Sodium – a systematic review for Nordic Nutrition Recommendations 2023

  • Antti Jula Department of Clinical Medicine, University of Turku, Turku, Finland
Keywords: sodium, sodium chloride, salt, blood pressure, hypertension, nutrition recommendations

Abstract

Blood pressure (BP) rises along with increasing sodium intake from early childhood to late adulthood, and leads to hypertension among most men and women living in Nordic and Baltic countries. Elevated BP is the leading global risk factor for premature deaths and disability-adjusted life-years. A reduction in sodium intake is essential in the prevention of hypertension in individuals, in the lowering of BP levels, in the treatment of hypertensive individuals, and in decreasing risks associated with elevated BP. There is a progressive linear dose-response relationship between sodium intake and BP beginning from a sodium intake of less than 0.8 g/day. Sodium reduction decreases BP linearly by a dose-response manner down to a sodium intake level of less than 2 g/day. Randomised intervention studies with a duration of at least 4 weeks confirm the efficiency and safety of reducing blood sodium intake to a level of less than 2 g/day. Results from prospective cohort studies show that higher sodium intake is positively associated with an increased risk of stroke and cardiovascular events and mortality among the general adult population, and the associations are linear in studies using proper sodium assessment methods. Analyses assessing sodium intake using at least two 24-h urine samples have shown a linear positive relationship between sodium intake and the risk of a cardiovascular event or death. Based on an overall evaluation of the available data, a limitation of the sodium intake to 2.0 g/day is suggested for adults. The optimal sodium intake level would be probably about 1.5 g/day. Sodium intake recommended for children can be extrapolated from the recommended sodium intake for adults. According to national dietary surveys, the average sodium intakes in Nordic countries range in adult men from 3.6 to 4.4 g/day and in adult women from 2.6. to 3.2 g/day, and in Baltic countries in men from 2.6 to 5.1 g/day and in women from 1.8 to 3.6 g/day.

Downloads

Download data is not yet available.

References

tr>
1.
Blomhoff R, Andersen R, Arnesen EK, Christensen JJ, Eneroth H, Erkkola M, et al. Nordic Nutrition Recommendations 2023. Copenhagen: Nordic Council of Ministers; 2023. doi: 10.6027/nord2023-003


2.
Christensen JJ, Arnesen EK, Andersen R, Eneroth H, Erkkola M, Høyer A, et al. The Nordic Nutrition Recommendations 2022 – principles and methodologies. Food Nutr Res 2020 Jun 18; 64: 4402. doi: 10.29219/fnr.v64.4402


3.
Høyer A, Christensen JJ, Arnesen EK, Andersen R, Eneroth H, Erkkola M, et al. The Nordic Nutrition Recommendations 2022 – prioritisation of topics for de novo systematic reviews. Food Nutr Res 2021 Oct 8; 65: 7828. doi: 10.29219/fnr.v65.7828


4.
Turck D, Castenmiller J, de Henauw S, Hirsch-Ernst K-I, Kearney J, Maciuk A, et al. Dietary reference values for sodium. EFSA J 2019; 17(9): 5778. doi: 10.2903/j.efsa.2019.5778


5.
Bie P. Mechanisms of sodium balance: total body sodium, surrogate variables, and renal sodium excretion. Am J Physiol Regul Integr Comp Physiol 2018; 315(5): R945–62. doi: 10.1152/ajpregu.00363.2017


6.
Kopp C, Linz P, Dahlmann A, Hammon M, Jantsch J, Müller DN, et al. 23Na magnetic resonance imaging-determined tissue sodium in healthy subjects and hypertensive patients. Hypertension 2013; 61(3): 635–40. doi: 10.1161/HYPERTENSIONAHA.111.00566


7.
Cogswell ME, Maalouf J, Elliott P, Loria CM, Patel S, Bowman BA. Use of urine biomarkers to assess sodium intake: challenges and opportunities. Annu Rev Nutr 2015; 35: 349–87. doi: 10.1146/annurev-nutr-071714-034322


8.
Lucko AM, Doktorchik C, Woodward M, Cogswell M, Neal B, Rabi D, et al. Percentage of ingested sodium excreted in 24-hour urine collections: a systematic review and meta-analysis. J Clin Hypertens (Greenwich) 2018; 20(9): 1220–9. doi: 10.1111/jch.13353


9.
Freedman LS, Commins JM, Moler JE, Willett W, Tinker LF, Subar AF, et al. Pooled results from 5 validation studies of dietary self-report instruments using recovery biomarkers for potassium and sodium intake. Am J Epidemiol 2015; 181(7): 473–87. doi: 10.1093/aje/kwu325


10.
McLean RM, Farmer VL, Nettleton A, Cameron CM, Cook NR, Campbell NRC, et al. Assessment of dietary sodium intake using a food frequency questionnaire and 24-hour urinary sodium excretion: a systematic literature review. J Clin Hypertens (Greenwich) 2017; 19(12): 1214–30. doi: 10.1111/jch.13148


11.
McLean RM, Farmer VL, Nettleton A, Cameron CM, Cook NR, Woodward M, et al. Twenty-four-hour diet recall and diet records compared with 24-hour urinary excretion to predict an individual’s sodium consumption: a systematic review. J Clin Hypertens (Greenwich) 2018; 20(10): 1360–76. doi: 10.1111/jch.13391


12.
Campbell NRC, He FJ, Tan M, Cappuccio FP, Neal B, Woodward M, et al. The International Consortium for Quality Research on Dietary Sodium/Salt (TRUE) position statement on the use of 24-hour, spot, and short duration (<24 hours) timed urine collections to assess dietary sodium intake. J Clin Hypertens (Greenwich) 2019; 21(6): 700–9. doi: 10.1111/jch.13551


13.
Lerchl K, Rakova N, Dahlmann A, Rauh M, Goller U, Basner M, et al. Agreement between 24-hour salt ingestion and sodium excretion in a controlled environment. Hypertension 2015; 66(4): 850–7. doi: 10.1161/HYPERTENSIONAHA.115.05851


14.
Rakova N, Jüttner K, Dahlmann A, Schröder A, Linz P, Kopp C, et al. Long-term space flight simulation reveals infradian rhythmicity in human Na(+) balance. Cell Metab 2013; 17(1): 125–31. doi: 10.1016/j.cmet.2012.11.013


15.
O’Donnell MJ, Yusuf S, Mente A, Gao P, Mann JF, Teo K, et al. Urinary sodium and potassium excretion and risk of cardiovascular events. Jama 2011 Nov 23; 306(20): 2229–38. doi: 10.1001/jama.2011.1729


16.
O’Donnell M, Mente A, Rangarajan S, McQueen MJ, Wang X, Liu L, et al. Urinary sodium and potassium excretion, mortality, and cardiovascular events. N Engl J Med 2014 Aug 14; 371(7): 612–23. doi: 10.1056/NEJMoa1311889. Erratum in: N Engl J Med 2014 Sep 25; 371(13): 1267.


17.
He FJ, Ma Y, Campbell NRC, MacGregor GA, Cogswell ME, Cook NR. Formulas to estimate dietary sodium intake from spot urine alter sodium-mortality relationship. Hypertension 2019; 74(3): 572–80. doi: 10.1161/HYPERTENSIONAHA.119.13117


18.
Baxmann AC, Ahmed MS, Marques NC, Menon VB, Pereira AB, Kirsztajn GM, et al. Influence of muscle mass and physical activity on serum and urinary creatinine and serum cystatin C. Clin J Am Soc Nephrol 2008 Mar; 3(2): 348–54. doi: 10.2215/CJN.02870707


19.
National Academies of Sciences, Engineering, and Medicine. Dietary reference intakes for sodium and potassium. Washington, DC: The National Academies Press; 2019. doi: 10.17226/25353


20.
Andersen L, Rasmussen LB, Larsen EH, Jakobsen J. Intake of household salt in a Danish population. Eur J Clin Nutr 2009 May; 63(5): 598–604. doi: 10.1038/ejcn.2008.18


21.
Amcoff E, Edberg A, Enghardt Barbieri H. Riksmaten vuxna 2010–11. Livsmedels- och näringsintag bland vuxna i Sverige. Resultat från matvaneundersökningen utförd 2010–11 (Food and nutrient intake in Sweden 2010–11). (In Swedish, summary, figures and tables in English). Uppsala: Livsmedelsverket; 2012.


22.
Valsta L, Kaatinen N, Tapanainen H, Männistö S, Sääksjärvi K. The National FINDIET 2017 Survey. (In Finnish, summary, figures and tables in English). Report No.: 12/2018. Helsinki: National Institute for Health and Welfare (THL); 2018. ISBN 978-952-343-238-3 (online publication).


23.
Lemming EW, Pitsi T. The Nordic Nutrition Recommendations 2022 – food consumption and nutrient intake in the adult population of the Nordic and Baltic countries. Food Nutr Res 2022 Jun 8; 66: 8572. doi: 10.29219/fnr.v66.8572


24.
Reinivuo H, Valsta LM, Laatikainen T, Tuomilehto J, Pietinen P. Sodium in the Finnish diet: II trends in dietary sodium intake and comparison between intake and 24-h excretion of sodium. Eur J Clin Nutr 2006 Oct; 60(10): 1160–7. doi: 10.1038/sj.ejcn.1602431


25.
Inese S, Lazda I, Goldmanis M. Pētı̄jums par sāls un joda patērin,u Latvijas pieaugušo iedzı̄votāju populācijāopulācijaju populācii populāciiopulāciiciopulāciiāciācilācilāci p Riga: Bior; 2020.


26.
Campbell NRC, Train EJ. A systematic review of fatalities related to acute ingestion of salt. A need for warning labels? Nutrients 2017 Jun 23; 9(7): 648. doi: 10.3390/nu9070648


27.
Grimes CA, Bolton KA, Booth AB, Khokhar D, Service C, He FH, et al. The association between dietary sodium intake, adiposity and sugar-sweetened beverages in children and adults: a systematic review and meta-analysis. Br J Nutr 2021; 126(3): 409–27. doi: 10.1017/S0007114520004122


28.
Strazzullo P, Galletti F, Barba G. Altered renal handling of sodium in human hypertension: short review of the evidence. Hypertension 2003; 41(5): 1000–5. doi: 10.1161/01.HYP.0000066844.63035.3A


29.
Redon J, Cifkova R, Laurent S, Nilsson P, Narkiewicz K, Erdine S, et al. Mechanisms of hypertension in the cardiometabolic syndrome. J Hypertens 2009; 27(3): 441–51. doi: 10.1097/HJH.0b013e32831e13e5


30.
Kawarazaki W, Fujita T. The role of aldosterone in obesity-related hypertension. Am J Hypertens 2016; 29(4): 415–23. doi: 10.1093/ajh/hpw003


31.
Bailey MA. 11β-Hydroxysteroid dehydrogenases and hypertension in the metabolic syndrome. Curr Hypertens Rep 2017; 19(12): 100. doi: 10.1007/s11906-017-0797-z


32.
GBD 2017 Risk Factor Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018; 392: 1923–94. doi: 10.1016/S0140-6736(18)32225-6


33.
Lewington S, Clarke R, Qizilbash N, Peto R, Collins R, Prospective Studies Collaboration. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 2002; 360: 1903–13. doi: 10.1016/S0140-6736(02)11911-8


34.
Franco OH, Peeters A, Bonneux L, de Laet C. Blood pressure in adulthood and life expectancy with cardiovascular disease in men and women: life course analysis. Hypertension 2005; 46: 280–6. doi: 10.1161/01.HYP.0000173433.67426.9b


35.
Koponen P, Borodulin K, Lundqvist A, Sääksjärvi K, Koskinen S. The National FinHealth 2017 survey. (In Finnish, summary in English). Report No: 4/2018. Helsinki: National Institute for Health and Welfare (THL); 2018. ISBN 978-952-343-105-8 (online publication)


36.
NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19·1 million participants. Lancet 2017 Jan 7; 389(10064): 37–55. doi: 10.1016/S0140-6736(16)31919-5. Erratum in: Lancet 2020 Sep 26; 396(10255): 886.


37.
Grillo A, Salvi L, Coruzzi P, Salvi P, Parati G. Sodium intake and hypertension. Nutrients 2019; 11(9): 1970. doi: 10.3390/nu11091970


38.
Marketou ME, Maragkoudakis S, Anastasiou I, Nakou H, Plataki M, Vardas PE, et al. Salt-induced effects on microvascular function: a critical factor in hypertension mediated organ damage. J Clin Hypertens (Greenwich) 2019; 21(6): 749–57. doi: 10.1111/jch.13535


39.
Yu HC, Burrell LM, Black MJ, Wu LL, Dilley RJ, Cooper ME, et al. Salt induces myocardial and renal fibrosis in normotensive and hypertensive rats. Circulation 1998; 98(23): 2621–8. doi: 10.1161/01.cir.98.23.2621


40.
Farquhar WB, Edwards DG, Jurkovitz CT, Weintraub WS. Dietary sodium and health: more than just blood pressure. J Am Coll Cardiol 2015; 65(10): 1042–50. doi: 10.1016/j.jacc.2014.12.039


41.
Kawarazaki W, Fujita T. Role of Rho in salt-sensitive hypertension. Int J Mol Sci 2021 Mar 15; 22(6): 2958. doi: 10.3390/ijms22062958


42.
Iwamoto T, Kita S, Zhang J, Blaustein MP, Arai Y, Yoshida S, et al. Salt-sensitive hypertension is triggered by Ca2+ entry via Na+/Ca2+ exchanger type-1 in vascular smooth muscle. Nat Med 2004 Nov; 10(11): 1193–9. doi: 10.1038/nm1118


43.
Safar ME, Thuilliez C, Richard V, Benetos A. Pressure-independent contribution of sodium to large artery structure and function in hypertension. Cardiovasc Res 2000 May; 46(2): 269–76. doi: 10.1016/s0008-6363(99)00426-5


44.
Intersalt: an international study of electrolyte excretion and blood pressure. Results for 24 hour urinary sodium and potassium excretion. Intersalt Cooperative Research Group. BMJ 1988 Jul 30; 297(6644): 319–28. doi: 10.1136/bmj.297.6644.319


45.
Elliott P, Stamler J, Nichols R, Dyer AR, Stamler R, Kesteloot H, et al. Intersalt revisited: further analyses of 24 hour sodium excretion and blood pressure within and across populations. Intersalt Cooperative Research Group. BMJ 1996 May 18; 312(7041): 1249–53. doi: 10.1136/bmj.312.7041.1249


46.
Law MR, Frost CD, Wald NJ. By how much does dietary salt reduction lower blood pressure? I – analysis of observational data among populations. BMJ 1991 Apr 6; 302(6780): 811–15. doi: 10.1136/bmj.302.6780.811


47.
Khaw KT, Bingham S, Welch A, Luben R, O’Brien E, Wareham N, et al. Blood pressure and urinary sodium in men and women: the Norfolk Cohort of the European Prospective Investigation into Cancer (EPICNorfolk). Am J Clin Nutr 2004 Nov; 80(5): 1397–403. doi: 10.1093/ajcn/80.5.1397


48.
Leyvraz M, Chatelan A, da Costa BR, Taffé P, Paradis G, Bovet P, et al. Sodium intake and blood pressure in children and adolescents: a systematic review and meta-analysis of experimental and observational studies. Int J Epidemiol 2018; 47(6): 1796–810. doi: 10.1093/ije/dyy121


49.
Mente A, O’Donnell MJ, Rangarajan S, McQueen MJ, Poirier P, Wielgosz A, et al. Association of urinary sodium and potassium excretion with blood pressure. N Engl J Med 2014; 371(7): 601–11. doi: 10.1056/NEJMoa1311989


50.
Newberry SJ, Chung M, Anderson CAM, Chen C, Fu Z, Tang A, et al. Sodium and potassium intake: effects on chronic disease outcomes and risks. Report No.: 18-EHC009-EF. Rockville, MD: Agency for Healthcare Research and Quality (US); 2018.


51.
Graudal NA, Hubeck-Graudal T, Jurgens G. Effects of low sodium diet versus high sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride. Cochrane Database Syst Rev 2020 Dec 12; 12(12): CD004022. doi: 10.1002/14651858.CD004022.pub5


52.
Rankin LI, Luft FC, Henry DP, Gibbs PS, Weinberger MH. Sodium intake alters the effects of norepinephrine on blood pressure. Hypertension 1981; 3(6): 650–6. doi: 10.1161/01.hyp.3.6.650


53.
Skrabal F, Herholz H, Neumayr M, Hamberger L, Ledochowski M, Sporer H, et al. Salt sensitivity in humans is linked to enhanced sympathetic responsiveness and to enhanced proximal tubular reabsorption. Hypertension 1984; 6(2 Pt 1): 152–8. doi: 10.1161/01.HYP.6.2_Pt_1.152


54.
Aburto NJ, Hanson S, Gutierrez H, Hooper L, Elliott P, Cappuccio FP. Effect of increased potassium intake on cardiovascular risk factors and disease: systematic review and meta-analyses. BMJ 2013; 346: f1378. doi: 10.1136/bmj.f1378


55.
Filippini T, Malavolti M, Whelton PK, Naska A, Orsini N, Vinceti M. Blood pressure effects of sodium reduction: dose-response meta-analysis of experimental studies. Circulation 2021; 143(16): 1542–67. doi: 10.1161/CIRCULATIONAHA.120.050371


56.
Jula A, Ronnemaa T, Rastas M, Karvetti RL, Maki J. Long-term nopharmacological treatment for mild to moderate hypertension. J Intern Med 1990 Jun; 227(6): 413–21. doi: 10.1111/j.1365-2796.1990.tb00180.x


57.
Jula AM, Karanko HM. Effects on left ventricular hypertrophy of long-term nonpharmacological treatment with sodium restriction in mild-to-moderate essential hypertension. Circulation 1994 Mar; 89(3): 1023–31. doi: 10.1161/01.CIR.89.3.1023


58.
Jula A, Rönnemaa T, Tikkanen I, Karanko H. Responses of atrial natriuretic factor to long-term sodium restriction in mild to moderate hypertension. J Intern Med 1992; 231(5): 521–9. doi: 10.1111/j.1365-2796.1992.tb00968.x


59.
Appel LJ, Moore TJ, Obarzanek E, Vollmer WM, Svetkey LP, Sacks FM, et al. A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N Engl J Med 1997 Apr 17; 336(16): 1117–24. doi: 10.1056/NEJM199704173361601


60.
Sacks FM, Svetkey LP, Vollmer WM, Appel LJ, Bray GA, Harsha D, et al. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. DASH-Sodium Collaborative Research Group. N Engl J Med 2001 Jan 4; 344(1): 3–10. doi: 10.1056/NEJM200101043440101


61.
Harsha DW, Sacks FM, Obarzanek E, Svetkey LP, Lin PH, Bray GA, et al. Effect of dietary sodium intake on blood lipids: results from the DASH-sodium trial. Hypertension 2004; 43(2): 393–8. doi: 10.1161/01.HYP.0000113046.83819.a2


62.
Shear CL, Burke GL, Freedman DS, Berenson GS. Value of childhood blood pressure measurements and family history in predicting future blood pressure status: results from 8 years of follow-up in the Bogalusa Heart Study. Pediatrics 1986 Jun; 77(6): 862–9. doi: 10.1542/peds.77.6.862


63.
Lauer RM, Clarke WR, Mahoney LT, Witt J. Childhood predictors for high adult blood pressure. The Muscatine Study. Pediatr Clin North Am 1993 Feb; 40(1): 23–40. doi: 10.1016/S0031-3955(16)38478-4


64.
van den Elzen AP, de Ridder MA, Grobbee DE, Hofman A, Witteman JC, Uiterwaal CS. Families and the natural history of blood pressure. A 27-year follow-up study. Am J Hypertens 2004 Oct; 17(10): 936–40. doi: 10.1016/S0895-7061(04)00871-4


65.
Niinikoski H, Jula A, Viikari J, Ronnemaa T, Heino P, Lagstrom H, et al. Blood pressure is lower in children and adolescents with a low-saturated-fat diet since infancy: the special Turku coronary risk factor intervention project. Hypertension 2009 Jun; 53(6): 918–24. doi: 10.1161/HYPERTENSIONAHA.109.130146


66.
He FJ, Marrero NM, MacGregor GA. Salt intake is related to soft drink consumption in children and adolescents: a link to obesity? Hypertension 2008 Mar; 51(3): 629–34. doi: 10.1161/HYPERTENSIONAHA.107.100990


67.
Butte NF, Fox MK, Briefel RR, Siega-Riz AM, Dwyer JT, Deming DM, et al. Nutrient intakes of US infants, toddlers, and preschoolers meet or exceed dietary reference intakes. J Am Diet Assoc 2010 Dec; 110(12 Suppl.): S27–37. doi: 10.1016/j.jada.2010.09.004


68.
Chen X, Wang Y. Tracking of blood pressure from childhood to adulthood: a systematic review and metaregression analysis. Circulation 2008 Jun 24; 117(25): 3171–80. doi: 10.1161/CIRCULATIONAHA.107.730366


69.
Juhola J, Magnussen CG, Viikari JS, Kahonen M, Hutri-Kahonen N, Jula A, et al. Tracking of serum lipid levels, blood pressure, and body mass index from childhood to adulthood: the Cardiovascular Risk in Young Finns Study. J Pediatr 2011 Oct; 159(4): 584–90. doi: 10.1016/j.jpeds.2011.03.021


70.
Berenson GS, Srinivasan SR, Bao W, Newman WP, 3rd, Tracy RE, Wattigney WA. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. The Bogalusa Heart Study. N Engl J Med 1998 Jun 4; 338(23): 1650–6. doi: 10.1056/NEJM199806043382302


71.
Raitakari OT, Juonala M, Kahonen M, Taittonen L, Laitinen T, Maki-Torkko N, et al. Cardiovascular risk factors in childhood and carotid artery intima-media thickness in adulthood: the Cardiovascular Risk in Young Finns Study. JAMA 2003 Nov 5; 290(17): 2277–83. doi: 10.1001/jama.290.17.2277


72.
Geleijnse JM, Hofman A, Witteman JC, Hazebroek AA, Valkenburg HA, Grobbee DE. Long-term effects of neonatal sodium restriction on blood pressure. Hypertension 1997 Apr; 29(4): 913–17. doi: 10.1161/01.HYP.29.4.913


73.
He FJ, MacGregor GA. Importance of salt in determining blood pressure in children: meta-analysis of controlled trials. Hypertension 2006 Nov; 48(5): 861–9. doi: 10.1161/01.HYP.0000245672.27270.4a


74.
Stolarz-Skrzypek K, Kuznetsova T, Thijs L, Tikhonoff V, Seidlerová J, Richart T, et al. Fatal and nonfatal outcomes, incidence of hypertension, and blood pressure changes in relation to urinary sodium excretion. JAMA 2011 May 4; 305(17): 1777–85. doi: 10.1001/jama.2011.574


75.
Strazzullo P, D’Elia L, Kandala NB, Cappuccio FP. Salt intake, stroke, and cardiovascular disease: meta-analysis of prospective studies. BMJ 2009; 339: b4567. doi: 10.1136/bmj.b4567


76.
Alderman MH, Madhavan S, Cohen H, Sealey JE, Laragh JH. Low urinary sodium is associated with greater risk of myocardial infarction among treated hypertensive men. Hypertension 1995; 25(6): 1144–52. doi: 10.1161/01.hyp.25.6.1144


77.
Poggio R, Gutierrez L, Matta MG, Elorriaga N, Irazola V, Rubinstein A. Daily sodium consumption and CVD mortality in the general population: systematic review and meta-analysis of prospective studies. Public Health Nutr 2015; 18(4): 695–704. doi: 10.1017/S1368980014000949


78.
Wang YJ, Yeh TL, Shih MC, Tu YK, Chien KL. Dietary sodium intake and risk of cardiovascular disease: a systematic review and dose-response meta-analysis. Nutrients 2020; 12(10): 2934. doi: 10.3390/nu12102934


79.
Ma Y, He FJ, Sun Q, Yuan C, Kieneker LM, Curhan GC, et al. 24-Hour urinary sodium and potassium excretion and cardiovascular risk. N Engl J Med 2022; 386(3): 252–63. doi: 10.1056/NEJMoa2109794


80.
Olde Engberink RHG, van den Hoek TC, van Noordenne ND, van den Born BH, Peters-Sengers H, Vogt L. Use of a single baseline versus multiyear 24-hour urine collection for estimation of long-term sodium intake and associated cardiovascular and renal risk. Circulation 2017; 136(10): 917–26. doi: 10.1161/CIRCULATIONAHA.117.029028


81.
Neal B, Wu Y, Feng X, Zhang R, Zhang Y, Shi J, et al. Effect of salt substitution on cardiovascular events and death. N Engl J Med 2021; 385(12): 1067–77. doi: 10.1056/NEJMoa2105675


82.
Pietinen P, Vartiainen E, Seppanen R, Aro A, Puska P. Changes in diet in Finland from 1972 to 1992: impact on coronary heart disease risk. Prev Med 1996 May-Jun; 25(3): 243–50. doi: 10.1006/pmed.1996.0053


83.
Laatikainen T, Nissinen A, Kastarinen M, Jula A, Tuomilehto J. Blood pressure, sodium intake, and hypertension control: lessons from the North Karelia project. Glob Heart 2016; 11(2): 191–9. doi: 10.1016/j.gheart.2016.04.011


84.
Laatikainen T, Pietinen P, Valsta L, Sundvall J, Reinivuo H, Tuomilehto J. Sodium in the Finnish diet: 20-year trends in urinary sodium excretion among the adult population. Eur J Clin Nutr 2006 Aug; 60(8): 965–70. doi: 10.1038/sj.ejcn.1602406


85.
Vartiainen E, Puska P, Pekkanen J, Tuomilehto J, Jousilahti P. Changes in risk factors explain changes in mortality from ischaemic heart disease in Finland. BMJ 1994 Jul 2; 309(6946): 23–7. doi: 10.1136/bmj.309.6946.23


86.
Vartiainen E, Sarti C, Tuomilehto J, Kuulasmaa K. Do changes in cardiovascular risk factors explain changes in mortality from stroke in Finland? BMJ 1995 Apr 8; 310(6984): 901–4. doi: 10.1136/bmj.310.6984.901


87.
Nomura K, Asayama K, Jacobs L, Thijs L, Staessen JA. Renal function in relation to sodium intake: a quantitative review of the literature. Kidney Int 2017; 92(1): 67–78. doi: 10.1016/j.kint.2016.11.032


88.
D’Elia L, Rossi G, Schiano di Cola M, Savino I, Galletti F, Strazzullo P. Meta-analysis of the effect of dietary sodium restriction with or without concomitant renin-angiotensin-aldosterone system-inhibiting treatment on albuminuria. Clin J Am Soc Nephrol 2015; 10(9): 1542–52. doi: 10.2215/CJN.09110914


89.
Cappuccio FP, Kalaitzidis R, Duneclift S, Eastwood JB. Unravelling the links between calcium excretion, salt intake, hypertension, kidney stones and bone metabolism. J Nephrol 2000 May–Jun; 13(3): 169–77.


90.
Afsar B, Kiremit MC, Sag AA, Tarim K, Acar O, Esen T, et al. The role of sodium intake in nephrolithiasis: epidemiology, pathogenesis, and future directions. Eur J Intern Med 2016 Nov; 35: 16–19. doi: 10.1016/j.ejim.2016.07.001. Erratum in: Eur J Intern Med 2017 Jan; 37: 90.


91.
Tuomilehto J, Jousilahti P, Rastenyte D, Moltchanov V, Tanskanen A, Pietinen P, et al. Urinary sodium excretion and cardiovascular mortality in Finland: a prospective study. Lancet 2001; 357(9259): 848–51. doi: 10.1016/S0140-6736(00)04199-4


92.
Vuori MA, Harald K, Jula A, Valsta L, Laatikainen T, Salomaa V, et al. 24-h urinary sodium excretion and the risk of adverse outcomes. Ann Med 2020; 52(8): 488–96. doi: 10.1080/07853890.2020.1780469


93.
Patel SM, Cobb P, Saydah S, Zhang X, de Jesus JM, Cogswell ME. Dietary sodium reduction does not affect circulating glucose concentrations in fasting children or adults: findings from a systematic review and meta-analysis. J Nutr 2015; 145(3): 505–513. doi: 10.3945/jn.114.195982


94.
Clinton SK, Giovannucci EL, Hursting SD. The World Cancer Research Fund/American Institute for Cancer Research third expert report on diet, nutrition, physical activity, and cancer: impact and future directions. J Nutr 2020 Apr 1; 150(4): 663–71. doi: 10.1093/jn/nxz268


95.
D’Elia L, Rossi G, Ippolito R, Cappuccio FP, Strazzullo P. Habitual salt intake and risk of gastric cancer: a meta-analysis of prospective studies. Clin Nutr 2012 Aug; 31(4): 489–98. doi: 10.1016/j.clnu.2012.01.003


96.
Ge S, Feng X, Shen L, Wei Z, Zhu Q, Sun J. Association between habitual dietary salt intake and risk of gastric cancer: a systematic review of observational studies. Gastroenterol Res Pract 2012; 2012: 808120. doi: 10.1155/2012/808120


97.
Wu B, Yang D, Yang S, Zhang G. Dietary salt intake and gastric cancer risk: a systematic review and meta-analysis. Front Nutr 2021; 8: 801228. doi: 10.3389/fnut.2021.801228


98.
Vahid F, Davoodi SH. Nutritional factors involved in the etiology of gastric cancer: a systematic review. Nutr Cancer 2021; 73(3): 376–90. doi: 10.1080/01635581.2020.1756353


99.
Sharif K, Amital H, Shoenfeld Y. The role of dietary sodium in autoimmune diseases: the salty truth [published correction appears in Autoimmun Rev 2019 Feb; 18(2): 214]. Autoimmun Rev 2018; 17(11): 1069–73. doi: 10.1016/j.autrev.2018.05.007


100.
Haase S, Wilck N, Kleinewietfeld M, Müller DN, Linker RA. Sodium chloride triggers Th17 mediated autoimmunity. J Neuroimmunol 2019; 329: 9–13. doi: 10.1016/j.jneuroim.2018.06.016


101.
Salgado E, Bes-Rastrollo M, de Irala J, Carmona L, Gómez-Reino JJ. High sodium intake is associated with self-reported rheumatoid arthritis: a cross sectional and case control analysis within the SUN cohort. Medicine (Baltimore) 2015; 94(37): e0924. doi: 10.1097/MD.0000000000000924


102.
European Communities – Commission. Reports of the Scientific Committee for Food (Thirty-first series). Nutrient and energy intakes for the European Community. Food – Science and technique series. Luxembourg: Office for Official Publications of the European Communities; 1993.


103.
Dahl LK. Possible role of salt intake in the development of essential hypertension. 1960. Int J Epidemiol 2005; 34(5): 967–78. doi: 10.1093/ije/dyh317


104.
James WPT, Ferro-Luzzi A, Isaksson B, Szostak WB. Healthy nutrition. Report No.: 24. Copenhagen: WHO; 1988.


105.
WHO. Guideline: sodium intake for adults and children. Geneva: World Health Organization (WHO); 2012.


106.
National Health and Medical Research Council, Australian Government Department of Health and Ageing, New Zealand Ministry of Health. Nutrient reference values for Australia and New Zealand. Canberra: National Health and Medical Research Council; 2006. Version 1.2. Updated September 2017.


107.
The Scientific Advisory Committee on Nutrition. Salt and health. London: The Stationery Office; 2003.


108.
Strohm D, Bechthold A, Ellinger S, Leschik-Bonnet E, Stehle P, Heseker H, et al. Revised reference values for the intake of sodium and chloride. Ann Nutr Metab 2018; 72(1): 12–17. doi: 10.1159/000484355


109.
Lloyd-Jones DM, Hong Y, Labarthe D, Mozaffarian D, Appel LJ, Van Horn L, et al. Defining and setting national goals for cardiovascular health promotion and disease reduction: the American Heart Association’s strategic Impact Goal through 2020 and beyond. Circulation 2010; 121(4): 586–613. doi: 10.1161/CIRCULATIONAHA.109.192703


110.
Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ, et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines [published correction appears in Circulation 2019 Sep 10; 140(11): e649–50] [published correction appears in Circulation 2020 Jan 28; 141(4): e60] [published correction appears in Circulation 2020 Apr 21; 141(16): e774]. Circulation 2019; 140(11): e596–46. doi: 10.1161/CIR.0000000000000678


111.
Appel LJ, Frohlich ED, Hall JE, Pearson TA, Sacco RL, Seals DR, et al. The importance of population-wide sodium reduction as a means to prevent cardiovascular disease and stroke: a call to action from the American Heart Association. Circulation 2011 Mar 15; 123(10): 1138–43. doi: 10.1161/CIR.0b013e31820d0793


112.
NICE – National Institute for Health and Care Excellence. Cardiovascular disease prevention. NICE Guideline PH25. Manchester: National Institute for Health and Clinical Excellence; 2010.
Published
2024-01-31
How to Cite
Jula A. (2024). Sodium – a systematic review for Nordic Nutrition Recommendations 2023. Food & Nutrition Research, 68. https://doi.org/10.29219/fnr.v68.10319
Section
Nordic Nutrition Recommendations

Most read articles by the same author(s)