Aronia berry extract inhibits TNF-α-induced vascular endothelial inflammation through the regulation of STAT3

  • Tomomi Iwashima
  • Yuki Kudome
  • Yoshimi Kishimoto
  • Emi Saita
  • Miori Tanaka
  • Chie Taguchi
  • Satoshi Hirakawa
  • Nobu Mitani
  • Kazuo Kondo
  • Kaoruko Iida
Keywords: aronia berry, polyphenol, atherosclerosis, STAT3, vascular endothelial cell, inflammation

Abstract

Background: Inflammation in endothelial cells induces production of inflammatory cytokines and monocytes adhesion, which are crucial events in the initiation of atherosclerosis. Aronia berry (Aronia meranocalpa), also called black chokeberry, contains abundant anthocyanins that have received considerable interest for their possible relations to vascular health.

Objective: The aim of this study was to investigate whether an anthocyanin-rich extract obtained from aronia berry can attenuate inflammatory responses in vascular endothelial cells.

Methods: As a model of vascular endothelial inflammation, human umbilical vein endothelial cells (HUVECs) pretreated with aronia berry extract were stimulated with tumor necrosis factor-alpha (TNF-α). The expression levels of cytokines and adhesion molecules were analyzed. To investigate the effects of aronia berry extract on the adhesion of THP-1 monocytic cell, the static adhesion assay was carried out. The possible molecular mechanisms by which aronia berry extract regulated vascular inflammatory responses were explored.

Results: The mRNA expressions of interleukins (IL-1β, IL-6, and IL-8) and monocyte chemoattractant protein-1 (MCP-1) upregulated by TNF-α were significantly suppressed by pretreatment with aronia berry extract. Aronia berry extract decreased TNF-α-induced monocyte/endothelial adhesion and suppressed vascular cell adhesion molecule-1 (VCAM-1) expression, but did not affect intercellular adhesion molecule-1 (ICAM-1) expression. Moreover, aronia berry extract decreased the phosphorylation of signal transducer and activator of transcription 3 (STAT3) and the nuclear levels of STAT3 and interferon regulatory transcription factor-1 (IRF1). The nuclear translocation of nuclear factor-kappa B (NF-κB) was not inhibited by aronia berry extract.

Conclusion: Aronia berry extract could exert anti-atherosclerotic effects on TNF-α-induced inflammation through inhibition of STAT3/IRF1 pathway in vascular endothelial cells.

Downloads

Download data is not yet available.

References


  1. Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation 2002; 105: 1135–43. doi: 10.1161/hc0902.104353.

  2. Libby P. Inflammation in atherosclerosis. Arterioscler Thromb Vasc Biol 2012; 32: 2045–51. doi: 10.1161/atvbaha.108.179705.

  3. Blankenberg S, Barbaux S, Tiret L. Adhesion molecules and atherosclerosis. Atherosclerosis 2003; 170: 191–203. doi: 10.1016/S0021-9150(03)00097-2.

  4. Manduteanu I, Simionescu M. Inflammation in atherosclerosis: a cause or a result of vascular disorders? J Cell Mol Med 2012; 16: 1978–90. doi: 10.1111/j.1582-4934.2012.01552.x.

  5. Tedgui A, Mallat Z: Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol Rev 2006; 86: 515–81. doi: 10.1152/physrev.00024.2005.

  6. Pamukcu B, Lip GY, Shantsila E. The nuclear factor – kappa B pathway in atherosclerosis: a potential therapeutic target for atherothrombotic vascular disease. Thromb Res 2011; 128: 117–23. doi: 10.1016/j.thromres.2011.03.025.

  7. Grote K, Luchtefeld M, Schieffer B. JANUS under stress – role of JAK/STAT signaling pathway in vascular diseases. Vascul Pharmacol 2005;43:357–63. doi: 10.1016/j.vph.2005.08.021.

  8. Sun H, Wang Y. Interferon regulatory factors in heart: stress response beyond inflammation. Hypertension 2014; 63: 663–4. doi: 10.1161/hypertensionaha.113.02795.

  9. Nguyen H, Hiscott J, Pitha PM. The growing family of interferon regulatory factors. Cytokine Growth Factor Rev 1997; 8: 293–312. doi: 10.1016/S1359-6101(97)00019-1.

  10. Andersen P, Pedersen MW, Woetmann A, Villingshoj M, Stockhausen MT, Odum N, et al. EGFR induces expression of IRF-1 via STAT1 and STAT3 activation leading to growth arrest of human cancer cells. Int J Cancer 2008; 122: 342–9. doi: 10.1002/ijc.23109.

  11. Manea A, Tanase LI, Raicu M, Simionescu M. Jak/STAT signaling pathway regulates nox1 and nox4-based NADPH oxidase in human aortic smooth muscle cells. Arterioscler Thromb Vasc Biol 2010; 30: 105–12. doi: 10.1161/atvbaha.109.193896.

  12. Samavati L, Rastogi R, Du W, Huttemann M, Fite A, Franchi L. STAT3 tyrosine phosphorylation is critical for interleukin 1 beta and interleukin-6 production in response to lipopolysaccharide and live bacteria. Mol Immunol 2009; 46: 1867–77. doi: 10.1016/j.molimm.2009.02.018.

  13. Wallace TC. Anthocyanins in cardiovascular disease. Adv Nutr 2011; 2: 1–7. doi: 10.3945/an.110.000042.

  14. Cutler BR, Petersen C, Anandh Babu PV. Mechanistic insights into the vascular effects of blueberries: evidence from recent studies. Mol Nutr Food Res 2017; 61: 1600271. doi: 10.1002/mnfr.201600271.

  15. Kulling SE, Rawel HM. Chokeberry (Aronia melanocarpa) – a review on the characteristic components and potential health effects. Planta Med 2008; 74: 1625–34. doi: 10.1055/s-0028-1088306.

  16. Taheri R, Connolly BA, Brand MH, Bolling BW. Underutilized chokeberry (Aronia melanocarpa, Aronia arbutifolia, Aronia prunifolia) accessions are rich sources of anthocyanins, flavonoids, hydroxycinnamic acids, and proanthocyanidins. J Agric Food Chem 2013; 61: 8581–8. doi: 10.1021/jf402449q.

  17. Wu X, Beecher GR, Holden JM, Haytowitz DB, Gebhardt SE, Prior RL. Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. J Agric Food Chem 2006; 54: 4069–75. doi: 10.1021/jf060300l.

  18. Chrubasik C, Li G, Chrubasik S. The clinical effectiveness of chokeberry: a systematic review. Phytother Res 2010; 24: 1107–14. doi: 10.1002/ptr.3226.

  19. Bell DR, Gochenaur K. Direct vasoactive and vasoprotective properties of anthocyanin-rich extracts. J Appl Physiol (1985) 2006; 100: 1164–70. doi: 10.1152/japplphysiol.00626.2005.

  20. Naruszewicz M, Laniewska I, Millo B, Dluzniewski M. Combination therapy of statin with flavonoids rich extract from chokeberry fruits enhanced reduction in cardiovascular risk markers in patients after myocardial infraction (MI). Atherosclerosis 2007; 194: e179–84. doi: 10.1016/j.atherosclerosis.2006.12.032.

  21. Alsaffar H, Martino N, Garrett JP, Adam AP. Interleukin-6 promotes a sustained loss of endothelial barrier function via Janus kinase-mediated STAT3 phosphorylation and de novo protein synthesis. Am J Physiol Cell Physiol 2018; 314: C589–C602. doi: 10.1152/ajpcell.00235.2017.

  22. Cohen T, Nahari D, Cerem LW, Neufeld G, Levi BZ. Interleukin 6 induces the expression of vascular endothelial growth factor. J Biol Chem 1996; 271: 736–41. doi: 10.1074/jbc.271.2.736.

  23. Ikeda U, Ikeda M, Oohara T, Kano S, Yaginuma T. Mitogenic action of interleukin-1 alpha on vascular smooth muscle cells mediated by PDGF. Atherosclerosis 1990; 84: 183–8. doi: 10.1016/0021-9150(90)90089-2.

  24. Nomoto A, Mutoh S, Hagihara H, Yamaguchi I. Smooth muscle cell migration induced by inflammatory cell products and its inhibition by a potent calcium antagonist, nilvadipine. Atherosclerosis 1988; 72: 213–19. doi: 10.1016/0021-9150(88)90083-4.

  25. Watson C, Whittaker S, Smith N, Vora AJ, Dumonde DC, Brown KA. IL-6 acts on endothelial cells to preferentially increase their adherence for lymphocytes. Clin Exp Immunol 1996; 105: 112–19. doi: 10.1046/j.1365-2249.1996.d01-717.x.

  26. Sironi M, Breviario F, Proserpio P, Biondi A, Vecchi A, Van Damme J, et al. IL-1 stimulates IL-6 production in endothelial cells. J Immunol 1989; 142: 549–53.

  27. Sawada S, Chosa N, Ishisaki A, Naruishi K. Enhancement of gingival inflammation induced by synergism of IL-1beta and IL-6. Biomed Res 2013; 34: 31–40. doi: 10.2220/biomedres.34.31.

  28. Chao PY, Huang YP, Hsieh WB. Inhibitive effect of purple sweet potato leaf extract and its components on cell adhesion and inflammatory response in human aortic endothelial cells. Cell Adh Migr 2013; 7: 237–45. doi: 10.4161/cam.23649.

  29. Krga I, Monfoulet LE, Konic-Ristic A, Mercier S, Glibetic M, Morand C, et al.: Anthocyanins and their gut metabolites reduce the adhesion of monocyte to TNFalpha-activated endothelial cells at physiologically relevant concentrations. Arch Biochem Biophys 2016; 599: 51–9. doi: 10.1016/j.abb.2016.02.006.

  30. Amin HP, Czank C, Raheem S, Zhang Q, Botting NP, Cassidy A, et al.: Anthocyanins and their physiologically relevant metabolites alter the expression of IL-6 and VCAM-1 in CD40L and oxidized LDL challenged vascular endothelial cells. Mol Nutr Food Res 2015; 59: 1095–106. doi: 10.1002/mnfr.201400803.

  31. Youdim KA, McDonald J, Kalt W, Joseph JA. Potential role of dietary flavonoids in reducing microvascular endothelium vulnerability to oxidative and inflammatory insults (small star, filled). J Nutr Biochem 2002; 13: 282–8. doi: 10.1016/S0955-2863(01)00221-2.

  32. Speciale A, Canali R, Chirafisi J, Saija A, Virgili F, Cimino F. Cyanidin-3-O-glucoside protection against TNF-alpha-induced endothelial dysfunction: involvement of nuclear factor-kappaB signaling. J Agric Food Chem 2010; 58: 12048–54. doi: 10.1021/jf1029515.

  33. Luo X, Fang S, Xiao Y, Song F, Zou T, Wang M, et al. Cyanidin-3-glucoside suppresses TNF-alpha-induced cell proliferation through the repression of Nox activator 1 in mouse vascular smooth muscle cells: involvement of the STAT3 signaling. Mol Cell Biochem 2012; 362: 211–18. doi: 10.1007/s11010-011-1144-3.

  34. Sen CK, Bagchi D. Regulation of inducible adhesion molecule expression in human endothelial cells by grape seed proanthocyanidin extract. Mol Cell Biochem 2001; 216: 1–7. doi: 10.1023/A:1011053300727.

  35. Daniela L, Alla P, Maurelli R, Elena D, Giovanna P, Vladimir K, et al. Anti-inflammatory effects of concentrated ethanol extracts of Edelweiss (Leontopodium alpinum Cass.) callus cultures towards human keratinocytes and endothelial cells. Mediators Inflamm 2012; 2012: 498373. doi: 10.1155/2012/498373.

  36. Springer TA: Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 1994; 76: 301-14. doi: 10.1016/0092-8674(94)90337-9.

  37. Cybulsky MI, Iiyama K, Li H, Zhu S, Chen M, Iiyama M, et al. A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J Clin Invest 2001; 107: 1255–62. doi: 10.1172/jci11871.

  38. Iademarco MF, McQuillan JJ, Rosen GD, Dean DC. Characterization of the promoter for vascular cell adhesion molecule-1 (VCAM-1). J Biol Chem 1992; 267: 16323–9.

  39. Neish AS, Read MA, Thanos D, Pine R, Maniatis T, Collins T. Endothelial interferon regulatory factor 1 cooperates with NF-kappa B as a transcriptional activator of vascular cell adhesion molecule 1. Mol Cell Biol 1995; 15: 2558–69. doi: 10.1128/mcb.15.5.2558.

  40. Lechleitner S, Gille J, Johnson DR, Petzelbauer P. Interferon enhances tumor necrosis factor-induced vascular cell adhesion molecule 1 (CD106) expression in human endothelial cells by an interferon-related factor 1-dependent pathway. J Exp Med 1998; 187: 2023–30. doi: 10.1084/jem.187.12.2023.

  41. Lin JH, Zhu Y, Liao HL, Kobari Y, Groszek L, Stemerman MB. Induction of vascular cell adhesion molecule-1 by low-density lipoprotein. Atherosclerosis 1996; 127: 185–94. doi: 10.1016/s0021-9150(96)05951-5.

  42. Neish AS, Williams AJ, Palmer HJ, Whitley MZ, Collins T. Functional analysis of the human vascular cell adhesion molecule 1 promoter. J Exp Med 1992; 176: 1583–93. doi: 10.1084/jem.176.6.1583.

  43. Papi A, Johnston SL. Respiratory epithelial cell expression of vascular cell adhesion molecule-1 and its up-regulation by rhinovirus infection via NF-kappaB and GATA transcription factors. J Biol Chem 1999; 274: 30041–51. doi: 10.1074/jbc.274.42.30041.

  44. Warner EF, Smith MJ, Zhang Q, Raheem KS, O’Hagan D, O’Connell MA, et al. Signatures of anthocyanin metabolites identified in humans inhibit biomarkers of vascular inflammation in human endothelial cells. Mol Nutr Food Res 2017; 61: 1700053. doi: 10.1002/mnfr.201700053.

Published
2019-08-16
How to Cite
Iwashima T., Kudome Y., Kishimoto Y., Saita E., Tanaka M., Taguchi C., Hirakawa S., Mitani N., Kondo K., & Iida K. (2019). Aronia berry extract inhibits TNF-α-induced vascular endothelial inflammation through the regulation of STAT3. Food & Nutrition Research, 63. https://doi.org/10.29219/fnr.v63.3361
Section
Original Articles