Choline – a scoping review for Nordic Nutrition Recommendations 2023

  • Rima Obeid Department of Clinical Chemistry and Laboratory Medicine, University Hospital of the Saarland, Homburg, Germany
  • Therese Karlsson Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
Keywords: phosphatidylcholine, intake, liver, cardiovascular disease

Abstract

Choline is an essential nutrient with metabolic roles as a methyl donor in one carbon metabolism and as a precursor for membrane phospholipids and the neurotransmitter acetylcholine. Choline content is particularly high in liver, eggs, and wheat germ, although it is present in a variety of foods. The main dietary sources of choline in the Nordic and Baltic countries are meat, dairy, eggs, and grain. A diet that is devoid of choline causes liver and muscle dysfunction within 3 weeks. Choline requirements are higher during pregnancy and lactation than in non-pregnant women. Although no randomized controlled trials are available, observational studies in human, supported by coherence from interventional studies with neurodevelopmental outcomes and experimental studies in animals, strongly suggest that sufficient intake of choline during pregnancy is necessary for normal brain development and function in the child. Observational studies suggested that adequate intake of choline could have positive effects on cognitive function in older people. However, prospective data are lacking, and no intervention studies are available in the elderly.

Downloads

Download data is not yet available.

References


1.
Li Z, Vance DE. Phosphatidylcholine and choline homeostasis. J Lipid Res 2008; 49(6): 1187–94. doi: 10.1194/jlr.R700019-JLR200


2.
Institute of Medicine. Dietary reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin, and choline. Washington, DC: National Academy Press; 1998, pp. 390–422.


3.
EFSA Panel on Dietetic Products. Dietary reference values for choline. EFSA J 2016; 14: 4484. doi: 10.2903/j.efsa.2016.4484


4.
Zeisel SH, Da Costa KA, Franklin PD, Alexander EA, Lamont JT, Sheard NF, et al. Choline, an essential nutrient for humans. FASEB J 1991; 5(7): 2093–8. doi: 10.1096/fasebj.5.7.2010061


5.
Christensen JJ, Arnesen EK, Andersen R, Eneroth H, Erkkola M, Hoyer A, et al. The Nordic Nutrition Recommendations 2022 – principles and methodologies. Food Nutr Res 2020; 64: 4402. doi: 10.29219/fnr.v64.4402


6.
Blomhoff R, Andersen R, Arnesen EK, Christensen JJ, Eneroth H, Erkkola M, et al. Nordic Nutrition Recommendations 2023. Copenhagen: Nordic Council of Ministers; 2023.


7.
Shea BJ, Reeves BC, Wells G, Thuku M, Hamel C, Moran J, et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ 2017; 358: j4008. doi: 10.1136/bmj.j4008


8.
Fondation INITIA, Literature search and review related to specific preparatory work in the establishment of Dietary Reference Values for thiamin, pantothenic acidand choline. Supporting Publications 2013; EN-443: 229. Available from: www.efsa.europa.eu/en/publications.htm


9.
Jope RS, Domino EF, Mathews BN, Sitaram N, Jenden DJ, Ortez A. Free and bound choline blood levels after phosphatidylcholine. Clin Pharmacol Ther 1982; 31(4): 483–7. doi: 10.1038/clpt.1982.64


10.
Nilsson A, Duan RD. Pancreatic and mucosal enzymes in choline phospholipid digestion. Am J Physiol Gastrointest Liver Physiol 2019; 316(4): G425–45. doi: 10.1152/ajpgi.00320.2018


11.
Kennelly JP, van der Veen JN, Nelson RC, Leonard KA, Havinga R, Buteau J, et al. Intestinal de novo phosphatidylcholine synthesis is required for dietary lipid absorption and metabolic homeostasis. J Lipid Res 2018; 59(9): 1695–708. doi: 10.1194/jlr.M087056


12.
Mazidi M, Katsiki N, Mikhailidis DP, Banach M. Dietary choline is positively related to overall and cause-specific mortality: results from individuals of the National Health and Nutrition Examination Survey and pooling prospective data. Br J Nutr 2019; 122(11): 1262–70. doi: 10.1017/S0007114519001065


13.
Shirouchi B, Fukuda A, Akasaka T. Unlike glycerophosphocholine or choline chloride, dietary phosphatidylcholine does not increase plasma trimethylamine-N-oxide levels in Sprague-Dawley rats. Metabolites 2022; 12(1): 64. doi: 10.3390/metabo12010064


14.
Lockman PR, Allen DD. The transport of choline. Drug Dev Ind Pharm 2002; 28(7): 749–71. doi: 10.1081/ddc-120005622


15.
Nguyen LN, Ma D, Shui G, Wong P, Cazenave-Gassiot A, Zhang X, et al. Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid. Nature 2014; 509(7501): 503–6. doi: 10.1038/nature13241


16.
Sweiry JH, Page KR, Dacke CG, Abramovich DR, Yudilevich DL. Evidence of saturable uptake mechanisms at maternal and fetal sides of the perfused human placenta by rapid paired-tracer dilution: studies with calcium and choline. J Dev Physiol 1986; 8(6): 435–45.


17.
Baumgartner HK, Trinder KM, Galimanis CE, Post A, Phang T, Ross RG, et al. Characterization of choline transporters in the human placenta over gestation. Placenta 2015; 36(12): 1362–9. doi: 10.1016/j.placenta.2015.10.001


18.
Agam G, Taylor Z, Vainer E, Golan HM. The influence of choline treatment on behavioral and neurochemical autistic-like phenotype in Mthfr-deficient mice. Transl Psychiatry 2020; 10(1): 316. doi: 10.1038/s41398-020-01002-1


19.
Ganz AB, Shields K, Fomin VG, Lopez YS, Mohan S, Lovesky J, et al. Genetic impairments in folate enzymes increase dependence on dietary choline for phosphatidylcholine production at the expense of betaine synthesis. FASEB J 2016; 30(10): 3321–33. doi: 10.1096/fj.201500138RR


20.
Kim YI, Miller JW, da Costa KA, Nadeau M, Smith D, Selhub J, et al. Severe folate deficiency causes secondary depletion of choline and phosphocholine in rat liver. J Nutr 1994; 124(11): 2197–203. doi: 10.1093/jn/124.11.2197


21.
Chiuve SE, Giovannucci EL, Hankinson SE, Zeisel SH, Dougherty LW, Willett WC, et al. The association between betaine and choline intakes and the plasma concentrations of homocysteine in women. Am J Clin Nutr 2007;86(4):1073–81. doi: 10.1093/ajcn/86.4.1073


22.
Cho E, Zeisel SH, Jacques P, Selhub J, Dougherty L, Colditz GA, et al. Dietary choline and betaine assessed by food-frequency questionnaire in relation to plasma total homocysteine concentration in the Framingham Offspring study. Am J Clin Nutr 2006; 83(4): 905–11. doi: 10.1093/ajcn/83.4.905


23.
Holm PI, Ueland PM, Vollset SE, Midttun O, Blom HJ, Keijzer MB, et al. Betaine and folate status as cooperative determinants of plasma homocysteine in humans. Arterioscler Thromb Vasc Biol 2005; 25(2): 379–85. doi: 10.1161/01.ATV.0000151283.33976.e6


24.
Melse-Boonstra A, Holm PI, Ueland PM, Olthof M, Clarke R, Verhoef P. Betaine concentration as a determinant of fasting total homocysteine concentrations and the effect of folic acid supplementation on betaine concentrations. Am J Clin Nutr 2005; 81(6): 1378–82. doi: 10.1093/ajcn/81.6.1378


25.
Resseguie M, Song J, Niculescu MD, da Costa KA, Randall TA, Zeisel SH. Phosphatidylethanolamine N-methyltransferase (PEMT) gene expression is induced by estrogen in human and mouse primary hepatocytes. FASEB J 2007; 21(10): 2622–32. doi: 10.1096/fj.07-8227com


26.
Song J, da Costa KA, Fischer LM, Kohlmeier M, Kwock L, Wang S, et al. Polymorphism of the PEMT gene and susceptibility to nonalcoholic fatty liver disease (NAFLD). FASEB J 2005; 19(10): 1266–71. doi: 10.1096/fj.04-3580com


27.
Molto-Puigmarti C, Obeid R, Mommers M, Eussen SJ, Thijs C. Maternal plasma choline and betaine in late pregnancy and child growth up to age 8 years in the KOALA Birth Cohort study. Am J Clin Nutr 2021; 114(4): 1438–46. doi: 10.1093/ajcn/nqab177


28.
Shaw GM, Finnell RH, Blom HJ, Carmichael SL, Vollset SE, Yang W, et al. Choline and risk of neural tube defects in a folate-fortified population. Epidemiology 2009; 20(5): 714–19. doi: 10.1097/EDE.0b013e3181ac9fe7


29.
Batalha MA, Ferreira ALL, Freitas-Costa NC, Figueiredo ACC, Carrilho TRB, Shahab-Ferdows S, et al. Factors associated with longitudinal changes in B-vitamin and choline concentrations of human milk. Am J Clin Nutr 2021; 114(4): 1560–73. doi: 10.1093/ajcn/nqab191


30.
Ilcol YO, Ozbek R, Hamurtekin E, Ulus IH. Choline status in newborns, infants, children, breast-feeding women, breast-fed infants and human breast milk. J Nutr Biochem 2005; 16(8): 489–99. doi: 10.1016/j.jnutbio.2005.01.011


31.
Holmes HC, Snodgrass GJ, Iles RA. Changes in the choline content of human breast milk in the first 3 weeks after birth. Eur J Pediatr 2000; 159(3): 198–204. doi: 10.1007/s004310050050


32.
Lemos BS, Medina-Vera I, Malysheva OV, Caudill MA, Fernandez ML. Effects of egg consumption and choline supplementation on plasma choline and trimethylamine-N-oxide in a young population. J Am Coll Nutr 2018; 37(8): 716–23. doi: 10.1080/07315724.2018.1466213


33.
Wallace JM, McCormack JM, McNulty H, Walsh PM, Robson PJ, Bonham MP, et al. Choline supplementation and measures of choline and betaine status: a randomised, controlled trial in postmenopausal women. Br J Nutr 2012; 108(7): 1264–71. doi: 10.1017/S000711451100674X


34.
Wu BT, Dyer RA, King DJ, Richardson KJ, Innis SM. Early second trimester maternal plasma choline and betaine are related to measures of early cognitive development in term infants. PLoS One 2012; 7(8): e43448. doi: 10.1371/journal.pone.0043448


35.
Zeisel SH, Growdon JH, Wurtman RJ, Magil SG, Logue M. Normal plasma choline responses to ingested lecithin. Neurology 1980; 30(11): 1226–9. doi: 10.1212/wnl.30.11.1226


36.
Yan J, Jiang X, West AA, Perry CA, Malysheva OV, Devapatla S, et al. Maternal choline intake modulates maternal and fetal biomarkers of choline metabolism in humans. Am J Clin Nutr 2012; 95(5): 1060–71. doi: 10.3945/ajcn.111.022772


37.
Abratte CM, Wang W, Li R, Axume J, Moriarty DJ, Caudill MA. Choline status is not a reliable indicator of moderate changes in dietary choline consumption in premenopausal women. J Nutr Biochem 2009; 20(1): 62–9. doi: 10.1016/j.jnutbio.2007.12.002


38.
Vennemann FB, Ioannidou S, Valsta LM, Dumas C, Ocke MC, Mensink GB, et al. Dietary intake and food sources of choline in European populations. Br J Nutr 2015; 114(12): 2046–55. doi: 10.1017/S0007114515003700


39.
US Department of Agriculture, Agricultural Research Service. 2016. Nutrient Data Laboratory. USDA National Nutrient Database for Standard Reference, Release 28 (Slightly revised). Version May 2016. http://www.ars.usda.gov/nea/bhnrc/mafcl. Accessed in October 2021.


40.
Zeisel SH, Mar MH, Howe JC, Holden JM. Concentrations of choline-containing compounds and betaine in common foods. J Nutr 2003; 133(5): 1302–7. doi: 10.1093/jn/133.5.1302


41.
Lecorguille M, Lioret S, de Lauzon-Guillain B, de Gavelle E, Forhan A, Mariotti F, et al. Association between dietary intake of one-carbon metabolism nutrients in the year before pregnancy and birth anthropometry. Nutrients 2020; 12(3): 838. doi: 10.3390/nu12030838


42.
Molloy AM, Mills JL, Cox C, Daly SF, Conley M, Brody LC, et al. Choline and homocysteine interrelations in umbilical cord and maternal plasma at delivery. Am J Clin Nutr 2005; 82(4): 836–42. doi: 10.1093/ajcn/82.4.836


43.
Nakanishi M, Funahashi N, Fukuoka H, Nammo T, Sato Y, Yoshihara H, et al. Effects of maternal and fetal choline concentrations on the fetal growth and placental DNA methylation of 12 target genes related to fetal growth, adipogenesis, and energy metabolism. J Obstet Gynaecol Res 2021; 47(2): 734–44. doi: 10.1111/jog.14599


44.
Fischer LM, da Costa KA, Galanko J, Sha W, Stephenson B, Vick J, et al. Choline intake and genetic polymorphisms influence choline metabolite concentrations in human breast milk and plasma. Am J Clin Nutr 2010; 92(2): 336–46. doi: 10.3945/ajcn.2010.29459


45.
Fernandez-Roig S, Cavalle-Busquets P, Fernandez-Ballart JD, Ballesteros M, Berrocal-Zaragoza MI, Salat-Batlle J, et al. Low folate status enhances pregnancy changes in plasma betaine and dimethylglycine concentrations and the association between betaine and homocysteine. Am J Clin Nutr 2013; 97(6): 1252–9. doi: 10.3945/ajcn.112.054189


46.
Sole-Navais P, Salat-Batlle J, Cavalle-Busquets P, Fernandez-Ballart J, Ueland PM, Ballesteros M, et al. Early pregnancy folate-cobalamin interactions and their effects on cobalamin status and hematologic variables throughout pregnancy. Am J Clin Nutr 2018; 107(2): 173–82. doi: 10.1093/ajcn/nqx041


47.
Velzing-Aarts FV, Holm PI, Fokkema MR, van der Dijs FP, Ueland PM, Muskiet FA. Plasma choline and betaine and their relation to plasma homocysteine in normal pregnancy. Am J Clin Nutr 2005; 81(6): 1383–9. doi: 10.1093/ajcn/81.6.1383


48.
Carmichael SL, Yang W, Shaw GM. Periconceptional nutrient intakes and risks of neural tube defects in California. Birth Defects Res A Clin Mol Teratol 2010; 88(8): 670–8. doi: 10.1002/bdra.20675


49.
Shaw GM, Carmichael SL, Yang W, Selvin S, Schaffer DM. Periconceptional dietary intake of choline and betaine and neural tube defects in offspring. Am J Epidemiol 2004; 160(2): 102–9. doi: 10.1093/aje/kwh187


50.
Chi Y, Pei L, Chen G, Song X, Zhao A, Chen T, et al. Metabonomic profiling of human placentas reveals different metabolic patterns among subtypes of neural tube defects. J Proteome Res 2014; 13(2): 934–45. doi: 10.1021/pr4009805


51.
Lavery AM, Brender JD, Zhao H, Sweeney A, Felkner M, Suarez L, et al. Dietary intake of choline and neural tube defects in Mexican Americans. Birth Defects Res A Clin Mol Teratol 2014; 100(6): 463–71. doi: 10.1002/bdra.23236


52.
Mills JL, Fan R, Brody LC, Liu A, Ueland PM, Wang Y, et al. Maternal choline concentrations during pregnancy and choline-related genetic variants as risk factors for neural tube defects. Am J Clin Nutr 2014; 100(4): 1069–74. doi: 10.3945/ajcn.113.079319


53.
Petersen JM, Parker SE, Crider KS, Tinker SC, Mitchell AA, Werler MM. One-carbon cofactor intake and risk of neural tube defects among women who meet folic acid recommendations: a multicenter case-control study. Am J Epidemiol 2019; 188(6): 1136–43. doi: 10.1093/aje/kwz040


54.
Obeid R, Derbyshire E, Schon C. Association between maternal choline, fetal brain development, and child neurocognition: systematic review and meta-analysis of human studies. Adv Nutr 2022; 13(6): 2445–57. doi: 10.1093/advances/nmac082


55.
Holmes-McNary MQ, Cheng WL, Mar MH, Fussell S, Zeisel SH. Choline and choline esters in human and rat milk and in infant formulas. Am J Clin Nutr 1996; 64(4): 572–6. doi: 10.1093/ajcn/64.4.572


56.
Chao CK, Pomfret EA, Zeisel SH. Uptake of choline by rat mammary-gland epithelial cells. Biochem J 1988; 254(1): 33–8. doi: 10.1042/bj2540033


57.
Caudill MA, Strupp BJ, Muscalu L, Nevins JEH, Canfield RL. Maternal choline supplementation during the third trimester of pregnancy improves infant information processing speed: a randomized, double-blind, controlled feeding study. FASEB J 2018; 32(4): 2172–80. doi: 10.1096/fj.201700692RR


58.
Ross RG, Hunter SK, Hoffman MC, McCarthy L, Chambers BM, Law AJ, et al. Perinatal phosphatidylcholine supplementation and early childhood behavior problems: evidence for CHRNA7 moderation. Am J Psychiatry 2016; 173(5): 509–16. doi: 10.1176/appi.ajp.2015.15091188


59.
Ross RG, Hunter SK, McCarthy L, Beuler J, Hutchison AK, Wagner BD, et al. Perinatal choline effects on neonatal pathophysiology related to later schizophrenia risk. Am J Psychiatry 2013; 170(3): 290–8. doi: 10.1176/appi.ajp.2012.12070940


60.
Boeke CE, Gillman MW, Hughes MD, Rifas-Shiman SL, Villamor E, Oken E. Choline intake during pregnancy and child cognition at age 7 years. Am J Epidemiol 2013; 177(12): 1338–47. doi: 10.1093/aje/kws395


61.
Freedman R, Hunter SK, Law AJ, D’Alessandro A, Noonan K, Wyrwa A, et al. Maternal choline and respiratory coronavirus effects on fetal brain development. J Psychiatr Res 2020; 128: 1–4. doi: 10.1016/j.jpsychires.2020.05.019


62.
Freedman R, Hunter SK, Law AJ, Wagner BD, D’Alessandro A, Christians U, et al. Higher gestational choline levels in maternal infection are protective for infant brain development. J Pediatr 2019; 208: 198–206.e2. doi: 10.1016/j.jpeds.2018.12.010


63.
Hoffman MC, Hunter SK, D’Alessandro A, Noonan K, Wyrwa A, Freedman R. Interaction of maternal choline levels and prenatal Marijuana’s effects on the offspring. Psychol Med 2020; 50(10): 1716–26. doi: 10.1017/S003329171900179X


64.
Hunter SK, Hoffman MC, D’Alessandro A, Noonan K, Wyrwa A, Freedman R, et al. Male fetus susceptibility to maternal inflammation: C-reactive protein and brain development. Psychol Med 2021; 51(3): 450–9. doi: 10.1017/S0033291719003313


65.
Hunter SK, Hoffman MC, D’Alessandro A, Wyrwa A, Noonan K, Zeisel SH, et al. Prenatal choline, cannabis, and infection, and their association with offspring development of attention and social problems through 4 years of age. Psychol Med 2022; 52(14): 3019–28. doi: 10.1017/S0033291720005061


66.
Hunter SK, Hoffman MC, McCarthy L, D’Alessandro A, Wyrwa A, Noonan K, et al. Black American maternal prenatal choline, offspring gestational age at birth, and developmental predisposition to mental illness. Schizophr Bull 2021; 47(4): 896–905. doi: 10.1093/schbul/sbaa171


67.
Poly C, Massaro JM, Seshadri S, Wolf PA, Cho E, Krall E, et al. The relation of dietary choline to cognitive performance and white-matter hyperintensity in the Framingham Offspring Cohort. Am J Clin Nutr 2011; 94(6): 1584–91. doi: 10.3945/ajcn.110.008938


68.
Ylilauri MPT, Voutilainen S, Lonnroos E, Virtanen HEK, Tuomainen TP, Salonen JT, et al. Associations of dietary choline intake with risk of incident dementia and with cognitive performance: the Kuopio Ischaemic Heart Disease Risk Factor Study. Am J Clin Nutr 2019; 110(6): 1416–23. doi: 10.1093/ajcn/nqz148


69.
Buchman AL, Moukarzel A, Jenden DJ, Roch M, Rice K, Ament ME. Low plasma free choline is prevalent in patients receiving long term parenteral nutrition and is associated with hepatic aminotransferase abnormalities. Clin Nutr 1993; 12(1): 33–7. doi: 10.1016/0261-5614(93)90143-r


70.
Buchman AL, Dubin M, Jenden D, Moukarzel A, Roch MH, Rice K, et al. Lecithin increases plasma free choline and decreases hepatic steatosis in long-term total parenteral nutrition patients. Gastroenterology 1992; 102(4 Pt 1): 1363–70. doi: 10.1016/0016-5085(92)90777-V


71.
Buchman AL, Dubin MD, Moukarzel AA, Jenden DJ, Roch M, Rice KM, et al. Choline deficiency: a cause of hepatic steatosis during parenteral nutrition that can be reversed with intravenous choline supplementation. Hepatology 1995; 22(5): 1399–403. doi: 10.1002/hep.1840220510


72.
Ghoshal AK, Farber E. Liver biochemical pathology of choline deficiency and of methyl group deficiency: a new orientation and assessment. Histol Histopathol 1995; 10(2): 457–62.


73.
Bidulescu A, Chambless LE, Siega-Riz AM, Zeisel SH, Heiss G. Usual choline and betaine dietary intake and incident coronary heart disease: the Atherosclerosis Risk in Communities (ARIC) study. BMC Cardiovasc Disord 2007; 7: 20. doi: 10.1186/1471-2261-7-20


74.
Dalmeijer GW, Olthof MR, Verhoef P, Bots ML, van der Schouw YT. Prospective study on dietary intakes of folate, betaine, and choline and cardiovascular disease risk in women. Eur J Clin Nutr 2008; 62(3): 386–94. doi: 10.1038/sj.ejcn.1602725


75.
Bertoia ML, Pai JK, Cooke JP, Joosten MM, Mittleman MA, Rimm EB, et al. Plasma homocysteine, dietary B vitamins, betaine, and choline and risk of peripheral artery disease. Atherosclerosis 2014; 235(1): 94–101. doi: 10.1016/j.atherosclerosis.2014.04.010


76.
Millard HR, Musani SK, Dibaba DT, Talegawkar SA, Taylor HA, Tucker KL, et al. Dietary choline and betaine; associations with subclinical markers of cardiovascular disease risk and incidence of CVD, coronary heart disease and stroke: the Jackson Heart Study. Eur J Nutr 2018; 57(1): 51–60. doi: 10.1007/s00394-016-1296-8


77.
Zuo H, Svingen GFT, Tell GS, Ueland PM, Vollset SE, Pedersen ER, et al. Plasma concentrations and dietary intakes of choline and betaine in association with atrial fibrillation risk: results from 3 prospective cohorts with different health profiles. J Am Heart Assoc 2018; 7(8): e008190. doi: 10.1161/JAHA.117.008190


78.
Nagata C, Wada K, Tamura T, Konishi K, Kawachi T, Tsuji M, et al. Choline and betaine intakes are not associated with cardiovascular disease mortality risk in Japanese men and women. J Nutr 2015; 145(8): 1787–92. doi: 10.3945/jn.114.209296


79.
Zheng Y, Li Y, Rimm EB, Hu FB, Albert CM, Rexrode KM, et al. Dietary phosphatidylcholine and risk of all-cause and cardiovascular-specific mortality among US women and men. Am J Clin Nutr 2016; 104(1): 173–80. doi: 10.3945/ajcn.116.131771


80.
Yang JJ, Lipworth LP, Shu XO, Blot WJ, Xiang YB, Steinwandel MD, et al. Associations of choline-related nutrients with cardiometabolic and all-cause mortality: results from 3 prospective cohort studies of Blacks, Whites, and Chinese. Am J Clin Nutr 2020; 111(3): 644–56. doi: 10.1093/ajcn/nqz318


81.
Virtanen JK, Tuomainen TP, Voutilainen S. Dietary intake of choline and phosphatidylcholine and risk of type 2 diabetes in men: the Kuopio Ischaemic Heart Disease Risk Factor Study. Eur J Nutr 2020; 59(8): 3857–61. doi: 10.1007/s00394-020-02223-2


82.
Li Y, Wang DD, Chiuve SE, Manson JE, Willett WC, Hu FB, et al. Dietary phosphatidylcholine intake and type 2 diabetes in men and women. Diabetes Care 2015; 38(2): e13–14. doi: 10.2337/dc14-2093


83.
Mente A, Chalcraft K, Ak H, Davis AD, Lonn E, Miller R, et al. The relationship between trimethylamine-N-oxide and prevalent cardiovascular disease in a multiethnic population living in Canada. Can J Cardiol 2015; 31(9): 1189–94. doi: 10.1016/j.cjca.2015.06.016


84.
Tang WH, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med 2013; 368(17): 1575–84. doi: 10.1056/NEJMoa1109400


85.
DiMarco DM, Missimer A, Murillo AG, Lemos BS, Malysheva OV, Caudill MA, et al. Intake of up to 3 eggs/day increases HDL cholesterol and plasma choline while plasma trimethylamine-N-oxide is unchanged in a healthy population. Lipids 2017; 52(3): 255–63. doi: 10.1007/s11745-017-4230-9


86.
Miller CA, Corbin KD, da Costa KA, Zhang S, Zhao X, Galanko JA, et al. Effect of egg ingestion on trimethylamine-N-oxide production in humans: a randomized, controlled, dose-response study. Am J Clin Nutr 2014; 100(3): 778–86. doi: 10.3945/ajcn.114.087692


87.
Zhu C, Sawrey-Kubicek L, Bardagjy AS, Houts H, Tang X, Sacchi R, et al. Whole egg consumption increases plasma choline and betaine without affecting TMAO levels or gut microbiome in overweight postmenopausal women. Nutr Res 2020; 78: 36–41. doi: 10.1016/j.nutres.2020.04.002


88.
Cho CE, Aardema NDJ, Bunnell ML, Larson DP, Aguilar SS, Bergeson JR, et al. Effect of choline forms and gut microbiota composition on trimethylamine-N-oxide response in healthy men. Nutrients 2020; 12(8): 2220. doi: 10.3390/nu12082220


89.
Cho CE, Taesuwan S, Malysheva OV, Bender E, Tulchinsky NF, Yan J, et al. Trimethylamine-N-oxide (TMAO) response to animal source foods varies among healthy young men and is influenced by their gut microbiota composition: a randomized controlled trial. Mol Nutr Food Res 2017; 61(1): 1600324. doi: 10.1002/mnfr.201600324


90.
Wilcox J, Skye SM, Graham B, Zabell A, Li XS, Li L, et al. Dietary choline supplements, but not eggs, raise fasting TMAO levels in participants with normal renal function: a randomized clinical trial. Am J Med 2021; 134(9): 1160–9.e3. doi: 10.1016/j.amjmed.2021.03.016
Published
2023-12-21
How to Cite
Obeid R., & Karlsson T. (2023). Choline – a scoping review for Nordic Nutrition Recommendations 2023. Food & Nutrition Research, 67. https://doi.org/10.29219/fnr.v67.10359
Section
Nordic Nutrition Recommendations