Iron – a background article for the Nordic Nutrition Recommendations 2023

  • Magnus Domellöf Department of Clinical Sciences, Umeå University, Umeå, Sweden
  • Agneta Sjöberg Department of Food and Nutrition and Sport Science, University of Gothenburg, Gothenburg, Sweden
Keywords: iron, iron deficiency, anemia, ferritin, nutrition recommendations

Abstract

Iron absorption from foods is generally lower than that of most other nutrients and is highly variable depending on individual iron status and iron bioavailability in the meal. Several large population groups in the Nordic and Baltic countries are at risk of iron deficiency, including infants, young children, menstruating females, pregnant women as well as vegetarians. Iron deficiency leads to anemia, fatigue, and limited capacity for physical activity. Of particular concern is that iron deficiency anemia in young children is associated with impaired neurodevelopment. A comprehensive literature search has been performed and summarized. New factorial calculations have been performed considering iron losses, iron absorption and iron requirements in various population groups. Recent data on iron intakes and the prevalence of iron deficiency in the Nordic countries are presented. Average requirements and tentative recommended intakes are presented for 12 different population groups. Pregnant women and those with high menstrual blood losses should consume iron-rich food and undergo screening for iron deficiency. Infants should consume iron-rich complementary foods and cow’s milk should be avoided as a drink before 12 months of age and limited to < 500 mL/day in toddlers. Vegetarians should consume a diet including wholegrains, legumes, seeds, and green vegetables together with iron absorption enhancers. There is no evidence that iron intake per se increases the risk of cancer or diabetes. Iron absorption from foods is generally lower than that of most other nutrients and can vary between <2 and 50% depending on individual iron status and iron bioavailability in the meal.

Downloads

Download data is not yet available.

References


1.
WHO. Nutritional anaemias: tools for effective prevention and control. Geneva, Switzerland: WHO; 2017.


2.
Gao G, Li J, Zhang Y, Chang YZ. Cellular iron metabolism and regulation. Adv Exp Med Biol 2019; 1173: 21–32. doi: 10.1007/978-981-13-9589-5_2


3.
Blomhoff R, Andersen R, Arnesen E, Christensen J, Eneroth H, Erkkola M, et al. Nordic Nutrition Recommendations 2023. Copenhagen: Nordic Council of Ministers; 2023


4.
Christensen JJ, Arnesen EK, Andersen R, Eneroth H, Erkkola M, Høyer A, et al. The Nordic Nutrition Recommendations 2022 – principles and methodologies. Food Nutr Res 2020; 64: 4402. doi: 10.29219/fnr.v64.4402


5.
Pasricha SR, Tye-Din J, Muckenthaler MU, Swinkels DW. Iron deficiency. Lancet 2021; 397(10270): 233–48. doi: 10.1016/S0140-6736(20)32594-0


6.
Balder HF, Vogel J, Jansen MC, Weijenberg MP, van den Brandt PA, Westenbrink S, et al. Heme and chlorophyll intake and risk of colorectal cancer in the Netherlands cohort study. Cancer Epidemiol Biomarkers Prev 2006; 15(4): 717–25. doi: 10.1158/1055-9965.EPI-05-0772


7.
Milman N. Iron in pregnancy: how do we secure an appropriate iron status in the mother and child? Ann Nutr Metab 2011; 59(1): 50–4. doi: 10.1159/000332129


8.
Jakszyn P, Lujan-Barroso L, Agudo A, Bueno-de-Mesquita HB, Molina E, Sanchez MJ, et al. Meat and heme iron intake and esophageal adenocarcinoma in the European Prospective Investigation into Cancer and Nutrition study. Int J Cancer 2013; 133(11): 2744–50. doi: 10.1002/ijc.28291


9.
Becker W, Lindroos AK, Nalsen C, Warensjo Lemming E, Ohrvik V. Dietary habits, nutrient intake and biomarkers for folate, vitamin D, iodine and iron status among women of childbearing age in Sweden. Ups J Med Sci 2016; 121(4): 271–5. doi: 10.1080/03009734.2016.1201176


10.
Warensjo Lemming E, Pitsi T. The Nordic Nutrition Recommendations 2022 – food consumption and nutrient intake in the adult population of the Nordic and Baltic countries. Food Nutr Res 2022; 66: 8572. doi: 10.29219/fnr.v66.8572


11.
Hallberg L, Hulten L, Gramatkovski E. Iron absorption from the whole diet in men: how effective is the regulation of iron absorption? Am J Clin Nutr 1997; 66(2): 347–56. doi: 10.1093/ajcn/66.2.347


12.
Teucher B, Olivares M, Cori H. Enhancers of iron absorption: ascorbic acid and other organic acids. Int J Vitam Nutr Res 2004; 74(6): 403–19. doi: 10.1024/0300-9831.74.6.403


13.
Hallberg L, Brune M, Rossander L. Low bioavailability of carbonyl iron in man: studies on iron fortification of wheat flour. Am J Clin Nutr 1986; 43(1): 59–67. doi: 10.1093/ajcn/43.1.59


14.
Hallberg L, Brune M, Rossander L. Iron absorption in man: ascorbic acid and dose-dependent inhibition by phytate. Am J Clin Nutr 1989; 49(1): 140–4. doi: 10.1093/ajcn/49.1.140


15.
Siegenberg D, Baynes RD, Bothwell TH, Macfarlane BJ, Lamparelli RD, Car NG, et al. Ascorbic acid prevents the dose-dependent inhibitory effects of polyphenols and phytates on nonheme-iron absorption. Am J Clin Nutr 1991; 53(2): 537–41. doi: 10.1093/ajcn/53.2.537


16.
TTuntawiroon M, Sritongkul N, Brune M, Rossander-Hulten L, Pleehachinda R, Suwanik R, et al. Dose-dependent inhibitory effect of phenolic compounds in foods on nonheme-iron absorption in men. Am J Clin Nutr 1991; 53(2): 554–7. doi: 10.1093/ajcn/53.2.554


17.
Scheers N, Rossander-Hulthen L, Torsdottir I, Sandberg AS. Increased iron bioavailability from lactic-fermented vegetables is likely an effect of promoting the formation of ferric iron (Fe(3+)). Eur J Nutr 2016; 55(1): 373–82. doi: 10.1007/s00394-015-0857-6


18.
Engelmann MD, Davidsson L, Sandstrom B, Walczyk T, Hurrell RF, Michaelsen KF. The influence of meat on nonheme iron absorption in infants. Pediatr Res 1998; 43(6): 768–73. doi: 10.1203/00006450-199806000-00009


19.
Engelmann MD, Davidsson L, Sandstrom B, Walczyk T, Hurrell RF, Michaelsen KF. Meat protein fractions enhance nonheme iron absorption in humans. J Nutr 2006; 136(11): 2808–12. doi: 10.1093/jn/136.11.2808


20.
Vonderheid SC, Tussing-Humphreys L, Park C, Pauls H, OjiNjideka Hemphill N, LaBomascus B, et al. A systematic review and meta-analysis on the effects of probiotic species on iron absorption and iron status. Nutrients 2019; 11(12): 2938. doi: 10.3390/nu11122938


21.
Bothwell TH, Baynes RD, MacFarlane BJ, MacPhail AP. Nutritional iron requirements and food iron absorption. J Intern Med 1989; 226(5): 357–65. doi: 10.1111/j.1365-2796.1989.tb01409.x


22.
Brune M, Rossander-Hulten L, Hallberg L, Gleerup A, Sandberg AS. Iron absorption from bread in humans: inhibiting effects of cereal fiber, phytate and inositol phosphates with different numbers of phosphate groups. J Nutr 1992; 122(3): 442–9. doi: 10.1093/jn/122.3.442


23.
Sandberg AS, Onning G, Engstrom N, Scheers N. Iron supplements containing lactobacillus plantarum 299v increase ferric iron and up-regulate the ferric reductase DCYTB in human Caco-2/HT29 MTX co-cultures. Nutrients 2018; 10(12): 1949. doi: 10.3390/nu10121949


24.
Nikmaram N, Leong SY, Koubaa M, Zhu Z, Barba FJ, Greiner R, et al. Effect of extrusion on the anti-nutritional factors of food products: an overview. Food Contr 2017; 79: 62–73. doi: 10.1016/j.foodcont.2017.03.027


25.
Hallberg L, Brune M, Erlandsson M, Sandberg AS, Rossander-Hulten L. Calcium. effect of different amounts on nonheme- and heme-iron absorption in humans. Am J Clin Nutr 1991; 53(1): 112–9. doi: 10.1093/ajcn/53.1.112


26.
Gleerup A, Rossander-Hulten L, Hallberg L. Duration of the inhibitory effect of calcium on non-haem iron absorption in man. Eur J Clin Nutr 1993; 47(12): 875–9.


27.
Gleerup A, Rossander-Hulten L, Hallberg L. Iron absorption from the whole diet: comparison of the effect of two different distributions of daily calcium intake. Am J Clin Nutr 1995; 61(1): 97–104. doi: 10.1093/ajcn/61.1.97


28.
Cook JD, Dassenko SA, Whittaker P. Calcium supplementation: effect on iron absorption. Am J Clin Nutr 1991; 53(1): 106–11. doi: 10.1093/ajcn/53.1.106


29.
Lonnerdal B. Calcium and iron absorption – mechanisms and public health relevance. Int J Vitam Nutr Res 2010; 80(4–5): 293–9. doi: 10.1024/0300-9831/a000036


30.
DeMaeyer E, Adiels-Tegman M. The prevalence of anaemia in the world. World Health Stat Q 1985; 38(3): 302–16.


31.
Petry N, Olofin I, Hurrell RF, Boy E, Wirth JP, Moursi M, et al. The proportion of anemia associated with iron deficiency in low, mdium, and high human development index countries: a systematic analysis of national surveys. Nutrients 2016; 8(11): 693. doi: 10.3390/nu8110693


32.
Engle-Stone R, Aaron GJ, Huang J, Wirth JP, Namaste SM, Williams AM, et al. Predictors of anemia in preschool children: Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) project. Am J Clin Nutr 2017; 106(Suppl 1): 402S–15S. doi: 10.3945/ajcn.116.142323


33.
Andersen ATN, Husby S, Kyhl HB, Sandberg MB, Sander SD, Molgaard C. Iron deficiency in healthy 18-month-old Danish children is associated with no oral iron supplementation in infancy and prolonged exclusive breast-feeding. Br J Nutr 2019; 122(12): 1409–16. doi: 10.1017/S0007114519002496


34.
Armah SM, Boy E, Chen D, Candal P, Reddy MB. Regular consumption of a high-phytate diet reduces the inhibitory effect of phytate on nonheme-iron absorption in women with suboptimal iron stores. J Nutr 2015; 145(8): 1735–9. doi: 10.3945/jn.114.209957


35.
Hoppe M, Ross AB, Svelander C, Sandberg AS, Hulthen L. Low-phytate wholegrain bread instead of high-phytate wholegrain bread in a total diet context did not improve iron status of healthy Swedish females: a 12-week, randomized, parallel-design intervention study. Eur J Nutr 2019; 58(2): 853–64. doi: 10.1007/s00394-018-1722-1


36.
WHO. Guideline on use of ferritin concentrations to assess iron status in individuals and populations. 2020. Available from: https://www.who.int/publications/i/item/9789240000124 [cited 14 November 2020].


37.
Hallberg L, Bengtsson C, Lapidus L, Lindstedt G, Lundberg PA, Hulten L. Screening for iron deficiency: an analysis based on bone-marrow examinations and serum ferritin determinations in a population sample of women. Br J Haematol 1993; 85(4): 787–98. doi: 10.1111/j.1365-2141.1993.tb03225.x


38.
Fox B, Roberts G, Atkinson E, Rigsby P, Ball C. International collaborative study to evaluate and calibrate two recombinant L chain Ferritin preparations for use as a WHO International Standard. Clin Chem Lab Med 2022; 60(3): 370–8. doi: 10.1515/cclm-2021-1139


39.
Choy KW, Sezgin G, Wijeratne N, Calleja J, Liwayan R, Rathnayake G, et al. Assessment of analytical bias in ferritin assays and impact on functional reference limits. Pathology 2022; 54(3): 302–7. doi: 10.1016/j.pathol.2021.06.123


40.
Domellof M, Dewey KG, Lonnerdal B, Cohen RJ, Hernell O. The diagnostic criteria for iron deficiency in infants should be reevaluated. J Nutr 2002; 132(12): 3680–6. doi: 10.1093/jn/132.12.3680


41.
Larsson SM, Hillarp A, Hellstrom-Westas L, Domellof M, Lundahl T, Andersson O. When age really matters; ferritin reference intervals during infancy revisited. Scand J Clin Lab Invest 2019; 79(8): 590–4. doi: 10.1080/00365513.2019.1681028


42.
Domellof M, Braegger C, Campoy C, Colomb V, Decsi T, Fewtrell M, et al. Iron requirements of infants and toddlers. J Pediatr Gastroenterol Nutr 2014; 58(1): 119–29. doi: 10.1097/MPG.0000000000000206


43.
Domellöf M, Berglund S. Nutritional anemia in infants and children. In: Karakochuk C, Zimmermann MB, Moretti D, Kraemer K, eds. Nutritional anemia 2nd ed. pp 77–90. Nutrition and health. Cham, Switzerland: Springer; 2022, pp. 77–90.


44.
WHO. Haemoglobin concentrations for the diagnosis of anaemia and assessment of severity. Geneva: WHO; 2011.


45.
Pavord S, Daru J, Prasannan N, Robinson S, Stanworth S, Girling J, et al. UK guidelines on the management of iron deficiency in pregnancy. Br J Haematol 2020; 188(6): 819–30. doi: 10.1111/bjh.16221


46.
Mast AE, Blinder MA, Lu Q, Flax S, Dietzen DJ. Clinical utility of the reticulocyte hemoglobin content in the diagnosis of iron deficiency. Blood 2002; 99(4): 1489–91. doi: 10.1182/blood.v99.4.1489


47.
Ullrich C, Wu A, Armsby C, Rieber S, Wingerter S, Brugnara C, et al. Screening healthy infants for iron deficiency using reticulocyte hemoglobin content. JAMA 2005; 294(8): 924–30. doi: 10.1001/jama.294.8.924


48.
Bakr AF, Sarette G. Measurement of reticulocyte hemoglobin content to diagnose iron deficiency in Saudi children. Eur J Pediatr 2006; 165(7): 442–5. doi: 10.1007/s00431-006-0097-0


49.
Larsson SM, Hellstrom-Westas L, Hillarp A, Akeson PK, Domellof M, Askelof U, et al. Haemoglobin and red blood cell reference intervals during infancy. Arch Dis Child 2022; 107(4): 351–8. doi: 10.1136/archdischild-2021-321672


50.
Namaste SM, Rohner F, Huang J, Bhushan NL, Flores-Ayala R, Kupka R, et al. Adjusting ferritin concentrations for inflammation: Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) project. Am J Clin Nutr 2017; 106(Suppl 1): 359S–71S. doi: 10.3945/ajcn.116.141762


51.
Hay G, Sandstad B, Whitelaw A, Borch-Iohnsen B. Iron status in a group of Norwegian children aged 6–24 months. Acta Paediatr 2004; 93(5): 592–8. doi: 10.1111/j.1651-2227.2004.tb02983.x


52.
Ohlund I, Lind T, Hornell A, Hernell O. Predictors of iron status in well-nourished 4-y-old children. Am J Clin Nutr 2008; 87(4): 839–45. doi: 10.1093/ajcn/87.4.839


53.
Thorisdottir AV, Thorsdottir I, Palsson GI. Nutrition and iron status of 1-year olds following a revision in infant dietary recommendations. Anemia 2011; 2011: 986303. doi: 10.1155/2011/986303


54.
Akkermans MD, van der Horst-Graat JM, Eussen SR, van Goudoever JB, Brus F. Iron and vitamin D deficiency in healthy young children in Western Europe despite current nutritional recommendations. J Pediatr Gastroenterol Nutr 2016; 62(4): 635–42. doi: 10.1097/MPG.0000000000001015


55.
Stabell N, Averina M, Flaegstad T. Chronic iron deficiency and anaemia were highly prevalent in a population-based longitudinal study among adolescent girls. Acta Paediatr 2021; 110(10): 2842–9. doi: 10.1111/apa.16016


56.
Livsmedelsverket (The Swedish Food Agency). Så äter ungdomar i Sverige. Del 2. Näringsintag och näringsstatus bland ungdomar i Åk 5, Åk 8 och Åk 2 på gymnasiet. Livsmedelsverket Rapportserie nr 23 2018. ISSN 1104-7089. (In Swedish, Summary in English). Uppsala, Sweden; 2018.


57.
Naess-Andresen ML, Eggemoen AR, Berg JP, Falk RS, Jenum AK. Serum ferritin, soluble transferrin receptor, and total body iron for the detection of iron deficiency in early pregnancy: a multiethnic population-based study with low use of iron supplements. Am J Clin Nutr 2019; 109(3): 566–75. doi: 10.1093/ajcn/nqy366


58.
Nordic Council of Ministers. Nordic Nutrition Recommendations 2004: integrating nutrition and physical activity. 4th ed. Copenhagen, Denmark: Nordic Council of Ministries; 2004.


59.
Milman N, Pedersen AN, Ovesen L, Schroll M. Iron status in 358 apparently healthy 80-year-old Danish men and women: relation to food composition and dietary and supplemental iron intake. Ann Hematol 2004; 83(7): 423–9. doi: 10.1007/s00277-003-0830-y


60.
Sim M, Garvican-Lewis LA, Cox GR, Govus A, McKay AKA, Stellingwerff T, et al. Iron considerations for the athlete: a narrative review. Eur J Appl Physiol 2019; 119(7): 1463–78. doi: 10.1007/s00421-019-04157-y


61.
Falkingham M, Abdelhamid A, Curtis P, Fairweather-Tait S, Dye L, Hooper L. The effects of oral iron supplementation on cognition in older children and adults: a systematic review and meta-analysis. Nutr J 2010; 9: 4. doi: 10.1186/1475-2891-9-4


62.
Dziembowska I, Kwapisz J, Izdebski P, Zekanowska E. Mild iron deficiency may affect female endurance and behavior. Physiol Behav 2019; 205: 44–50. doi: 10.1016/j.physbeh.2018.09.012


63.
Houston BL, Hurrie D, Graham J, Perija B, Rimmer E, Rabbani R, et al. Efficacy of iron supplementation on fatigue and physical capacity in non-anaemic iron-deficient adults: a systematic review of randomised controlled trials. BMJ Open 2018; 8(4): e019240. doi: 10.1136/bmjopen-2017-019240


64.
Trotti LM, Becker LA. Iron for the treatment of restless legs syndrome. Cochrane Database Syst Rev 2019; 1: CD007834. doi: 10.1002/14651858.CD007834.pub3


65.
Lozoff B, Beard J, Connor J, Barbara F, Georgieff M, Schallert T. Long-lasting neural and behavioral effects of iron deficiency in infancy. Nutr Rev 2006; 64(5 Pt 2): S34–43; discussion S72–91. doi: 10.1301/nr.2006.may.s34-s43


66.
Beard J. Recent evidence from human and animal studies regarding iron status and infant development. J Nutr 2007; 137(2): 524S–30S. doi: 10.1093/jn/137.2.524S


67.
Larson LM, Kubes JN, Ramirez-Luzuriaga MJ, Khishen S, A HS, Prado EL. Effects of increased hemoglobin on child growth, development, and disease: a systematic review and meta-analysis. Ann N Y Acad Sci 2019; 1450(1): 83–104. doi: 10.1111/nyas.14105


68.
Tam E, Keats EC, Rind F, Das JK, Bhutta AZA. Micronutrient supplementation and fortification interventions on health and development outcomes among children under-five in low- and middle-income countries: a systematic review and meta-analysis. Nutrients 2020; 12(2): 289. doi: 10.3390/nu12020289


69.
Bao W, Rong Y, Rong S, Liu L. Dietary iron intake, body iron stores, and the risk of type 2 diabetes: a systematic review and meta-analysis. BMC Med 2012; 10: 119. doi: 10.1186/1741-7015-10-119


70.
Kunutsor SK, Apekey TA, Walley J, Kain K. Ferritin levels and risk of type 2 diabetes mellitus: an updated systematic review and meta-analysis of prospective evidence. Diabetes Metab Res Rev 2013; 29(4): 308–18. doi: 10.1002/dmrr.2394


71.
Shahinfar H, Jayedi A, Shab-Bidar S. Dietary iron intake and the risk of type 2 diabetes: a systematic review and dose-response meta-analysis of prospective cohort studies. Eur J Nutr 2022; 61(5): 2279–96. doi: 10.1007/s00394-022-02813-2


72.
Bellou V, Belbasis L, Tzoulaki I, Evangelou E. Risk factors for type 2 diabetes mellitus: an exposure-wide umbrella review of meta-analyses. PLoS One 2018; 13(3): e0194127. doi: 10.1371/journal.pone.0194127


73.
Zhao Z, Li S, Liu G, Yan F, Ma X, Huang Z, et al. Body iron stores and heme-iron intake in relation to risk of type 2 diabetes: a systematic review and meta-analysis. PLoS One 2012; 7(7): e41641. doi: 10.1371/journal.pone.0041641


74.
Liu J, Li Q, Yang Y, Ma L. Iron metabolism and type 2 diabetes mellitus: a meta-analysis and systematic review. J Diabetes Investig 2020; 11(4): 946–55. doi: 10.1111/jdi.13216


75.
Fu S, Li F, Zhou J, Liu Z. The relationship between body iron status, iron intake and gestational diabetes: a systematic review and meta-analysis. Medicine (Baltimore) 2016; 95(2): e2383. doi: 10.1097/MD.0000000000002383


76.
Zhao L, Lian J, Tian J, Shen Y, Ping Z, Fang X, et al. Dietary intake of heme iron and body iron status are associated with the risk of gestational diabetes mellitus: a systematic review and meta-analysis. Asia Pac J Clin Nutr 2017; 26(6): 1092–106. doi: 10.6133/apjcn.022017.09


77.
Zhang C, Rawal S. Dietary iron intake, iron status, and gestational diabetes. Am J Clin Nutr 2017; 106(Suppl 6): 1672S–80S. doi: 10.3945/ajcn.117.156034


78.
Khambalia AZ, Aimone A, Nagubandi P, Roberts CL, McElduff A, Morris JM, et al. High maternal iron status, dietary iron intake and iron supplement use in pregnancy and risk of gestational diabetes mellitus: a prospective study and systematic review. Diabet Med 2016; 33(9): 1211–21. doi: 10.1111/dme.13056


79.
Kataria Y, Wu Y, Horskjaer PH, Mandrup-Poulsen T, Ellervik C. Iron status and gestational diabetes – a meta-analysis. Nutrients 2018; 10(5): 621. doi: 10.3390/nu10050621


80.
Thorsen SU, Liu X, Kataria Y, Mandrup-Poulsen T, Kaur S, Uusitalo U, et al. Interaction between dietary iron intake and genetically determined iron overload: risk of islet autoimmunity and progression to type 1 diabetes in the TEDDY study. Diabetes Care 2023; 46(5): 1014–8. doi: 10.2337/dc22-1359


81.
Elhassan S, Dong F, Buckner T, Johnson RK, Seifert JA, Carry PM, et al. Investigating iron intake in risk of progression from islet autoimmunity to type 1 diabetes: the diabetes autoimmunity study in the young. Front Immunol 2023; 14: 1124370. doi: 10.3389/fimmu.2023.1124370


82.
Huang Y, Cao D, Chen Z, Chen B, Li J, Wang R, et al. Iron intake and multiple health outcomes: umbrella review. Crit Rev Food Sci Nutr 2023; 63(16): 2910–27. doi: 10.1080/10408398.2021.1982861


83.
Zhou W, Park S, Liu G, Miller DP, Wang LI, Pothier L, et al. Dietary iron, zinc, and calcium and the risk of lung cancer. Epidemiology 2005; 16(6): 772–9. doi: 10.1097/01.ede.0000181311.11585.59


84.
Jakszyn P, Gonzalez CA, Lujan-Barroso L, Ros MM, Bueno-de-Mesquita HB, Roswall N, et al. Red meat, dietary nitrosamines, and heme iron and risk of bladder cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC). Cancer Epidemiol Biomarkers Prev 2011; 20(3): 555–9. doi: 10.1158/1055-9965.EPI-10-0971


85.
Chang VC, Cotterchio M, Khoo E. Iron intake, body iron status, and risk of breast cancer: a systematic review and meta-analysis. BMC Cancer 2019; 19(1): 543. doi: 10.1186/s12885-019-5642-0


86.
Bastide NM, Pierre FH, Corpet DE. Heme iron from meat and risk of colorectal cancer: a meta-analysis and a review of the mechanisms involved. Cancer Prev Res (Phila) 2011; 4(2): 177–84. doi: 10.1158/1940-6207.CAPR-10-0113


87.
Farvid MS, Sidahmed E, Spence ND, Mante Angua K, Rosner BA, Barnett JB. Consumption of red meat and processed meat and cancer incidence: a systematic review and meta-analysis of prospective studies. Eur J Epidemiol 2021; 36(9): 937–51. doi: 10.1007/s10654-021-00741-9


88.
Handel MN, Rohde JF, Jacobsen R, Nielsen SM, Christensen R, Alexander DD, et al. Processed meat intake and incidence of colorectal cancer: a systematic review and meta-analysis of prospective observational studies. Eur J Clin Nutr 2020; 74(8): 1132–48. doi: 10.1038/s41430-020-0576-9


89.
Han MA, Zeraatkar D, Guyatt GH, Vernooij RWM, El Dib R, Zhang Y, et al. Reduction of red and processed meat intake and cancer mortality and incidence: a systematic review and meta-analysis of cohort studies. Ann Intern Med 2019; 171(10): 711–20. doi: 10.7326/M19-0699


90.
Zeraatkar D, Johnston BC, Bartoszko J, Cheung K, Bala MM, Valli C, et al. Effect of lower versus higher red meat intake on cardiometabolic and cancer outcomes: a systematic review of randomized trials. Ann Intern Med 2019; 171(10): 721–31. doi: 10.7326/M19-0622


91.
World Cancer Research Fund/American lnstitute for Cancer Research. Diet, nutrition, physical activity and cancer: a global perspective. Continuous Update Project Expert Report; 2018.


92.
Collaborators GBDCC. The global, regional, and national burden of colorectal cancer and its attributable risk factors in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol Hepatol 2019; 4(12): 913–33. doi: 10.1016/S2468-1253(19)30345-0


93.
Gilsing AM, Fransen F, de Kok TM, Goldbohm AR, Schouten LJ, de Bruine AP, et al. Dietary heme iron and the risk of colorectal cancer with specific mutations in KRAS and APC. Carcinogenesis 2013; 34(12): 2757–66. doi: 10.1093/carcin/bgt290


94.
Turner ND, Lloyd SK. Association between red meat consumption and colon cancer: a systematic review of experimental results. Exp Biol Med 2017; 242(8): 813–39. doi: 10.1177/1535370217693117


95.
Fonseca-Nunes A, Jakszyn P, Agudo A. Iron and cancer risk – a systematic review and meta-analysis of the epidemiological evidence. Cancer Epidemiol Biomarkers Prev 2014; 23(1): 12–31. doi: 10.1158/1055-9965.EPI-13-0733


96.
Mohammadzadeh M, Bahrami A, Ghafouri-Taleghani F, Khalesi S, Abdi F, Hejazi E. Dietary iron and the risk of lung cancer. Int J Vitam Nutr Res 2023 (online ahead of print). doi: 10.1024/0300-9831/a000789


97.
Cross AJ, Sinha R, Wood RJ, Xue X, Huang WY, Yeager M, et al. Iron homeostasis and distal colorectal adenoma risk in the prostate, lung, colorectal, and ovarian cancer screening trial. Cancer Prev Res (Phila) 2011; 4(9): 1465–75. doi: 10.1158/1940-6207.CAPR-11-0103


98.
Ma J, Li Q, Fang X, Chen L, Qiang Y, Wang J, et al. Increased total iron and zinc intake and lower heme iron intake reduce the risk of esophageal cancer: a dose-response meta-analysis. Nutr Res 2018; 59: 16–28. doi: 10.1016/j.nutres.2018.07.007


99.
Natarajan Y, Patel P, Chu J, Yu X, Hernaez R, El-Serag H, et al. Risk of hepatocellular carcinoma in patients with various HFE genotypes. Dig Dis Sci 2022; 68(1): 312–22. doi: 10.1007/s10620-022-07602-9.


100.
Tran KT, Coleman HG, McCain RS, Cardwell CR. Serum biomarkers of iron status and risk of primary liver cancer: a systematic review and meta-analysis. Nutr Cancer 2019; 71(8): 1365–73. doi: 10.1080/01635581.2019.1609053


101.
World Cancer Research Fund International. Limit red and processed meat. Available from: https://www.wcrf.org/diet-activity-and-cancer/cancer-prevention-recommendations/limit-red-and-processed-meat [cited 01 November 2023].


102.
Green R, Charlton R, Seftel H, Bothwell T, Mayet F, Adams B, et al. Body iron excretion in man: a collaborative study. Am J Med 1968; 45(3): 336–53. doi: 10.1016/0002-9343(68)90069-7


103.
Hunt JR, Zito CA, Johnson LK. Body iron excretion by healthy men and women. Am J Clin Nutr 2009; 89(6): 1792–8. doi: 10.3945/ajcn.2009.27439


104.
FFomon SJ, Nelson SE, Serfass RE, Ziegler EE. Absorption and loss of iron in toddlers are highly correlated. J Nutr 2005; 135(4): 771–7. doi: 10.1093/jn/135.4.771


105.
EFSA NDA Panel (EFSA Panel on Dietetic Products NaA. Scientific opinion on ddietary reference values for iron. EFSA J. 2015; 13(10): 4254. doi: 10.2903/j.efsa.2015.4254


106.
Hallberg L, Nilsson L. Constancy of individual menstrual blood loss. Acta Obstet Gynecol Scand 1964; 43: 352–9. doi: 10.3109/00016346409162685


107.
Hallberg L, Hogdahl AM, Nilsson L, Rybo G. Menstrual blood loss and iron deficiency. Acta Med Scand 1966; 180(5): 639–50. doi: 10.1111/j.0954-6820.1966.tb02880.x


108.
Hallberg L, Hogdahl AM, Nilsson L, Rybo G. Menstrual blood loss – a population study. Variation at different ages and attempts to define normality. Acta Obstet Gynecol Scand 1966; 45(3): 320–51. doi: 10.3109/00016346609158455


109.
Larsson G, Milsom I, Lindstedt G, Rybo G. The influence of a low-dose combined oral contraceptive on menstrual blood loss and iron status. Contraception 1992; 46(4): 327–34. doi: 10.1016/0010-7824(92)90095-b


110.
Harvey LJ, Armah CN, Dainty JR, Foxall RJ, John Lewis D, Langford NJ, et al. Impact of menstrual blood loss and diet on iron deficiency among women in the UK. Br J Nutr 2005; 94(4): 557–64. doi: 10.1079/bjn20051493


111.
Domellof M, Lonnerdal B, Dewey KG, Cohen RJ, Hernell O. Iron, zinc, and copper concentrations in breast milk are independent of maternal mineral status. Am J Clin Nutr 2004; 79(1): 111–5. doi: 10.1093/ajcn/79.1.111


112.
Butte N, Lopez-Alarcon MG, Garza C. Nutrient adequacy of exclusive breastfeeding for the term infant during the first six months of life. Geneva: World Health Organization; 2002, 47 pp.


113.
Bothwell TH. Iron requirements in pregnancy and strategies to meet them. Am J Clin Nutr 2000; 72(1 Suppl): 257S–64S. doi: 10.1093/ajcn/72.1.257S


114.
Milman N. Iron and pregnancy – a delicate balance. Ann Hematol 2006; 85(9): 559–65. doi: 10.1007/s00277-006-0108-2


115.
Cook JD, Lipschitz DA, Miles LE, Finch CA. Serum ferritin as a measure of iron stores in normal subjects. Am J Clin Nutr 1974; 27(7): 681–7. doi: 10.1093/ajcn/27.7.681


116.
Collings R, Harvey LJ, Hooper L, Hurst R, Brown TJ, Ansett J, et al. The absorption of iron from whole diets: a systematic review. Am J Clin Nutr 2013; 98(1): 65–81. doi: 10.3945/ajcn.112.050609


117.
Hallberg L, Bjorn-Rasmussen E, Howard L, Rossander L. Dietary heme iron absorption. A discussion of possible mechanisms for the absorption-promoting effect of meat and for the regulation of iron absorption. Scand J Gastroenterol 1979; 14(7): 769–79. doi: 10.3109/00365527909181403


118.
Hallberg L, Hulthen L. Prediction of dietary iron absorption: an algorithm for calculating absorption and bioavailability of dietary iron. Am J Clin Nutr 2000; 71(5): 1147–60. doi: 10.1093/ajcn/71.5.1147


119.
Reddy MB, Hurrell RF, Cook JD. Estimation of nonheme-iron bioavailability from meal composition. Am J Clin Nutr 2000; 71(4): 937–43. doi: 10.1093/ajcn/71.4.937


120.
Rickard AP, Chatfield MD, Conway RE, Stephen AM, Powell JJ. An algorithm to assess intestinal iron availability for use in dietary surveys. Br J Nutr 2009; 102(11): 1678–85. doi: 10.1017/S0007114509990894


121.
Armah SM, Carriquiry A, Sullivan D, Cook JD, Reddy MB. A complete diet-based algorithm for predicting nonheme iron absorption in adults. J Nutr 2013; 143(7): 1136–40. doi: 10.3945/jn.112.169904


122.
Institute of Medicine (IOM). Dietary Reference Intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Food and Nutrition Board. Washington, DC: National Academy Press; 2001, 797 pp.


123.
Dainty JR, Berry R, Lynch SR, Harvey LJ, Fairweather-Tait SJ. Estimation of dietary iron bioavailability from food iron intake and iron status. PLoS One 2014; 9(10): e111824. doi: 10.1371/journal.pone.0111824


124.
Medicine Io. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Washington, DC: National Academy Press; 2001.


125.
Cook JD, Dassenko SA, Lynch SR. Assessment of the role of nonheme-iron availability in iron balance. Am J Clin Nutr 1991; 54(4): 717–22. doi: 10.1093/ajcn/54.4.717


126.
Hallberg L, Rossander-Hulten L. Iron requirements in menstruating women. Am J Clin Nutr. 1991; 54(6): 1047–58. doi: 10.1093/ajcn/54.6.1047


127.
Peuranpaa P, Heliovaara-Peippo S, Fraser I, Paavonen J, Hurskainen R. Effects of anemia and iron deficiency on quality of life in women with heavy menstrual bleeding. Acta Obstet Gynecol Scand 2014; 93(7): 654–60. doi: 10.1111/aogs.12394


128.
Bjormsjo M, Hernell O, Lonnerdal B, Berglund SK. Reducing iron content in infant formula from 8 to 2 mg/L does not increase the risk of iron deficiency at 4 or 6 months of age: a randomized controlled trial. Nutrients 2020; 13(1): 3. doi: 10.3390/nu13010003


129.
Domellof M. Meeting the iron needs of low and very low birth weight infants. Ann Nutr Metab 2017; 71(Suppl 3): 16–23. doi: 10.1159/000480741


130.
Holmlund-Suila EM, Hauta-Alus HH, Enlund-Cerullo M, Rosendahl J, Valkama SM, Andersson S, et al. Iron status in early childhood is modified by diet, sex and growth: secondary analysis of a randomized controlled vitamin D trial. Clin Nutr 2022; 41(2): 279–87. doi: 10.1016/j.clnu.2021.12.013


131.
Johansson AJ, Segeblad, B, Zdolsek, B, Jansson, Å. SFOG-råd Handläggning av järnbristanemi under graviditet. 2021. Available from: https://www.sfog.se/media/338045/jaernbristanemi-under-graviditet-mhoel-211125.pdf [cited 14 June 2022].


132.
Pena-Rosas JP, De-Regil LM, Garcia-Casal MN, Dowswell T. Daily oral iron supplementation during pregnancy. Cochrane Database Syst Rev 2015; 7: CD004736. doi: 10.1002/14651858.CD004736.pub5


133.
Haider LM, Schwingshackl L, Hoffmann G, Ekmekcioglu C. The effect of vegetarian diets on iron status in adults: a systematic review and meta-analysis. Crit Rev Food Sci Nutr 2018; 58(8): 1359–74. doi: 10.1080/10408398.2016.1259210


134.
Mayer Labba IC, Steinhausen H, Almius L, Bach Knudsen KE, Sandberg AS. Nutritional composition and estimated iron and zinc bioavailability of meat substitutes available on the Swedish market. Nutrients 2022; 14(19): 3903. doi: 10.3390/nu14193903


135.
Mayer-Labba I-C. Nutritional limitations of a green protein shift with focus on iron. Gothenburg: Chalmers University of Technology; 2022.


136.
Bryngelsson S, Moshtaghian H, Bianchi M, Hallström E. Nutritional assessment of plant-based meat analogues on the Swedish market. Int J Food Sci Nutr. 2022; 73(7): 889–901. doi: 10.1080/09637486.2022.2078286


137.
Chang TP, Rangan C. Iron poisoning: a literature-based review of epidemiology, diagnosis, and management. Pediatr Emerg Care 2011; 27(10): 978–85. doi: 10.1097/PEC.0b013e3182302604


138.
Anderson AC. Iron poisoning in children. Curr Opin Pediatr 1994; 6(3): 289–94. doi: 10.1097/00008480-199406000-00010


139.
Thorstensen K, Kvitland MA, Irgens WO, Hveem K, Asberg A. Screening for C282Y homozygosity in a Norwegian population (HUNT2): the sensitivity and specificity of transferrin saturation. Scand J Clin Lab Invest 2010; 70(2): 92–7. doi: 10.3109/00365510903527838


140.
Milman N, Pedersen P, Steig T, Melsen GV. Frequencies of the hereditary hemochromatosis allele in different populations. Comparison of previous phenotypic methods and novel genotypic methods. Int J Hematol 2003; 77(1): 48–54. doi: 10.1007/BF02982602


141.
Beard J. Dietary iron intakes and elevated iron stores in the elderly: is it time to abandon the set-point hypothesis of regulation of iron absorption? Am J Clin Nutr 2002; 76(6): 1189–90. doi: 10.1093/ajcn/76.6.1189


142.
Hallberg L, Hulthen L, Garby L. Iron stores in man in relation to diet and iron requirements. Eur J Clin Nutr 1998; 52(9): 623–31. doi: 10.1038/sj.ejcn.1600623


143.
Fleming DJ, Tucker KL, Jacques PF, Dallal GE, Wilson PW, Wood RJ. Dietary factors associated with the risk of high iron stores in the elderly Framingham Heart Study cohort. Am J Clin Nutr 2002; 76(6): 1375–84. doi: 10.1093/ajcn/76.6.1375


144.
Borch-Iohnsen BPGK. Iron. In: Oskarsson A, edr. Risk evaluation of essential trace elements. Copenhagen: Ministers NCo; 1995, pp. 67–110.


145.
Lozoff B, Castillo M, Clark KM, Smith JB. Iron-fortified vs low-iron infant formula: developmental outcome at 10 years. Arch Pediatr Adolesc Med 2012; 166(3): 208–15. doi: 10.1001/archpediatrics.2011.197
Published
2024-02-08
How to Cite
Domellöf M., & Sjöberg A. (2024). Iron – a background article for the Nordic Nutrition Recommendations 2023. Food & Nutrition Research, 68. https://doi.org/10.29219/fnr.v68.10451
Section
Nordic Nutrition Recommendations