V, Lampi A, Ollilainen V, et al. Literature search and review related to specific preparatory work in the establishment of Dietary Reference Values Preparation of an evidence report identifying health outcomes upon which Dietary Reference Values could potentially be based for vitamins A, C, E, and K: EFSA 2012; 9(3): 256E. doi: 10.2903/sp.efsa.2012.EN-256


20.
Institute of Medicine Panel on Dietary Antioxidants and Related Compounds. Dietary reference intakes for vitamin C, vitamin E, selenium, and carotenoids. Washington, DC: National Academies Press; 2000, 529 p.


21.
Shea BJ, Reeves BC, Wells G, Thuku M, Hamel C, Moran J, et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ 2017; 358: j4008. doi: 10.1136/bmj.j4008


22.
Aune D, Keum N, Giovannucci E, Fadnes LT, Boffetta P, Greenwood DC, et al. Dietary intake and blood concentrations of antioxidants and the risk of cardiovascular disease, total cancer, and all-cause mortality: a systematic review and dose-response meta-analysis of prospective studies. Am J Clin Nutr 2018; 108(5): 1069–91. doi: 10.1093/ajcn/nqy097


23.
Jayedi A, Rashidy-Pour A, Parohan M, Zargar MS, Shab-Bidar S. Dietary and circulating vitamin C, vitamin E, beta-carotene and risk of total cardiovascular mortality: a systematic review and dose-response meta-analysis of prospective observational studies. Public Health Nutr 2019; 22(10): 1–16. doi: 10.1017/s1368980018003725


24.
Bo Y, Lu Y, Zhao Y, Zhao E, Yuan L, Lu W, et al. Association between dietary vitamin C intake and risk of esophageal cancer: a dose-response meta-analysis. Int J Cancer 2016; 138(8): 1843–50. doi: 10.1002/ijc.29838


25.
Li P, Zhang H, Chen J, Shi Y, Cai J, Yang J, et al. Association between dietary antioxidant vitamins intake/blood level and risk of gastric cancer. Int J Cancer 2014; 135(6): 1444–53. doi: 10.1002/ijc.28777


26.
Cao D, Shen K, Li Z, Xu Y, Wu D. Association between vitamin C Intake and the risk of cervical neoplasia: a meta-analysis. Nutr Cancer. 2016; 68(1): 48–57. doi: 10.1080/01635581.2016.1115101


27.
Bai XY, Qu X, Jiang X, Xu Z, Yang Y, Su Q, et al. Association between dietary vitamin C intake and risk of prostate cancer: a meta-analysis involving 103,658 subjects. J Cancer 2015; 6(9): 913–21. doi: 10.7150/jca.12162


28.
Talebi S, Ghoreishy SM, Jayedi A, Travica N, Mohammadi H. Dietary antioxidants and risk of Parkinson’s disease: a systematic review and dose-response meta-analysis of observational studies. Adv Nutr 2022; 13(5): 1493–504. doi: 10.1093/advances/nmac001


29.
Jayedi A, Rashidy-Pour A, Parohan M, Zargar MS, Shab-Bidar S. Dietary antioxidants, circulating antioxidant concentrations, total antioxidant capacity, and risk of all-cause mortality: a systematic review and dose-response meta-analysis of prospective observational studies. Adv Nutr 2018; 9(6): 701–16. doi: 10.1093/advances/nmy040


30.
Al-Khudairy L, Flowers N, Wheelhouse R, Ghannam O, Hartley L, Stranges S, et al. Vitamin C supplementation for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev 2017; 3(3): CD011114. doi: 10.1002/14651858.CD011114.pub2


31.
Ashor AW, Lara J, Mathers JC, Siervo M. Effect of vitamin C on endothelial function in health and disease: a systematic review and meta-analysis of randomised controlled trials. Atherosclerosis 2014; 235(1): 9–20. doi: 10.1016/j.atherosclerosis.2014.04.004


32.
Mason SA, Keske MA, Wadley GD. Effects of vitamin C supplementation on glycemic control and cardiovascular risk factors in people with type 2 diabetes: a GRADE-assessed systematic review and meta-analysis of randomized controlled trials. Diabetes Care 2021; 44(2): 618–30. doi: 10.2337/dc20-1893


33.
Guan Y, Dai P, Wang H. Effects of vitamin C supplementation on essential hypertension: a systematic review and meta-analysis. Medicine (Baltimore) 2020; 99(8): e19274. doi: 10.1097/md.0000000000019274


34.
Juraschek SP, Guallar E, Appel LJ, Miller ER, 3rd. Effects of vitamin C supplementation on blood pressure: a meta-analysis of randomized controlled trials. Am J Clin Nutr 2012; 95(5): 1079–88. doi: 10.3945/ajcn.111.027995


35.
Khodaeian M, Tabatabaei-Malazy O, Qorbani M, Farzadfar F, Amini P, Larijani B. Effect of vitamins C and E on insulin resistance in diabetes: a meta-analysis study. Eur J Clin Invest 2015; 45(11): 1161–74. doi: 10.1111/eci.12534


36.
Ashor AW, Werner AD, Lara J, Willis ND, Mathers JC, Siervo M. Effects of vitamin C supplementation on glycaemic control: a systematic review and meta-analysis of randomised controlled trials. Eur J Clin Nutr 2017; 71: 1371–1380. doi: 10.1038/ejcn.2017.24


37.
Ashor AW, Siervo M, van der Velde F, Willis ND, Mathers JC. Systematic review and meta-analysis of randomised controlled trials testing the effects of vitamin C supplementation on blood lipids. Clin Nutr 2016; 35(3): 626–37. doi: 10.1016/j.clnu.2015.05.021


38.
Jafarnejad S, Boccardi V, Hosseini B, Taghizadeh M, Hamedifard Z. A meta-analysis of randomized control trials: the impact of vitamin C supplementation on serum CRP and serum hs-CRP concentrations. Curr Pharm Des 2018; 24(30): 3520–28. doi: 10.2174/1381612824666181017101810


39.
Lee B, Oh SW, Myung SK. Efficacy of vitamin C supplements in prevention of cancer: a meta-analysis of randomized controlled trials. Korean J Fam Med 2015; 36(6): 278–85. doi: 10.4082/kjfm.2015.36.6.278


40.
Abioye AI, Bromage S, Fawzi W. Effect of micronutrient supplements on influenza and other respiratory tract infections among adults: a systematic review and meta-analysis. BMJ Glob Health 2021; 6(1): e003176. doi: 10.1136/bmjgh-2020-003176


41.
Yosaee S, Keshtkaran Z, Abdollahi S, Shidfar F, Sarris J, Soltani S. The effect of vitamin C supplementation on mood status in adults: a systematic review and meta-analysis of randomized controlled clinical trials. Gen Hosp Psychiatry 2021; 71: 36–42. doi: 10.1016/j.genhosppsych.2021.04.006


42.
Corpe CP, Lee JH, Kwon O, Eck P, Narayanan J, Kirk KL, et al. 6-Bromo-6-deoxy-L-ascorbic acid: an ascorbate analog specific for Na+-dependent vitamin C transporter but not glucose transporter pathways. J Biol Chem 2005; 280(7): 5211–20. doi: 10.1074/jbc.M412925200


43.
Washko PW, Wang Y, Levine M. Ascorbic acid recycling in human neutrophils. J Biol Chem 1993; 268(21): 15531–5. doi: 10.1016/S0021-9258(18)82289-X


44.
Welch RW, Wang Y, Crossman A, Jr., Park JB, Kirk KL, Levine M. Accumulation of vitamin C (ascorbate) and its oxidized metabolite dehydroascorbic acid occurs by separate mechanisms. J Biol Chem 1995; 270(21): 12584–92. doi: 10.1074/jbc.270.21.12584


45.
May JM, Qu ZC, Neel DR, Li X. Recycling of vitamin C from its oxidized forms by human endothelial cells. Biochim Biophys Acta 2003; 1640(2–3): 153–61. doi: 10.1016/S0167-4889(03)00043-0


46.
May JM, Huang J, Qu ZC. Macrophage uptake and recycling of ascorbic acid: response to activation by lipopolysaccharide. Free Radic Biol Med 2005; 39(11): 1449–59. doi: 10.1016/j.freeradbiomed.2005.07.006


47.
Yu R, Schellhorn HE. Recent applications of engineered animal antioxidant deficiency models in human nutrition and chronic disease. J Nutr 2013; 143(1): 1–11. doi: 10.3945/jn.112.168690


48.
Lindblad M, Tveden-Nyborg P, Lykkesfeldt J. Regulation of vitamin C homeostasis during deficiency. Nutrients 2013; 5(8): 2860–79. doi: 10.3390/nu5082860


49.
Lykkesfeldt J. Increased oxidative damage in vitamin C deficiency is accompanied by induction of ascorbic acid recycling capacity in young but not mature guinea pigs. Free Radic Res 2002; 36(5): 567–74. doi: 10.1080/1071576022411256


50.
Hasselholt S, Tveden-Nyborg P, Lykkesfeldt J. Distribution of vitamin C is tissue specific with early saturation of the brain and adrenal glands following differential oral dose regimens in guinea pigs. Br J Nutr 2015; 113(10): 1539–49. doi: 10.1017/s0007114515000690


51.
Buettner GR. The pecking order of free radicals and antioxidants: lipid peroxidation, alpha-tocopherol, and ascorbate. Arch Biochem Biophys 1993; 300(2): 535–43. doi: 10.1006/abbi.1993.1074


52.
May J, Asard H. Ascorbate recycling. In: Asard H, May JM, Smirnoff N, eds. Vitamin C. Oxford: BIOS Scientific Publishers Ltd; 2004, pp. 189–202.


53.
May JM. Assessing the reductive capacity of cells by measuring the recycling of ascorbic and lipoic acids. Methods Mol Biol 2010; 610: 229–43. doi: 10.1007/978-1-60327-029-8_14


54.
Savini I, Rossi A, Pierro C, Avigliano L, Catani MV. SVCT1 and SVCT2: key proteins for vitamin C uptake. Amino Acids 2008; 34(3): 347–55. doi: 10.1007/s00726-007-0555-7


55.
May JM. Vitamin C transport and its role in the central nervous system. Subcell Biochem 2012; 56: 85–103. doi: 10.1007/978-94-007-2199-9_6


56.
Harrison FE, May JM. Vitamin C function in the brain: vital role of the ascorbate transporter SVCT2. Free Radic Biol Med 2009; 46(6): 719–30. doi: 10.1016/j.freeradbiomed.2008.12.018


57.
Søgaard D, Lindblad MM, Paidi MD, Hasselholt S, Lykkesfeldt J, Tveden-Nyborg P. In vivo vitamin C deficiency in guinea pigs increases ascorbate transporters in liver but not kidney and brain. Nutr Res 2014; 34(7): 639–45. doi: 10.1016/j.nutres.2014.07.004


58.
Vissers MC, Bozonet SM, Pearson JF, Braithwaite LJ. Dietary ascorbate intake affects steady state tissue concentrations in vitamin C-deficient mice: tissue deficiency after suboptimal intake and superior bioavailability from a food source (kiwifruit). Am J Clin Nutr 2011; 93(2): 292–301. doi: 10.3945/ajcn.110.004853


59.
Levine M, Conry-Cantilena C, Wang Y, Welch RW, Washko PW, Dhariwal KR, et al. Vitamin C pharmacokinetics in healthy volunteers: evidence for a recommended dietary allowance. Proc Natl Acad Sci U S A 1996; 93(8): 3704–9. doi: 10.1073/pnas.93.8.3704


60.
Corpe CP, Tu H, Eck P, Wang J, Faulhaber-Walter R, Schnermann J, et al. Vitamin C transporter Slc23a1 links renal reabsorption, vitamin C tissue accumulation, and perinatal survival in mice. J Clin Invest 2010; 120(4): 1069–83. doi: 10.1172/jci39191


61.
Michels AJ, Hagen TM, Frei B. Human genetic variation influences vitamin C homeostasis by altering vitamin C transport and antioxidant enzyme function. Annu Rev Nutr 2013; 33: 45–70. doi: 10.1146/annurev-nutr-071812-161246


62.
Padayatty SJ, Sun H, Wang Y, Riordan HD, Hewitt SM, Katz A, et al. Vitamin C pharmacokinetics: implications for oral and intravenous use. Ann Intern Med 2004; 140(7): 533–7. doi: 10.7326/0003-4819-140-7-200404060-00010


63.
Levine M. Fruits and vegetables: there is no substitute. Am J Clin Nutr 1996; 64(3): 381–2. doi: 10.1093/ajcn/64.3.381


64.
Nielsen TK, Hojgaard M, Andersen JT, Poulsen HE, Lykkesfeldt J, Mikines KJ. Elimination of ascorbic acid after high-dose infusion in prostate cancer patients: a pharmacokinetic evaluation. Basic Clin Pharmacol Toxicol 2015; 116(4): 343–8. doi: 10.1111/bcpt.12323


65.
Carr AC, Block G, Lykkesfeldt J. Estimation of vitamin C intake requirements based on body weight: Implications for obesity. Nutrients 2022; 14(7): 1460. doi: 10.3390/nu14071460


66.
Block G, Mangels AR, Patterson BH, Levander OA, Norkus EP, Taylor PR. Body weight and prior depletion affect plasma ascorbate levels attained on identical vitamin C intake: a controlled-diet study. J Am Coll Nutr 1999; 18(6): 628–37. doi: 10.1080/07315724.1999.10718898


67.
Jungert A, Neuhauser-Berthold M. The lower vitamin C plasma concentrations in elderly men compared with elderly women can partly be attributed to a volumetric dilution effect due to differences in fat-free mass. Br J Nutr 2015; 113(5): 859–64. doi: 10.1017/s0007114515000240


68.
GBD 2015 Obesity Collaborators. Health effects of overweight and obesity in 195 countries over 25 Years. N Engl J Med 2017; 377(1): 13–27. doi: 10.1056/NEJMoa1614362


69.
Crook J, Horgas A, Yoon SJ, Grundmann O, Johnson-Mallard V. Insufficient vitamin C levels among adults in the United States: results from the NHANES surveys, 2003–2006. Nutrients 2021; 13(11): 3910. doi: 10.3390/nu13113910


70.
Langlois K, Cooper M, Colapinto CK. Vitamin C status of Canadian adults: findings from the 2012/2013 Canadian Health Measures Survey. Health Rep 2016; 27(5): 3–10.


71.
Canoy D, Wareham N, Welch A, Bingham S, Luben R, Day N, et al. Plasma ascorbic acid concentrations and fat distribution in 19,068 British men and women in the European Prospective Investigation into Cancer and Nutrition Norfolk cohort study. Am J Clin Nutr 2005; 82(6): 1203–9. https://doi.org/10.1093/ajcn/82.6.1203


72.
Galan P, Viteri FE, Bertrais S, Czernichow S, Faure H, Arnaud J, et al. Serum concentrations of beta-carotene, vitamins C and E, zinc and selenium are influenced by sex, age, diet, smoking status, alcohol consumption and corpulence in a general French adult population. Eur J Clin Nutr 2005; 59(10): 1181–90. doi: 10.1038/sj.ejcn.1602230


73.
Fernandez-Sanchez A, Madrigal-Santillan E, Bautista M, Esquivel-Soto J, Morales-Gonzalez A, Esquivel-Chirino C, et al. Inflammation, oxidative stress, and obesity. Int J Mol Sci 2011; 12(5): 3117–32. doi: 10.3390/ijms12053117


74.
Carr AC, Lykkesfeldt J. Factors affecting the vitamin C dose-concentration relationship: implications for global vitamin C dietary recommendations. Nutrients 2023; 15: 1657. https://doi.org/10.1093/ajcn/82.6.1203


75.
GBD 2015 Tobacco Collaborators. Smoking prevalence and attributable disease burden in 195 countries and territories, 1990–2015: a systematic analysis from the Global Burden of Disease Study 2015. Lancet 2017; 389(10082): 1885–906. doi: 10.1016/s0140-6736(17)30819-x


76.
Lykkesfeldt J. Smoking depletes vitamin C: should smokers be recommended to take supplements? In: Halliwell B, Poulsen HE, eds. Cigarette smoke & oxidative stress. Berlin, Heidelberg: Springer Verlag; 2006, pp. 237–60.


77.
Lykkesfeldt J, Christen S, Wallock LM, Chang HH, Jacob RA, Ames BN. Ascorbate is depleted by smoking and repleted by moderate supplementation: a study in male smokers and nonsmokers with matched dietary antioxidant intakes. Am J Clin Nutr 2000;71(2):530–6. https://doi.org/10.1093/ajcn/71.2.530


78.
Marangon K, Herbeth B, Lecomte E, Paul-Dauphin A, Grolier P, Chancerelle Y, et al. Diet, antioxidant status, and smoking habits in French men. Am J Clin Nutr 1998; 67(2): 231–9. doi: 10.1093/ajcn/67.2.231


79.
Schectman G, Byrd JC, Gruchow HW. The influence of smoking on vitamin C status in adults. Am J Public Health 1989; 79(2): 158–62. https://doi.org/10.2105/AJPH.79.2.158


80.
Lykkesfeldt J, Viscovich M, Poulsen HE. Plasma malondialdehyde is induced by smoking: a study with balanced antioxidant profiles. Br J Nutr 2004; 92(2): 203–6. doi: 10.1079/bjn20041191


81.
Lykkesfeldt J, Viscovich M, Poulsen HE. Ascorbic acid recycling in human erythrocytes is induced by smoking in vivo. Free Radic Biol Med 2003; 35(11): 1439–47. doi: 10.1016/j.freeradbiomed.2003.08.006


82.
Schectman G, Byrd JC, Hoffmann R. Ascorbic acid requirements for smokers: analysis of a population survey. Am J Clin Nutr 1991; 53(6): 1466–70. https://doi.org/10.1093/ajcn/53.6.1466


83.
Kallner AB, Hartmann D, Hornig DH. On the requirements of ascorbic acid in man: steady-state turnover and body pool in smokers. Am J Clin Nutr 1981; 34(7): 1347–55. https://doi.org/10.1093/ajcn/34.7.1347


84.
Schleicher RL, Carroll MD, Ford ES, Lacher DA. Serum vitamin C and the prevalence of vitamin C deficiency in the United States: 2003–2004 National Health and Nutrition Examination Survey (NHANES). Am J Clin Nutr 2009; 90(5): 1252–63. doi: 10.3945/ajcn.2008.27016


85.
McCall SJ, Clark AB, Luben RN, Wareham NJ, Khaw KT, Myint PK. Plasma vitamin C levels: risk factors for deficiency and association with self-reported functional health in the European Prospective Investigation into Cancer-Norfolk. Nutrients 2019; 11(7): 1552. doi: 10.3390/nu11071552


86.
Birlouez-Aragon I, Delcourt C, Tessier F, Papoz L. Associations of age, smoking habits and diabetes with plasma vitamin C of elderly of the POLA study. Int J Vitam Nutr Res 2001; 71(1): 53–9. doi: 10.1024/0300-9831.71.1.53


87.
Lykkesfeldt J, Prieme H, Loft S, Poulsen HE. Effect of smoking cessation on plasma ascorbic acid concentration. BMJ 1996; 313(7049): 91. doi: 10.1136/bmj.313.7049.91


88.
Carr AC, Bozonet SM, Pullar JM, Simcock JW, Vissers MC. Human skeletal muscle ascorbate is highly responsive to changes in vitamin C intake and plasma concentrations. Am J Clin Nutr 2013; 97(4): 800–7. https://doi.org/10.3945/ajcn.112.053207


89.
Rowe S, Carr AC. Global vitamin C status and prevalence of deficiency: a cause for concern? Nutrients 2020; 12(2008): 20 pages. doi: 10.3390/nu12072008


90.
Paalanen L, Prattala R, Alfthan G, Salminen I, Laatikainen T. Vegetable and fruit consumption, education and plasma vitamin C concentration in Russian and Finnish Karelia, 1992–2002. Public Health Nutr 2014; 17(10): 2278–86. doi: 10.1017/s1368980013002243


91.
Matilainen T, Vartiainen E, Puska P, Alfthan G, Pokusajeva S, Moisejeva N, et al. Plasma ascorbic acid concentrations in the Republic of Karelia, Russia and in North Karelia, Finland. Eur J Clin Nutr 1996; 50(2): 115–20.


92.
Nyyssonen K, Parviainen MT, Salonen R, Tuomilehto J, Salonen JT. Vitamin C deficiency and risk of myocardial infarction: prospective population study of men from eastern Finland. BMJ 1997; 314(7081): 634–8. doi: 10.1136/bmj.314.7081.634


93.
Scientific Committee on Food Scientific Panel on Dietetic Products Nutrition and Allergies. Tolerable upper intake levels for vitamins and minerals: European Union: European Food Safety Authority; 2006.


94.
Washko PW, Welch RW, Dhariwal KR, Wang Y, Levine M. Ascorbic acid and dehydroascorbic acid analyses in biological samples. Anal Biochem 1992; 204(1): 1–14. doi: 10.1016/0003-2697(92)90131-P


95.
Levine M, Wang Y, Padayatty SJ, Morrow J. A new recommended dietary allowance of vitamin C for healthy young women. Proc Natl Acad Sci U S A 2001; 98(17): 9842–6. doi: 10.1073/pnas.171318198


96.
Hornig D. Distribution of ascorbic acid, metabolites and analogues in man and animals. Ann N Y Acad Sci 1975; 258: 103–18. doi: 10.1111/j.1749-6632.1975.tb29271.x


97.
Hirsila M, Koivunen P, Gunzler V, Kivirikko KI, Myllyharju J. Characterization of the human prolyl 4-hydroxylases that modify the hypoxia-inducible factor. J Biol Chem. 2003;278(33):30772–80. doi: 10.1074/jbc.M304982200


98.
Myllyharju J, Kivirikko KI. Characterization of the iron- and 2-oxoglutarate-binding sites of human prolyl 4-hydroxylase. EMBO J 1997; 16(6): 1173–80. doi: 10.1093/emboj/16.6.1173


99.
Levine M, Dhariwal KR, Washko PW, Butler JD, Welch RW, Wang YH, et al. Ascorbic acid and in situ kinetics: a new approach to vitamin requirements. Am J Clin Nutr 1991; 54(6 Suppl): 1157S–62S. doi: 10.1093/ajcn/54.6.1157s


100.
Anderson R, Lukey PT. A biological role for ascorbate in the selective neutralization of extracellular phagocyte-derived oxidants. Ann N Y Acad Sci 1987; 498: 229–47. doi: 10.1111/j.1749-6632.1987.tb23764.x


101.
Starczak M, Zarakowska E, Modrzejewska M, Dziaman T, Szpila A, Linowiecka K, et al. In vivo evidence of ascorbate involvement in the generation of epigenetic DNA modifications in leukocytes from patients with colorectal carcinoma, benign adenoma and inflammatory bowel disease. J Transl Med 2018; 16(1): 204. doi: 10.1186/s12967-018-1581-9


102.
Munday K, Fulford A, Bates CJ. Vitamin C status and collagen cross-link ratios in Gambian children. Br J Nutr 2005; 93(4): 501–7. doi: 10.1079/bjn20041329


103.
German Nutrition Society (DGE) AÖaSS. D-A-CH reference levels for nutrient intake. Bonn: German Nutrition Society (DGE) AÖaSS; 2015.


104.
Olsen A, Halkjaer J, Van Gils CH, Buijsse B, Verhagen H, Jenab M, et al. Dietary intake of the water-soluble vitamins B1, B2, B6, B12 and C in 10 countries in the European Prospective Investigation into Cancer and Nutrition. Eur J Clin Nutr 2009; 63 (Suppl 4): S122–49. doi: 10.1038/ejcn.2009.78


105.
Phillips KM, Tarrago-Trani MT, McGinty RC, Rasor AS, Haytowitz DB, Pehrsson PR. Seasonal variability of the vitamin C content of fresh fruits and vegetables in a local retail market. J Sci Food Agric 2018; 98(11): 4191–204. doi: 10.1002/jsfa.8941


106.
McErlain L, Marson H, Ainsworth P, Burnett SA. Ascorbic acid loss in vegetables: adequacy of a hospital cook-chill system. Int J Food Sci Nutr 2001; 52(3): 205–11.


107.
Lemming EW, Pitsi T. The Nordic Nutrition Recommendations 2022 – food consumption and nutrient intake in the adult population of the Nordic and Baltic countries. The Nordic Nutrition Recommendations 2022. Food Nutr Res 2022; 66: 8572. doi: 10.29219/fnr.v66.8572


108.
Kallner A, Hartmann D, Hornig D. Steady-state turnover and body pool of ascorbic acid in man. Am J Clin Nutr 1979; 32(3): 530–9. https://doi.org/10.1093/ajcn/32.3.530


109.
Ebenuwa I, Violet PC, Padayatty S, Wang Y, Wang Y, Sun H, et al. Abnormal urinary loss of vitamin C in diabetes: prevalence and clinical characteristics of a vitamin C renal leak. Am J Clin Nutr 2022; 116(1): 274–284. doi: 10.1093/ajcn/nqac063
Published
2023-12-28
How to Cite
Lykkesfeldt J., & Carr A. (2023). Vitamin C – a scoping review for Nordic Nutrition Recommendations 2023. Food & Nutrition Research, 67. https://doi.org/10.29219/fnr.v67.10300
Section
Nordic Nutrition Recommendations