Riboflavin: a scoping review for Nordic Nutrition Recommendations 2023

  • Vegard Lysne Department of Health and Inequality, Norwegian Institute of Public Health, Oslo, Norway
  • Hanna Sara Strandler Swedish Food Agency, Uppsala, Sweden
Keywords: Riboflavin, Vitamin B2, dietary recommendations, flavoproteins

Abstract

Only a few studies have explored relationships between riboflavin intake and function and a few studies have examined the effects of supplements on various clinical or biochemical outcomes. None of these studies, however, make a useful contribution to understanding requirements in healthy populations. Thus, there is no strong evidence to change the recommendations.

The requirement for riboflavin is estimated based on the relationship between intake and biochemical indices of riboflavin status, including urinary excretion and enzyme activities.

Downloads

Download data is not yet available.

References


1.
Turck D, Bresson J, Burlingame B, Dean T, Fairweather–Tait S, Heinonen M, et al. Dietary reference values for riboflavin. EFSA J. 2017; 15(8): 4919. doi: 10.2903/j.efsa.2017.4919


2.
Mosegaard S, Dipace G, Bross P, Carlsen J, Gregersen N, Olsen RKJ. Riboflavin deficiency – implications for general human health and inborn errors of metabolism. Int J Mol Sci. 2020; 21(11); 3847. doi: 10.3390/IJMS21113847


3.
Blomhoff R, Andersen R, Arnesen EK, Christensen JJ, Eneroth H, Erkkola M, et al. Nordic nutrition recommendations 2023. Nordic Council of Ministers; 2023. Available from: https://pub.norden.org/nord2023-003 [cited 16 October 2023].


4.
Christensen JJ, Arnesen EK, Andersen R, Eneroth H, Erkkola M, Høyer A, et al. The Nordic nutrition recommendations 2022 – principles and methodologies. Food Nutr Res. 2020; 64. doi: 10.29219/fnr.v64.4402


5.
Høyer A, Christensen JJ, Arnesen EK, Andersen R, Eneroth H, Erkkola M, et al. The Nordic nutrition recommendations 2022 – prioritisation of topics for de novo systematic reviews. Food Nutr Res. 2021; 65. doi: 10.29219/FNR.V65.7828


6.
Thompson DF, Saluja HS. Prophylaxis of migraine headaches with riboflavin: a systematic review. J Clin Pharm Ther. 2017; 42(4): 394–403. doi: 10.1111/jcpt.12548


7.
Yu L, Tan Y, Zhu L. Dietary vitamin B2 intake and breast cancer risk: a systematic review and meta-analysis. Arch Gynecol Obs. 2017; 295(3): 721–9. doi: 10.1007/s00404-016-4278-4


8.
McNulty H, Strain JJ, Hughes CF, Ward M. Riboflavin, MTHFR genotype and blood pressure: a personalized approach to prevention and treatment of hypertension. Mol Aspects Med. 2017; 53: 2–9. doi: 10.1016/j.mam.2016.10.002


9.
Buijssen M, Eeuwijk J, Vonk Noordegraaf-Schouten M. Literature search and review related to specific preparatory work in the establishment of dietary reference values for Riboflavin. EFSA Support Publ. 2014; 11(5): 591E. doi: 10.2903/SP.EFSA.2014.EN-591


10.
Institute of Medicine. Dietary reference intakes: The essential guide to nutrient requirements. Washington, DC: National Academies Press; 2006.


11.
De Gruyter. Riboflavin. 2016. Available from: https://www.degruyter.com/document/database/IUPAC/entry/iupac.compound.493570/html [cited 2021 Jun 21].


12.
Ball GFM. Vitamins in foods: Analysis, bioavailability, and stability. 1st ed. 2006. CRC Press. doi: 10.1201/9781420026979


13.
Ball GFM. Flavins: Riboflavin, FMN and FAD (Vitamin B2). In: Vitamins; Their role in the human body. Oxford, UK: Blackwell Publishing Ltd; 2004, p. 289–300. doi: 10.1002/9780470774571.ch12


14.
Mayhew SG. The effects of pH and semiquinone formation on the oxidation-reduction potentials of flavin mononucleotide. A reappraisal. Eur J Biochem. 1999; 265(2): 698–702. doi: 10.1046/J.1432-1327.1999.00767.X


15.
Zempleni J, Suttie JW, Gregory JF, Patrick I, Stover J. Handbook of vitamins, Boca Raton, Florida, USA: CRC Press, 2013. doi: 10.1201/b15413


16.
Rich PR, Maréchal A. Electron transfer chains: Structures, mechanisms and energy coupling. In: Egelman EH, ed. Comprehensive biophysics, Oxford: Elsevier, 2012, p. 72–93.


17.
Lienhart WD, Gudipati V, MacHeroux P. The human flavoproteome. Arch Biochem Biophys. 2013; 535(2): 150–62. doi: 10.1016/J.ABB.2013.02.015


18.
McNulty H, McKinley MC, Wilson B, McPartlin J, Strain JJ, Weir DG, et al. Impaired functioning of thermolabile methylenetetrahydrofolate reductase is dependent on riboflavin status: implications for riboflavin requirements. Am J Clin Nutr. 2002; 76(2): 436–41. doi: 10.1093/ajcn/76.2.436


19.
Koutmos M, Gherasim C, Smith JL, Banerjee R. Structural basis of multifunctionality in a vitamin B12-processing enzyme. J Biol Chem. 2011; 286(34): 29780–7. doi: 10.1074/JBC.M111.261370


20.
Pinto JT, Cooper AJL. From cholesterogenesis to steroidogenesis: role of riboflavin and flavoenzymes in the biosynthesis of vitamin D. Adv Nutr. 2014; 5(2): 144–63. doi: 10.3945/AN.113.005181


21.
Said HM. Recent advances in transport of water-soluble vitamins in organs of the digestive system: a focus on the colon and the pancreas. Am J Physiol Gastrointest Liver Physiol. 2013; 305(9): G601–10. doi: 10.1152/AJPGI.00231.2013


22.
Rivlin RS. Riboflavin metabolism. N Engl J Med. 1970; 283(9): 463–72. doi: 10.1056/nejm197008272830906


23.
Said HM. Intestinal absorption of water-soluble vitamins in health and disease Biochem J. 2011; 437(3): 357–72. doi: 10.1042/BJ20110326


24.
Barile M, Giancaspero TA, Leone P, Galluccio M, Indiveri C. Riboflavin transport and metabolism in humans. J Inherit Metab Dis. 2016; 39(4): 545–57. doi: 10.1007/S10545-016-9950-0


25.
Sauberlich HE. Vitamin metabolism and requirements: some aspects reviewed. S Afr Med J. 1975; 49(54): 2235–44.


26.
Balasubramaniam S, Christodoulou J, Rahman S. Disorders of riboflavin metabolism. J Inherit Metab Dis. 2019; 42(4): 608–19. doi: 10.1002/JIMD.12058


27.
Bakaloudi DR, Halloran A, Rippin HL, Oikonomidou AC, Dardavesis TI, Williams J, et al. Intake and adequacy of the vegan diet. A systematic review of the evidence. Clin Nutr. 2021; 40(5): 3503–21. doi: 10.1016/J.CLNU.2020.11.035


28.
Neufingerl N, Eilander A. Nutrient intake and status in adults consuming plant-based diets compared to meat-eaters: a systematic review. Nutrients. 2021; 14(1): 29. doi: 10.3390/NU14010029


29.
Kiely ME. Risks and benefits of vegan and vegetarian diets in children. Proc Nutr Soc. 2021; 80(2): 159–64. doi: 10.1017/S002966512100001X


30.
Heffernan M, Doherty LC, Hack Mendes R, Clarke M, Hodge S, Clements M, et al. Effectiveness of a fortified drink in improving B vitamin biomarkers in older adults: a controlled intervention trial. Nutr Metab (Lond). 2021; 18(1): 104. doi: 10.1186/S12986-021-00630-8


31.
European Food Safety Authority. Tolerable upper intake levels for vitamins and minerals. 2006, Available from: http://www.efsa.europa.eu/en/ndatopics/docs/ndatolerableuil.pdf


32.
Horigan G, McNulty H, Ward M, Strain JJJ, Purvis J, Scott JM. Riboflavin lowers blood pressure in cardiovascular disease patients homozygous for the 677C→T polymorphism in MTHFR. J Hypertens. 2010; 28(3): 478–86. doi: 10.1097/HJH.0b013e328334c126


33.
Wilson CP, Ward M, McNulty H, Strain JJ, Trouton TG, Horigan G, et al. Riboflavin offers a targeted strategy for managing hypertension in patients with the MTHFR 677TT genotype: a 4-y follow-up. Am J Clin Nutr. 2012; 95(3): 766–72. doi: 10.3945/ajcn.111.026245


34.
Wilson CP, McNulty H, Ward M, Strain JJ, Trouton TG, Hoeft BA, et al. Blood pressure in treated hypertensive individuals with the mthfr 677tt genotype is responsive to intervention with riboflavin: findings of a targeted randomized trial. Hypertension. 2013; 61(6): 1302–8. doi: 10.1161/HYPERTENSIONAHA.111.01047


35.
Nordic Council of Ministers. Nordic Nutrition Recommendations 2012 – Integrating nutrition and physical activity. 5th ed. 2014, Available from: https://www.norden.org/en/publication/nordic-nutrition-recommendations-2012
Published
2023-12-22
How to Cite
Lysne V., & Strandler H. S. (2023). Riboflavin: a scoping review for Nordic Nutrition Recommendations 2023. Food & Nutrition Research, 67. https://doi.org/10.29219/fnr.v67.10315
Section
Nordic Nutrition Recommendations