Brazil nut (Bertholletia excelsa) and metformin abrogate cardiac complication in fructose/STZ-induced type 2 diabetic rats by attenuating oxidative stress and modulating the MAPK-mTOR/ NFkB/IL-10 signaling pathways

  • Zhenzuo Li Department of Endocrinology, The Fourth People’s Hospital of Jinan, Jinan, China
  • Baolan Wang Department of Endocrinology, The Fourth People’s Hospital of Jinan, Jinan, China
  • Dongfang Bai Department of Endocrinology, Taian City Central Hospital, Taian, China
  • Li Zhang Department of Endocrinology, The Fourth People’s Hospital of Jinan, Jinan, China
Keywords: diabetes mellitus, Bertholletia excelsa, MAPK-mTOR, metabolic complication, cardiovascular diseases, heart disease

Abstract

Background: The global prevalence of diabetic heart complication has been on the increase, and some of the drugs that are currently used to treat diabetes mellitus (DM) have not been able to mitigate this complication.

Objective: This study determines the effect of Brazil nut (Bertholletia excelsa) and metformin on diabetic cardiomyopathy (DCM) in fructose/streptozotocin (STZ)-induced type 2 diabetic rats and also characterizes using Gas Chromatography Mass Spectrophotometry and Fourier Transform Infrared the bioactive compounds in 50% aqueous ethanol extract of Brazil nut.

Design: After inducing type 2 DM, 30 male albino Wistar rats were separated into five groups that comprised of six rats per group, and they were treated as follows: groups 1 (Control) and 2 (Diabetic control) rats received rat pellets and distilled water; group 3 (Diabetic + Brazil nut) received rat pellets and Brazil nut extract (100 mg/kg, orally) dissolved in distilled water, group 4 (Diabetic + metformin) received metformin (100 mg/kg, orally) dissolved in distilled water, while group 5 (Diabetic + Brazil nut + metformin) received oral administrations of Brazil nut (100 mg/kg) and metformin (100 mg/kg) dissolved in distilled water. This study lasted for 6 weeks. The dose of Brazil nut used was selected from our pilot study on the minimum therapeutic dose of different concentrations of Brazil nut extract.

Results: STZ administration induced insulin resistance, hyperglycemia, loss of weight, dyslipidemia, oxidative stress, inflammation, apoptosis, alteration of mammalian target of rapamycin, mitogen-activated protein kinase, heart function markers (creatine kinase MB, lactate dehydrogenase, and aspartate amino transaminase), and heart histology of the diabetic control, which was ameliorated after treatment with Brazil nut and metformin, but their combined treatment was better than the single treatments.

Conclusion: This study shows that Brazil nut contains several bioactive compounds that support its biological properties as well as its candidature as a complementary therapy to metformin in mitigating cardiac complications arising from DM in rats.

Downloads

Download data is not yet available.

References


1.
Tabish SA. Is diabetes becoming the biggest epidemic of the twenty-first century? Int J Health Sci 2007; 1(2): V–VIII.


2.
Gupta SK, Dongare S, Mathur R, Mohanty IR, Srivastava S, Mathur S, et al. Genistein ameliorates cardiac inflammation and oxidative stress in streptozotocin-induced diabetic cardiomyopathy in rats. Mol Cell Biochem 2015; 408(1–2): 63–72. doi: 10.1007/s11010-015-2483-2


3.
Fan Z, Dong J, Mub Y, Liu X. Nesfatin-1 protects against diabetic cardiomyopathy in the streptozotocin-induced diabetic mouse model via the p38-MAPK pathway. Nesfatin-1 protects against diabetic cardiomyopathy in the streptozotocin-induced diabetic mouse model via the p38-MAPK pathway. Bioengineered 2022; 13(6): 14670–81. doi: 10.1080/21655979.2022.2066748


4.
Wilson AJ, Gill EK, Abudalo RA, Edgar KS, Watson CJ, Grieve DJ. Reactive oxygen species signalling in the diabetic heart: emerging prospect for therapeutic targeting. Heart 2017; 104: 293–9. doi: 10.1136/heartjnl-2017-311448


5.
Wen C, Liu C, Li Y, Xia T, Zhang X, Xue S, et al. Ameliorative potentials of the ethanolic extract from Lycium chinense leaf extract against diabetic cardiomyopathy. Insight into oxido-inflammatory and apoptosis modulation. Biomed Pharmacother 2022; 154: 113583. doi: 10.1016/j.biopha.2022.113583


6.
Kameshwaran S, Ravisankar M, Srinivasan P, Suresh V. Ameliorative impact of Tecoma stans extract on streptozotocin-induced diabetic cardiomyopathy in Wistar rats. J Pharm Pharmacol 2023; 1(1): 55–62. doi: 10.9734/bpi/acpr/v1/5974E


7.
Cai L, Kang, YJ. Oxidative stress and diabetic cardiomyopathy. Cardiovascular Toxicol 2001; 1: 181–93. doi: 10.1385/CT:1:3:181


8.
Naghdi A, Goodarzi MT, Karimi J, Hashemnia M, Khodadadi I. Effects of curcumin and metformin on oxidative stress and apoptosis in heart tissue of type 1 diabetic rats. J Cardiovasc Thorac Res 2022; 14(2): 128–37. doi: 10.34172/jcvtr.2022.23


9.
Chong ZZ, Maiese K. Mammalian target of rapamycin signaling in diabetic cardiovascular disease. Cardiovas Diabetol 2012; 11: 45. doi: 10.1186/1475-2840-11-45


10.
Abdel-Aziz AM, Abozaid SMM, Yousef RKM, Mohammed MM, Khalaf, KM. Fenofibrate ameliorates testicular damage in rats with streptozotocin-induced type 1 diabetes: role of HO-1 and p38 MAPK. Pharmacol Rep 2020; 72(6): 1645–56. doi: 10.1007/s43440-020-00096-0


11.
Alabi TD, Chegou NN, Brooks NL, Oguntibeju OO. Effects of Anchomanes difformis on inflammation, apoptosis, and organ toxicity in STZ-induced diabetic cardiomyopathy. Biomedicines 2020; 8: 29. doi: 10.3390/biomedicines8020029


12.
Nascimento LPS, Pires VC, Ribeiro DA, Gollücke APB, Yamamura H, Junior OA. Benefits of the consumption of Brazil nut (Bertholletia excelsa) extract in male reproductive parameters of streptozotocin-induced diabetic rats. J. Diabetes Metab Dis 2020; 19(1): 187–196. doi: 10.1007/s40200-020-00490-8


13.
Frausto-González O, Bautista CJ, Narváez-González F, Hernandez-Leon A, Estrada Camarena E, Rivero-Cruz F, et al. Bertholletia excelsa seeds reduce anxiety-like behavior, lipids, and overweight in mice. Molecules 2021; 6: 3212. doi: 10.3390/molecules26113212


14.
Atlantis E, Goldney RD, Wittert GA. Obesity and depression or anxiety. BMJ 2009; 339: 871–6. doi: 10.1136/bmj.b3868


15.
Kinaan M, Ding H, Triggle CR. Metformin: an old drug for the treatment of diabetes but a new drug for the protection of the endothelium. Med Princ Pract 2015; 24: 401–15. doi: 10.1159/000381643


16.
Rhee SY, Kim HJ, Ko SH, Hur KY, Kim NH, Moon MK, et al. Monotherapy in patients with type 2 diabetes mellitus. Diabetes Metab J 2017; 41: 349–56. doi: 10.4093/dmj.2017.41.5.349


17.
UK Prospective Diabetes Study Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes (UKPDS 38). Br Med J 1998; 317(7160): 703–13. doi: 10.1136/bmj.317.7160.703


18.
Muntzel MS, Hamidou I, Barrett S. Metformin attenuates salt-induced hypertension in spontaneously hypertensive rats. Hypertension 1999; 33: 1135–40. doi: 10.1161/01.HYP.33.5.1135


19.
Abbasi F, Chu JW, McLaughlin T, Lamendola C, Leary ET, Reaven GM. Effect of metformin treatment on multiple cardiovascular disease risk factors in patients with type 2 diabetes mellitus. Metabolism 2004; 53(2): 159–64. doi: 10.1016/j.metabol.2003.07.020


20.
Arunachalam G, Samuel SM, Marei I, Ding H, Triggle CR. Metformin modulates hyperglycaemia-induced endothelial senescence and apoptosis through SIRT1. Br J Pharmacol 2014; 171: 523–35. doi: 10.1111/bph.12496


21.
Calle-Pascual AL, Garcia-Honduvilla J, Martin-Alvarez PJ, Vara E, Calle JR, Munguira ME, et al. Comparison between acarbose, metformin, and insulin treatment in type 2 diabetic patients with secondary failure to sulfonylurea treatment. Diab Metab 1995; 21: 256–60.


22.
Gudbjornsdottir S, Friberg P, Elam M, Attvall S, Lonnroth P, Wallin G. The effect of metformin and insulin on sympathetic nerve activity, norepinephrine spillover and blood pressure in obese, insulin resistant, normoglycemic, hypertensive men. Blood Pressure 1994; 3: 394–403. doi: 10.3109/08037059409102293


23.
Singh AK, Singh R, Chakraborty PP. Diabetes monotherapies versus metformin-based combination therapy for the treatment of type 2 diabetes. Int J Gen Med 2021; 14: 3833–48. doi: 10.2147/IJGM.S295459


24.
Alotaibi MR, Fatani AJ, Almnaizel AT, Ahmed MM, Abuohashish HM, Al-Rejaie SS. In vivo assessment of combined effects of Glibenclamide and Losartan in diabetic rats. Med Princ Pract 2019; 28: 178–85. doi: 10.1159/000496104


25.
Lorke D. A new approach to practical acute toxicity testing. Arch Toxicol 1983; 54: 275–87. doi: 10.1007/BF01234480


26.
Abdel-Ghaffar A, Ghanem HM, Ahmed EK, Hassanin OA, Mohamed RG. Ursodeoxycholic acid suppresses the formation of fructose/streptozotocin induced diabetic cataract in rats. Fundam Clin Pharmacol 2018; 32(6): 627–40. doi: 10.1111/fcp.12385


27.
Wilson RD, Islam S. Fructose-fed streptozotocin-injected rat: an alternative model for type 2 diabetes. Pharmacol Rep 2012; 64: 129–39. doi: 10.1016/s1734-1140(12)70739-9


28.
Kume WT, Porto EPDJ, Spada ECDL, Lisboa DR, Stachack FFF, Terezo AJ, et al. Acute supplementation of growing rats with Brazil nut flour increases hepatic lipid content but prevents oxidative damage in the liver. J Food Biochem 2021; 45: e13834. doi: 10.1111/jfbc.13834


29.
Barata PHS, Sarquis IR, Carvalho H, Barros AS, Rodrigues AB, Galue A, et al. Chemoenzymatic synthesis and anti-inflammatory activity of fatty acid amides prepared from Bertholletia excelsa (Brazil Nut) triglycerides. J Braz Chem Soc 2020; 31(8): 1–9. doi: 10.21577/0103-5053.20200041


30.
Obafemi TO, Jaiyesimi KF, Olomola AA, Olasehinde OR, Olaoye OA, Adewumi FD, et al. Combined effect of metformin and gallic acid on inflammation, antioxidant status, endoplasmic reticulum (ER) stress and glucose metabolism in fructose-fed streptozotocin-induced diabetic rats. Toxicol Rep 2021; 8: 1419–27. doi: 10.1016/j.toxrep.2021.07.011


31.
Nayak Y, Hillemane V, Daroji VK, Jayashree BS, Unnikrishnan MK. Antidiabetic activity of benzopyrone analogues in nicotinamide-streptozotocin induced type 2 diabetes in rats. Sci World J 2014; 2014; 1–12. doi: 10.1155/2014/854267


32.
Kotha P, Badri KR, Nagalapuram R, Allagadda R, Chippada AR. Anti-diabetic potential of the leaves of Anisomeles malabarica in streptozotocin induced diabetic rats. Cell Physiol Biochem 2017; 43: 1689–702. doi: 10.1159/000484030


33.
Karl J, Burns G, Engel WD. Development and standardization of a new immunoturbidimetric HbA1c assay. Klinisches Labor 1993; 39: 991–6.


34.
Tietz NW. Clinical guide to laboratory test. 3rd Edition, WB Saunders Company; Philadelphia, 22–23. 1995.


35.
Wei BD, Grossau E, Faderal B. Normal ranges of alpha HBDH, LDH, AP and LAP as measured with substrate-optimated test charges. Med Welt 1975; 26: 387–92.


36.
Reitman S, Frankel S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol 1957; 28: 56. doi: 10.1093/ajcp/28.1.56


37.
Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 1972; 18: 499–505. doi: 10.1093/clinchem/18.6.499


38.
Buege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol 1978; 52: 302–10. doi: 10.1016/0003-2697(78)90010-6


39.
Sun M, Zigma S. An improved spectrophotometric assay of superoxide dismutase based on ephinephrine anti-oxidation. Anal Biochem 1978; 90: 81–9.


40.
Rotruckjt RAL, Ganther HF, Swason AB. Selenium: biochemical role as a component of glutathione peroxide. Science 1973; 179: 588–90. doi: 10.1126/science.179.4073.58


41.
Sinha AK. Colorimetric assay of catalase. Anal Biochem 1972; 47: 389–94. doi: 10.1016/0003-2697(72)90132-7


42.
Habig WA, Pabst MJ, Jacoby WB. Glutathione transferases. The first step in mercapturic acid formation. J Biol Chem 1974; 249: 7130–9. doi: 10.1016/0003-2697(78)90010-6


43.
Ganesh M, Mohankumar M. Extraction and identification of bioactive components in Sida cordata (Burm.f.) using gas chromatography–mass spectrometry. J Food Sci Technol 2017; 54: 3082–91. doi: 10.1007/s13197-017-2744-z


44.
Yu X, Zhao M, Liu F, Zeng S, Hu J. Identification of 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one as a strong antioxidant in glucose-histidine Maillard reactions. Food Res Int 2013; 51(1): 397–403. doi: 10.1016/j.foodres.2012.12.044


45.
Shareef HK, Muhammed HJ, Hussein HM, Hameed IH. Antibacterial effect of ginger (Zingiber officinale) roscoe and bioactive chemical analysis using gas chromatography mass spectrum. Orient J Chem 2016; 32: 817–37. doi: 10.13005/ojc/320207


46.
Igwe OU, Okwu DE. GC-MS evaluation of bioactive compounds and antibacterial activity of the oil fraction from the seeds of Brachystegia eurycoma (HARMS). Asian J Plant Sci Res 2013; 3: 47–54.


47.
Junwei L, Juntao C, Changyu N, Peng W. Molecules and functions of rosewood: Pterocarpus cambodianus. Arabian J Chem 2018; 11: 763–70. doi: 10.1016/j.arabjc.2017.12.030


48.
Kalaimagal C. Identification of bioactive compounds in flower of Tabernaemontana divaricata (L.) using gas chromatography–mass spectrometry analysis. Asian J Pharm Clin Res 2019; 12: 129–32. doi: 10.22159/ajpcr.2019.v12i9.34559


49.
Abdulhafiz F, Mohammed A, Kayat F, Bhaskar M, Hamzah Z, Sanjay PK, et al. Xanthine oxidase inhibitory activity, chemical composition, antioxidant properties and GC-MS analysis of Keladi Candik (Alocasia longiloba Miq). Molecules 2020; 25: 2658. doi: 10.3390/molecules25112658


50.
Kadhim MJ, Al-Rubaye AF, Hameed IH. Determination of bioactive compounds of methanolic extract of Vitis vinifera using GC-MS. Int J Toxicol Pharmacol Res 2017; 9(2): 113–26. doi: 10.25258/ijtpr.v9i02.9047


51.
Shapla UM, Alam SN, Khalil I, Gan SH. 5-Hydroxymethylfurfural (HMF) levels in honey and other food products: effects on bees and human health. Chem Cent J 2018; 12(1): 35. doi: 10.1186/s13065-018-0408-3


52.
Vandana CD, Shanti KN, Shantha SL. GC-MS analysis of Callus and leaf extracts of in vitro propagated plants of Justicia wynaadensis (nees) t. Anderson. Int J Pharm Sci Res 2018; 9(2): 535–43.


53.
Godara P, Dulara BK, Barwer N, Chaudhary NS. Comparative GC–MS analysis of bioactive phytochemicals from different plant parts and callus of Leptadenia reticulata Wight and Arn. Pharmacog J 2019; 11: 129–40. doi: 10.5530/pj.2019.1.22


54.
Selvi ST, Jamuna S, Thekan S, Paulsamy S. Profiling of bioactive chemical entities in Barleria buxifolia L. using GC-MS analysis – a significant ethno medicinal plant. J Ayurvedic Herbal Med 2017; 3: 63–77. doi: 10.31254/jahm.2017.3204


55.
Kakkar S, Narasimhan B. A comprehensive review of oxazole derivatives. BMC Chem 2019; 13(1): 16. doi: 10.1186/s13065-019-0531-9


56.
Botzki A, Rigden DJ, Braun S, Nukui M, Salmen S, Hoechstetter J, et al. L-Ascorbic acid 6-hexadecanoate, a potent hyaluronidase inhibitor: X-ray structure and molecular modelling of enzyme inhibitor complex. J Biol Chem 2004; 279: 45990–7. doi: 10.1074/jbc.M406146200


57.
Begum SMFM, Priya S, Sundararajan R, Hemalatha S. Novel anti-cancerous compounds from Sargassum wightii: In silico and in vitro approaches to test the antiproliferative efficacy. J Adv Pharm Edu Res 2017; 7(3): 272–7.


58.
Keum YS, Chang PPJ, Kwon KH, Yuan X, Li W, Hu L, et al. 3-Morpholinopropyl isothiocyanate is a novel synthetic isothiocyanate that strongly induces the antioxidant response element- dependent Nrf2-mediated detoxifying/antioxidant enzymes in vitro and in vivo. Carcinogenesis 2008; 29(3): 594–9. doi: 10.1093/carcin/bgm208


59.
Ghosh G, Panda P, Rath M, Pai A, Sharma T, Das D. GC-MS analysis of bioactive compounds in methanol extract of Clerodendrum viscosum leaves. Pharmacog Res 2015; 7(1): 110–13. doi: 10.4103/0974-8490.147223


60.
Arora S, Kumar G. Gas chromatography-mass spectrometry (GC-MS) determination of bioactive constituents from the methanolic and ethyl acetate extract of Cenchrus setigerus Vahl (Poaceae). Pharma Innov J 2017; 6(11): 635–40.


61.
Sreejith PE, Linu NK, Sasikumar P, Radhakrishnan KV, Sabu M. Phytochemical studies of an endemic and critically endangered hill banana, Musa acuminata Colla (AA) ‘Karivazhai’ fruit by GC-MS. J Chem Pharm Res 2016; 8(5): 164–8.


62.
Siswadi S, Saragih GS. Phytochemical analysis of bioactive compounds in ethanolic extract of Sterculia quadrifida R.Br. International Conference on Life Sciences and Technology. AIP Conf Proc 2020; 2353: 030098-7. doi: 10.1063/5.0053057


63.
Shoge M, Amusan T. Phytochemical, antidiarrhoeal activity, isolation and characterization of 11-octadecenoic acid, methyl ester isolated from the seeds of Acacia nilotica Linn. J Biotechnol and Immunol 2020; 2(1): 1–10. doi: 10.5281/zenodo.3669434.


64.
Vassiliou EK, Gonzalez A, Garcia C, Tadros JH, Chakraborty G, Toney JH. Oleic acid and peanut oil high in oleic acid reverse the inhibitory effect of insulin production of the inflammatory cytokine TNF-α both in in vitro and in vivo systems. Lipids Health Dis 2009; 8: 25. doi: 10.1186/1476-511X-8-25


65.
Lopez S, Bermudez B, Pacheco YM, Ortega A, Varela LM, Abia R, et al. Oleic acid: the main component of olive oil on post-prandial metabolic processes. In: Olives and olive oil in health and disease prevention. 2010, Chapter 154, pp. 1385–93. Elsevier Inc. Editors: Victor R. Preedy and Watson Ronald Ross. Spain.


66.
Lattibeaudiere KG, Alexander-Lindo RL. Oleic acid and succinic acid synergistically mitigate symptoms of type 2 diabetes in streptozotocin induced diabetic rats. Int J Endocrinol 2022; 22: 1–10. doi: 10.1155/2022/8744964


67.
Velayutham P. Karthi: GC-MS profile of in vivo, in vitro and fungal elicited in vitro leaves of Hybanthus enneaspermus (L.) F. Muell. Int J Pharm Pharmaceut Sci 2015; 7(10): 260–7.


68.
Lalitha S, Parthipan B, Mohan VR. Determination of bioactive components of Psychotria nilgiriensis Deb & Gang (Rubiaceae) by GC-MS analysis. Int J Pharm Phytochem Res 2015; 7: 802–9.


69.
Khan IH, Javaid A. Hexane soluble bioactive components of leaf extract of quinoa. J Animal Plant Sci 2022; 32(2): 609–14.


70.
Hussein HJ, Hadi MY, Hameed IH. Study of the chemical composition of Foeniculum vulgare using Fourier transform infrared spectrophotometer and gas chromatography-mass spectrometry. J Pharmacogn Phytother 2016; 8(3): 60–89. doi: 10.5897/JPP2015.0372


71.
Wang T, Liu C, Shu S, Zhang Q, Olatunji OJ. Therapeutic efficacy of polyphenol-rich fraction of Boesenbergia rotunda in diabetic rats: a focus on hypoglycemic, antihyperlipidemic, carbohydrate metabolism, antioxidant, anti-inflammatory and pancreato-protective activities. Front Biosci 2022; 27(7): 206. doi: 10.31083/j.fbl2707206


72.
Consensus Committee, Consensus statement on the worldwide standardization of the hemoglobin A1Cmeasurement: the American Diabetes Association, European Association for the Study of Diabetes, International Federation of Clinical Chemistry and Laboratory Medicine, and the International Diabetes Federation. Diab Care 2007; 30(9): 2399–400. doi: 10.2337/dc07-9925


73.
Addepalli V, Suryavanshi SV. Catechin attenuates diabetic autonomic neuropathy in streptozotocin induced diabetic rats. Biomed Pharmacother 2018; 108: 1517–23. doi: 10.1016/j.biopha.2018.09.179


74.
Choudhary M, Aggarwal N, Choudhary N, Gupta P, Budhwar V. Effect of aqueous and alcoholic extract of Sesbania sesban (Linn) Merr root on glycemic control in streptozotocin-induced diabetic mice. Drug Dev Ther 2014; 5: 115–22. doi: 10.4103/2394-2002.139616


75.
Das A, Salloum FN, Filippone SM, Durrant DE, Rokosh G, Bolli R, et al. Inhibition of mammalian target of rapamycin protects against reperfusion injury in diabetic heart through STAT3 signaling. Basic Res Cardiol 2015; 110(3): 31. doi: 10.1007/s00395-015-0486-5


76.
Cai L, Wang Y, Zhou G, Chen T, Song Y, Li X, et al. Attenuation by metallothionein of early cardiac cell death via suppression of mitochondrial oxidative stress results in a prevention of diabetic cardiomyopathy. J Am Coll Cardiol 2006; 48: 1688–97. doi: 10.1016/j.jacc.2006.07.022


77.
Khaki Z, Masoudifard M, Khadivar F, Shirani D, Fathipour V, Taheri M. Serum biochemical and hematological parameters in dogs with benign prostatic hyperplasia (BPH). Iran J Vet Med 2016; 11: 55–62.


78.
Gupta R, Johri S, Saxena AM. Diabetes mellitus; the pandemic of the 21st century. Asian Pacific J Exp Sci 2009; 23(1): 261–8.


79.
Al-Rasheed NM, Al-Rasheed NM, Hasan IM, Al-Amin MA, Al-Ajmi HN, Mohamad RA, et al. Simvastatin ameliorates diabetic cardiomyopathy by attenuating oxidative stress and inflammation in rats. Oxid Med Cell Longev 2017; 2017: 1092015. doi: 10.1155/2017/1092015


80.
Wu D, Gao B, Li M, Yao L, Wang S, Chen M, et al. Hydrogen sulfide mitigates kidney injury in high fat diet induced obese mice. Oxid Med Cell Longev 2016; 2016: 2715718. doi: 10.1155/2016/2715718


81.
Iyer SS, Cheng G. Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease. Crit Rev Immunol 2012; 32(1): 23–63. doi: 10.1615/critrevimmunol.v32.i1.30


82.
Adoga JO, Channa ML, Nadar A. Kolaviron attenuates cardiovascular injury in fructose-streptozotocin induced type-2 diabetic male rats by reducing oxidative stress, inflammation, and improving cardiovascular risk markers. Biomed Pharmacother 2021; 144: 112323. doi: 10.1016/j.biopha.2021.112323


83.
Hamdy S, Elshopakey GE, Risha EF, Rezk S, Ateya AI. Abdelhamid FM. Curcumin mitigates gentamicin induced-renal and cardiac toxicity via modulation of Keap1/Nrf2, NF-κB/iNOS and Bcl-2/BAX pathways. Food Chem Toxicol 2024; 183: 114323. doi: 10.1016/j.fct.2023.114323


84.
Cury MFR, Olivares EO, Garcias RC, Toledo GO, Anselmo NA, Paskakulis LC, et al. Inflammation and kidney injury attenuated by prior intake of Brazil nut in the process of ischemia and reperfusion. Braz J Nephrol 2018; 40(4): 312–18. doi: 10.1590/2175-8239-JBN-2018-0016


85.
Wang S, Ding L, Ji H, Xu Z, Liu Q, Zheng Y. The role of p38-MAPK in the development of diabetic cardiomyopathy. Int J Mol Sci 2016; 17(7): 1037. doi: 10.3390/ijms17071037


86.
McMullen JR, Sherwood MC, Tarnavski O, Zhang L, Dorfman AL, Shioi T, et al. Inhibition of mTOR signaling with rapamycin regresses established cardiac hypertrophy induced by pressure overload. Circulation 2004; 109: 3050–5. doi: 10.1161/01.CIR.0000130641.08705.45


87.
He X, Gao F, Hou J, Li T, Tan J, Wang C, et al. Metformin inhibits MAPK signaling and rescues pancreatic aquaporin 7 expression to induce insulin secretion in type 2 diabetes mellitus. J Biol Chem 2021; 297(2): 101002. doi: 10.1016/j.jbc.2021.101002


88.
Palmer IS, Herr A, Nelson T. Toxicity of Brazil nuts to rats. J Food Sci 1982; 47: 1595–7. doi: 10.1111/j.1365-2621.1982.tb04990.x


89.
Lincy MLP, Mohan VR, Jeeva S. Preliminary phytochemical screening, gas chromatography mass spectrum and Fourier transform infrared spectroscopy analysis of aerial part of Maerua apetala roth (Jacobs). Chem Sci Rev Lett 2015; 4(16): 1275–84.


90.
Tsai MC, Wang CC, Tsai IN, Yu MH, Yang MY, Lee YJ, et al. Improving the effects of mulberry leaves and neochlorogenic acid on glucotoxicity-induced hepatic steatosis in high fat diet treated db/db mice. J Agric Food Chem 2024; 72: 6339–46. doi: 10.1021/acs.jafc.3c09033
Published
2024-08-20
How to Cite
Li Z., Wang B., Bai D., & Zhang L. (2024). Brazil nut (<em>Bertholletia excelsa</em&gt;) and metformin abrogate cardiac complication in fructose/STZ-induced type 2 diabetic rats by attenuating oxidative stress and modulating the MAPK-mTOR/ NFkB/IL-10 signaling pathways. Food & Nutrition Research, 68. https://doi.org/10.29219/fnr.v68.10749
Section
Original Articles