Potential role of resveratrol in prevention and therapy of diabetic complications: a critical review

  • Mehdi Koushki Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
  • Masoumeh Farahani Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
  • Reyhaneh Farrokhi Yekta Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
  • Naghmeh Frazizadeh Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
  • Parisa Bahari Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
  • Negin Parsamanesh Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
  • Hossein Chiti Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
  • Somayeh Chahkandi Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
  • Mohammadjavad Fridoni Department of Anatomy, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
  • Nasrin Amiri-Dashatan Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
Keywords: resveratrol, diabetes mellitus, nephropathy, retinopathy, neuropathy, diabetic foot ulcer, cardiomyopathy

Abstract

Background: Diabetes mellitus (DM) is a category of metabolic conditions affecting about 5% of people worldwide. High mortality associated with DM is mostly due to its severe clinical complications, including diabetic nephropathy, retinopathy, neuropathy, and cardiomyopathy. Resveratrol (RSV) is a natural, biologically active polyphenol known to have various health-promoting effects in animal models and humans.

Objective: In this review, we have reviewed the preventive and therapeutic role of RSV on diabetes complications with emphasis on its molecular mechanisms of action.

Methods: To prepare this review, all the basic and clinical available literatures regarding this topic were gathered through electronic databases, including PubMed, Web of Science, Scopus, and Google Scholar. Therefore, we summarized previous studies that have evaluated the effects of RSV on diabetic complications and their mechanisms. Only English language studies published up to January 2023 were included in this review.

Results: RSV improves glucose homeostasis, decreases insulin resistance, induces autophagy, regulates lipid metabolism, protects pancreatic β-cells, ameliorates metabolic disorders, and increases the GLUT4 expression. These effects induced by RSV are strongly associated with ability of this polyphenol agent to elevation expression/activity of AMP-activated protein kinase and Sirtuin 1 in various organs of diabetic subjects, which leads to prevention and therapy of diabetic complications. In addition, antioxidant and anti-inflammatory properties of RSV were reported to be involved in its action in diabetic complications, such as retinopathy and nephropathy.

Conclusion: RSV is a promising compound for improving diabetic complications. However, the exact antidiabetic mechanisms of RSV need to be further investigated

Downloads

Download data is not yet available.

References


1.
Association AD. Diagnosis and classification of diabetes mellitus. Diabetes Care 2006; 29(1): S43. doi: 10.2337/diacare.29.s1.06.s43


2.
Papatheodorou K, Banach M, Bekiari E, Rizzo M, Edmonds M. Complications of diabetes 2017. Hindawi; Greece 2018. doi: 10.1155/2018/3086167.


3.
Atlas D. International Diabetes Federation. IDF Diabetes Atlas, 7th edn. Brussels, Belgium: International Diabetes Federation; 2015, p. 33.


4.
Pearson-Stuttard J, Bennett J, Cheng YJ, Vamos EP, Cross AJ, Ezzati M, et al. Trends in predominant causes of death in individuals with and without diabetes in England from 2001 to 2018: an epidemiological analysis of linked primary care records. Lancet Diabetes Endocrinol 2021; 9(3): 165–73. doi: 10.1016/S2213-8587(20)30431-9


5.
Zhou K, Lansang MC. Diabetes mellitus and infections. In: Feingold KR, Anawalt B, Blackman MR, Boyce A, Chrousos G, Corpas E, et al., editors. Endotext. South Dartmouth (MA): MDText.com, Inc. Copyright © 2000-2024, MDText.com, Inc.; 2000. PMID: 33819003


6.
Saedi E, Gheini MR, Faiz F, Arami MA. Diabetes mellitus and cognitive impairments. World J Diabetes 2016; 7(17): 412. doi: 10.4239/wjd.v7.i17.412


7.
Targher G, Lonardo A, Byrne CD. Nonalcoholic fatty liver disease and chronic vascular complications of diabetes mellitus. Nat Rev Endocrinol 2018; 14(2): 99–114. doi: 10.1038/nrendo.2017.173


8.
Anothaisintawee T, Reutrakul S, Van Cauter E, Thakkinstian A. Sleep disturbances compared to traditional risk factors for diabetes development: systematic review and meta-analysis. Sleep Med Rev 2016; 30: 11–24. doi: 10.1016/j.smrv.2015.10.002


9.
Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med 2020; 8(4): e21. doi: 10.1016/S2213-2600(20)30116-8


10.
Deshpande A, Harris-Hayes M, Schootman M. Epidemiology of diabetes and diabetes--related complications. Phys Ther 2008; 88(11): 1254–64. doi: 10.2522/ptj.20080020


11.
Koushki M, Amiri-Dashatan N, Ahmadi N, Abbaszadeh HA, Rezaei-Tavirani M. Resveratrol: a miraculous natural compound for diseases treatment. Food Sci Nutr 2018; 6(8): 2473–90. doi: 10.1002/fsn3.855


12.
Koushki M, Yekta RF, Amiri-Dashatan N. Critical review of therapeutic potential of silymarin in cancer: a bioactive polyphenolic flavonoid. J Funct Foods 2023; 104: 105502. doi: 10.1016/j.jff.2023.105502


13.
Hosseini H, Teimouri M, Shabani M, Koushki M, Khorzoughi RB, Namvarjah F, et al. Resveratrol alleviates non-alcoholic fatty liver disease through epigenetic modification of the Nrf2 signaling pathway. Int J Biochem Cell Biol 2020; 119: 105667. doi: 10.1016/j.biocel.2019.105667


14.
Amiri Dashatan N, Ashrafmansouri M, Koushki M, Ahmadi N. Effect of Resveratrol and its derivatives on Leishmania viability: a meta-analysis. J Adv Med Biomed Res 2023; 31(144): 1–13. doi: 10.30699/jambs.31.144.1


15.
Koushki M, Dashatan NA, Meshkani RJ. Effect of resveratrol supplementation on inflammatory markers: a systematic review and meta-analysis of randomized controlled trials. Clin Ther 2018; 40(7): 1180–92.e5. doi: 10.1016/j.clinthera.2018.05.015


16.
Hosseini H, Koushki M, Khodabandehloo H, Fathi M, Panahi G, Teimouri M, et al. The effect of resveratrol supplementation on C-reactive protein (CRP) in type 2 diabetic patients: results from a systematic review and meta-analysis of randomized controlled trials. Complement Ther Med 2020; 49: 102251. doi: 10.1016/j.ctim.2019.102251


17.
Koushki M, Lakzaei M, Khodabandehloo H, Hosseini H, Meshkani R, Panahi GJ. Therapeutic effect of resveratrol supplementation on oxidative stress: a systematic review and meta-analysis of randomised controlled trials. Postgrad Med J 2020; 96(1134): 197–205. doi: 10.1136/postgradmedj-2019-136415


18.
Kumar S, Mittal A, Babu D, Mittal A. Herbal medicines for diabetes management and its secondary complications. Curr Diabetes Rev 2021; 17(4): 437–56. doi: 10.2174/18756417MTExfMTQ1z


19.
Aires V, Limagne E, Cotte AK, Latruffe N, Ghiringhelli F, Delmas D. Resveratrol metabolites inhibit human metastatic colon cancer cells progression and synergize with chemotherapeutic drugs to induce cell death. Mol Nutr Food Res 2013; 57(7): 1170–81.


20.
Vaiserman A, Koliada A, Zayachkivska A, Lushchak O. Nanodelivery of natural antioxidants: an anti-aging perspective. Front Bioeng Biotechnol 2020; 7: 447. doi: 10.3389/fbioe.2019.00447


21.
Farkhondeh T, Folgado SL, Pourbagher-Shahri AM, Ashrafizadeh M, Samarghandian S. The therapeutic effect of resveratrol: focusing on the Nrf2 signaling pathway. Biomed Pharmacother 2020; 127: 110234. doi: 10.1016/j.biopha.2020.110234


22.
Camont L, Cottart C-H, Rhayem Y, Nivet-Antoine V, Djelidi R, Collin F, et al. Simple spectrophotometric assessment of the trans-/cis-resveratrol ratio in aqueous solutions. Anal Chim Acta 2009; 634(1): 121–8.


23.
Laza-Knoerr A, Gref R, Couvreur P. Cyclodextrins for drug delivery. J Drug Target 2010; 18(9): 645–56. doi: 10.3109/10611861003622552


24.
Delmas D, Aires V, Limagne E, Dutartre P, Mazué F, Ghiringhelli F, et al. Transport, stability, and biological activity of resveratrol. Ann N Y Acad Sci 2011; 1215(1): 48–59.


25.
Lu Z, Zhang Y, Liu H, Yuan J, Zheng Z, Zou G. Transport of a cancer chemopreventive polyphenol, resveratrol: interaction with serum albumin and hemoglobin. Fluoresc 2007; 17: 580–7. doi: 10.1007/s10895-007-0220-2


26.
Boocock DJ, Patel KR, Faust GE, Normolle DP, Marczylo TH, Crowell JA, et al. Quantitation of trans-resveratrol and detection of its metabolites in human plasma and urine by high performance liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 848(2): 182–7. doi: 10.1016/j.jchromb.2006.10.017


27.
Gadag S, Narayan R, Nayak Y, Nayak U. Bioanalytical RP-HPLC method validation for resveratrol and its application to pharmacokinetic and drug distribution studies. J Appl Pharm Sci 2022; 12(2): 158–64.


28.
Chen H, Zheng S, Wang Y, Zhu H, Liu Q, Xue Y, et al. The effect of resveratrol on the recurrent attacks of gouty arthritis. Clin Rheumatol 2016; 35: 1189–95.


29.
Vitaglione P, Sforza S, Galaverna G, Ghidini C, Caporaso N, Vescovi PP, et al. Bioavailability of trans-resveratrol from red wine in humans. Mol Nutr Food Res 2005; 49(5): 495–504. doi: 10.1002/mnfr.200500002


30.
Marier J-F, Vachon P, Gritsas A, Zhang J, Moreau J-P, Ducharme M, et al. Metabolism and disposition of resveratrol in rats: extent of absorption, glucuronidation, and enterohepatic recirculation evidenced by a linked-rat model. J Pharmacol Exp Ther 2002; 302(1): 369–73. doi: 10.1124/jpet.102.033340


31.
Bolton JL, Dunlap T. Formation and biological targets of quinones: cytotoxic versus cytoprotective effects. Chem Res Toxicol 2017; 30(1): 13–37. doi: 10.1021/acs.chemrestox.6b00256


32.
Williams LD, Burdock GA, Edwards JA, Beck M, Bausch J. Safety studies conducted on high-purity trans-resveratrol in experimental animals. Food Chem Toxicol 2009; 47(9): 2170–82.


33.
Hebbar V, Shen G, Hu R, Kim B-R, Chen C, Korytko PJ, et al. Toxicogenomics of resveratrol in rat liver. Life Sci 2005; 76(20): 2299–314. doi: 10.1016/j.lfs.2004.10.039


34.
Hamadi N, Mansour A, Hassan MH, Khalifi-Touhami F, Badary O. Ameliorative effects of resveratrol on liver injury in streptozotocin-induced diabetic rats. J Biochem Mol Toxicol 2012; 26(10): 384–92. doi: 10.1002/jbt.21432


35.
Szkudelski T, Szkudelska K. Resveratrol and diabetes: from animal to human studies. Biochim Biophys Acta 2015; 1852(6): 1145–54.


36.
Harikumar KB, Aggarwal BB. Resveratrol: a multitargeted agent for age-associated chronic diseases. Cell Cycle 2008; 7(8): 1020–35. doi: 10.4161/cc.7.8.5740


37.
la Porte C, Voduc N, Zhang G, Seguin I, Tardiff D, Singhal N, et al. Steady-state pharmacokinetics and tolerability of trans-resveratrol 2000mg twice daily with food, quercetin and alcohol (ethanol) in healthy human subjects. Clin Pharmacokinet 2010; 49(7): 449–54. doi: 10.2165/11531820-000000000-00000


38.
Bo S, Gambino R, Ponzo V, Cioffi I, Goitre I, Evangelista A, et al. Effects of resveratrol on bone health in type 2 diabetic patients. A double-blind randomized-controlled trial. Nutr Diabetes 2018; 8(1): 1–10.


39.
Thazhath SS, Wu T, Bound MJ, Checklin HL, Standfield S, Jones KL, et al. Administration of resveratrol for 5 wk has no effect on glucagon-like peptide 1 secretion, gastric emptying, or glycemic control in type 2 diabetes: a randomized controlled trial. Am J Clin Nutr 2016; 103(1): 66–70. doi: 10.3945/ajcn.115.117440


40.
Huang D-D, Shi G, Jiang Y, Yao C, Zhu C. A review on the potential of Resveratrol in prevention and therapy of diabetes and diabetic complications. Biomed Pharmacother 2020; 125: 109767. doi: 10.1016/j.biopha.2019.109767


41.
Palsamy P, Subramanian S. Ameliorative potential of resveratrol on proinflammatory cytokines, hyperglycemia mediated oxidative stress, and pancreatic β-cell dysfunction in streptozotocin-nicotinamide-induced diabetic rats. J Cell Physiol 2010; 224(2): 423–32. doi: 10.1002/jcp.22138


42.
Ku CR, Lee HJ, Kim SK, Lee EY, Lee M-K, Lee EJ. Resveratrol prevents streptozotocin-induced diabetes by inhibiting the apoptosis of pancreatic β-cell and the cleavage of poly (ADP-ribose) polymerase. Endocr J 2012; 59(2): 103–9. doi: 10.1507/endocrj.EJ11-0194


43.
Chang CC, Yang MH, Tung HC, Chang CY, Tsai YL, Huang JP, et al. Resveratrol exhibits differential protective effects on fast-and slow-twitch muscles in streptozotocin-induced diabetic rats (在链脲霉素诱导的糖尿病大鼠中, 白藜芦醇对快反应与慢反应肌肉的保护效应具有差别). J Diabetes 2014; 6(1): 60–7. doi: 10.1111/1753-0407.12072


44.
D’Souza DM, Al-Sajee D, Hawke TJ. Diabetic myopathy: impact of diabetes mellitus on skeletal muscle progenitor cells. Front Physiol 2013; 4: 379. doi: 10.3389/fphys.2013.00379


45.
Yuan D, Liu XM, Fang Z, Du LL, Chang J, Lin SH. Protective effect of resveratrol on kidney in rats with diabetic nephropathy and its effect on endoplasmic reticulum stress. Eur Rev Med Pharmacol Sci 2018; 22(5): 1485–93.


46.
Sadi G, Pektaş MB, Koca HB, Tosun M, Koca T. Resveratrol improves hepatic insulin signaling and reduces the inflammatory response in streptozotocin-induced diabetes. Gene 2015; 570(2): 213–20.


47.
Rashid A, Liu C, Sanli T, Tsiani E, Singh G, Bristow RG, et al. Resveratrol enhances prostate cancer cell response to ionizing radiation. Modulation of the AMPK, Akt and mTOR pathways. Radiat Oncol 2011; 6(1): 1–12. doi: 10.1186/1748-717X-6-144


48.
Sin TK, Yung BY, Siu PM. Modulation of SIRT1-Foxo1 signaling axis by resveratrol: implications in skeletal muscle aging and insulin resistance. Cell Physiol Biochem 2015; 35(2): 541–52.


49.
Chang C-C, Chang C-Y, Wu Y-T, Huang J-P, Yen T-H, Hung L-M. Resveratrol retards progression of diabetic nephropathy through modulations of oxidative stress, proinflammatory cytokines, and AMP-activated protein kinase. J Biomed Sci 2011; 18(1): 1–10. doi: 10.1186/1423-0127-18-47


50.
Guo R, Liu B, Wang K, Zhou S, Li W, Xu Y. Resveratrol ameliorates diabetic vascular inflammation and macrophage infiltration in db/db mice by inhibiting the NF-κB pathway. Diabetes Vasc Dis Res 2014; 11(2): 92–102. doi: 10.1177/1479164113520332


51.
Do GM, Jung UJ, Park HJ, Kwon EY, Jeon SM, McGregor RA, et al. Resveratrol ameliorates diabetes-related metabolic changes via activation of AMP-activated protein kinase and its downstream targets in db/db mice. Mol Nutr Food Res 2012; 56(8): 1282–91. doi: 10.1002/mnfr.201200067


52.
Chen S, Li J, Zhang Z, Li W, Sun Y, Zhang Q, et al. Effects of resveratrol on the amelioration of insulin resistance in KKAy mice. Can J Physiol Pharmacol 2012; 90(2): 237–42. doi: 10.1139/y11-123


53.
Tian Y, Ma J, Wang W, Zhang L, Xu J, Wang K, et al. Resveratrol supplement inhibited the NF-κB inflammation pathway through activating AMPKα-SIRT1 pathway in mice with fatty liver. Mol Cell Biochem 2016; 422(1): 75–84.


54.
Liu K, Zhou R, Wang B, Mi M-T. Effect of resveratrol on glucose control and insulin sensitivity: a meta-analysis of 11 randomized controlled trials. Am J Clin Nutr 2014; 99(6): 1510–9. doi: 10.3945/ajcn.113.082024


55.
Ni W-J, Ding H-H, Tang L-Q. Berberine as a promising anti-diabetic nephropathy drug: an analysis of its effects and mechanisms. Eur J Pharmacol 2015; 760: 103–12. doi: 10.1016/j.ejphar.2015.04.017


56.
Kanwar YS, Sun L, Xie P, Liu F-y, Chen S. A glimpse of various pathogenetic mechanisms of diabetic nephropathy. Annu Rev Pathol 2011; 6: 395–423.


57.
Wen D, Huang X, Zhang M, Zhang L, Chen J, Gu Y, et al. Resveratrol attenuates diabetic nephropathy via modulating angiogenesis. PLoS One 2013; 8(12): e82336. doi: 10.1371/journal.pone.0082336


58.
He T, Xiong J, Nie L, Yu Y, Guan X, Xu X, et al. Resveratrol inhibits renal interstitial fibrosis in diabetic nephropathy by regulating AMPK/NOX4/ROS pathway. J Mol Med 2016; 94: 1359–71.


59.
Park HS, Lim JH, Kim MY, Kim Y, Hong YA, Choi SR, et al. Resveratrol increases AdipoR1 and AdipoR2 expression in type 2 diabetic nephropathy. J Transl Med 2016; 14: 1–13. doi: 10.1186/s12967-016-0922-9


60.
Xu F, Wang Y, Cui W, Yuan H, Sun J, Wu M, et al. Resveratrol prevention of diabetic nephropathy is associated with the suppression of renal inflammation and mesangial cell proliferation: possible roles of Akt/NF-B pathway. Int J Endocrinol 2014; 2014. 1–9. doi: 10.1155/2014/289327


61.
Yamagishi S-i, Matsui T. Advanced glycation end products, oxidative stress and diabetic nephropathy. Oxid Med Cell Longev 2010; 3(2): 101–8. doi: 10.4161/oxim.3.2.11148


62.
De Geest B, Mishra M. Role of oxidative stress in diabetic cardiomyopathy. Antioxidants 2022; 11(4): 784. doi: 10.3390/antiox11040784


63.
Kitada M, Kume S, Imaizumi N, Koya D. Resveratrol improves oxidative stress and protects against diabetic nephropathy through normalization of Mn-SOD dysfunction in AMPK/SIRT1-independent pathway. Diabetes 2011; 60(2): 634–43.


64.
Zhang L, Pang S, Deng B, Qian L, Chen J, Zou J, et al. High glucose induces renal mesangial cell proliferation and fibronectin expression through JNK/NF-κB/NADPH oxidase/ROS pathway, which is inhibited by resveratrol. Int J Biochem Cell Biol 2012; 44(4): 629–38.


65.
Palsamy P, Subramanian S. Resveratrol protects diabetic kidney by attenuating hyperglycemia-mediated oxidative stress and renal inflammatory cytokines via Nrf2–Keap1 signaling. Biochim Biophys Acta 2011; 1812(7): 719–31. doi: 10.1016/j.bbadis.2011.03.008


66.
Su M, Zhao W, Xu S, Weng J. Resveratrol in treating diabetes and its cardiovascular complications: a review of its mechanisms of action. Antioxidants 2022; 11(6): 1085.


67.
Hussein MM, Mahfouz MK. Effect of resveratrol and rosuvastatin on experimental diabetic nephropathy in rats. Biomed Pharmacother 2016; 82: 685–92. doi: 10.1016/j.biopha.2016.06.004


68.
Ma L, Fu R, Duan Z, Lu J, Gao J, Tian L, et al. Sirt1 is essential for resveratrol enhancement of hypoxia-induced autophagy in the type 2 diabetic nephropathy rat. Pathol Res Pract 2016; 212(4): 310–8.


69.
He T, Guan X, Wang S, Xiao T, Yang K, Xu X, et al. Resveratrol prevents high glucose-induced epithelial–mesenchymal transition in renal tubular epithelial cells by inhibiting NADPH oxidase/ROS/ERK pathway. Mol Cell Endocrinol 2015; 402: 13–20. doi: 10.1016/j.mce.2014.12.010


70.
Moridi H, Karimi J, Sheikh N, Goodarzi MT, Saidijam M, Yadegarazari R, et al. Resveratrol-dependent down-regulation of receptor for advanced glycation end-products and oxidative stress in kidney of rats with diabetes. Int J Endocrinol Metab 2015; 13(2): e23542. doi: 10.5812/ijem.23542


71.
Ji H, Wu L, Ma X, Ma X, Qin G. The effect of resveratrol on the expression of AdipoR1 in kidneys of diabetic nephropathy. Mol Biol Rep 2014; 41: 2151–9. doi: 10.1007/s11033-014-3064-2


72.
Kim M, Lim J, Youn H, Hong Y, Yang K, Park H, et al. Resveratrol prevents renal lipotoxicity and inhibits mesangial cell glucotoxicity in a manner dependent on the AMPK–SIRT1–PGC1α axis in db/db mice. Diabetologia 2013; 56: 204–17.


73.
Wu L, Zhang Y, Ma X, Zhang N, Qin G. The effect of resveratrol on FoxO1 expression in kidneys of diabetic nephropathy rats. Mol Biol Rep 2012; 39: 9085–93. doi: 10.1007/s11033-012-1780-z


74.
Xu Y, Nie L, Yin Y-G, Tang J-L, Zhou J-Y, Li D-D, et al. Resveratrol protects against hyperglycemia-induced oxidative damage to mitochondria by activating SIRT1 in rat mesangial cells. Toxicol Appl Pharmacol 2012; 259(3): 395–401.


75.
Ding D-F, You N, Wu X-M, Xu J-R, Hu A-P, Ye X-L, et al. Resveratrol attenuates renal hypertrophy in early-stage diabetes by activating AMPK. Am J Nephrol 2010; 31(4): 363–74. doi: 10.1159/000300388


76.
Fragkiadoulaki E, Tsatsakis A, Nikitovic D, Georgiadis G, Kalogeraki A, Kaloudis K, et al. Resveratrol and lycopene ameliorate contrast-induced nephropathy in a rabbit model. Hum Exp Toxicol 2022; 41: 09603271221145355.


77.
Gu W, Wang X, Zhao H, Geng J, Li X, Zheng K, et al. Resveratrol ameliorates diabetic kidney injury by reducing lipotoxicity and modulates expression of components of the junctional adhesion molecule-like/sirtuin 1 lipid metabolism pathway. Eur J Pharmacol 2022; 918: 174776. doi: 10.1016/j.ejphar.2022.174776


78.
Mahjabeen W, Khan DA, Mirza SA. Role of resveratrol supplementation in regulation of glucose hemostasis, inflammation and oxidative stress in patients with diabetes mellitus type 2: a randomized, placebo-controlled trial. Complement Ther Med 2022; 66: 102819.


79.
Zhang T, Chi Y, Ren Y, Du C, Shi Y, Li Y. Resveratrol reduces oxidative stress and apoptosis in podocytes via Sir2-related enzymes, sirtuins1 (SIRT1)/peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) axis. Med Sci Monit 2019; 25: 1220. doi: 10.12659/MSM.911714


80.
Zhang T, Chi Y, Kang Y, Lu H, Niu H, Liu W, et al. Resveratrol ameliorates podocyte damage in diabetic mice via SIRT1/PGC-1α mediated attenuation of mitochondrial oxidative stress. J Cell Physiol 2019; 234(4): 5033–43. doi: 10.1002/jcp.27306


81.
Bashir SO. Concomitant administration of resveratrol and insulin protects against diabetes mellitus type-1-induced renal damage and impaired function via an antioxidant-mediated mechanism and up-regulation of Na+/K+-ATPase. Archiv Physiol Biochem 2019; 125(2): 104–13.


82.
Al-Hussaini H, Kilarkaje N. Trans-resveratrol mitigates type 1 diabetes-induced oxidative DNA damage and accumulation of advanced glycation end products in glomeruli and tubules of rat kidneys. Toxicol Appl Pharmacol 2018; 339: 97–109.


83.
Wang X, Meng L, Zhao L, Wang Z, Liu H, Liu G, et al. Resveratrol ameliorates hyperglycemia-induced renal tubular oxidative stress damage via modulating the SIRT1/FOXO3a pathway. Diabetes Res Clin Pract 2017; 126: 172–81. doi: 10.1016/j.diabres.2016.12.005


84.
Huang S-S, Ding D-F, Chen S, Dong C-L, Ye X-L, Yuan Y-G, et al. Resveratrol protects podocytes against apoptosis via stimulation of autophagy in a mouse model of diabetic nephropathy. Sci Rep 2017; 7(1): 1–15.


85.
Xu X, Ding D, Yong H, Dong C, You N, Ye X, et al. Resveratrol transcriptionally regulates miRNA-18a-5p expression ameliorating diabetic nephropathy via increasing autophagy. Eur Rev Med Pharmacol Sci 2017; 21(21): 4952–65.


86.
Delmas D, Cornebise C, Courtaut F, Xiao J, Aires V. New highlights of resveratrol: a review of properties against ocular diseases. Int J Mol Sci 2021; 22(3): 1295. doi: 10.3390/ijms22031295


87.
Semeraro F, Morescalchi F, Cancarini A, Russo A, Rezzola S, Costagliola C. Diabetic retinopathy, a vascular and inflammatory disease: therapeutic implications. Diabetes Metab 2019; 45(6): 517–27. doi: 10.1016/j.diabet.2019.04.002


88.
Toro MD, Nowomiejska K, Avitabile T, Rejdak R, Tripodi S, Porta A, et al. Effect of resveratrol on in vitro and in vivo models of diabetic retinophathy: a systematic review. Int J Mol Sci 2019; 20(14): 3503.


89.
Shakibaei M, Harikumar KB, Aggarwal BB. Resveratrol addiction: to die or not to die. Mol Nutr Food Res 2009; 53(1): 115–28. doi: 10.1002/mnfr.200800148


90.
Kubota S, Ozawa Y, Kurihara T, Sasaki M, Yuki K, Miyake S, et al. Roles of AMP-activated protein kinase in diabetes-induced retinal inflammation. Investig Ophthalmol Vis Sci 2011; 52(12): 9142–8. doi: 10.1167/iovs.11-8041


91.
Zeng K, Wang Y, Huang L, Song Y, Yu X, Deng B, et al. Resveratrol inhibits neural apoptosis and regulates RAX/P-PKR expression in retina of diabetic rats. Nutr Neurosci 2022; 25(12): 2560–9. doi: 10.1080/1028415X.2021.1990462


92.
Al-Hussaini H, Kittaneh RS, Kilarkaje N. Effects of trans-resveratrol on type 1 diabetes-induced up-regulation of apoptosis and mitogen-activated protein kinase signaling in retinal pigment epithelium of Dark Agouti rats. Eur J Pharmacol 2021; 904: 174167. doi: 10.1007/s12035-016-9972-5


93.
Zeng K, Wang Y, Yang N, Wang D, Li S, Ming J, et al. Resveratrol inhibits diabetic-induced Müller cells apoptosis through microRNA-29b/specificity protein 1 pathway. Mol Neurobiol 2017; 54: 4000–14. doi: 10.1016/j.exer.2018.11.023


94.
Chen Y, Meng J, Li H, Wei H, Bi F, Liu S, et al. Resveratrol exhibits an effect on attenuating retina inflammatory condition and damage of diabetic retinopathy via PON1. Exp Eye Res 2019; 181: 356–66. doi: 10.1016/S1734-1140(12)70948-9


95.
Soufi FG, Mohammad-Nejad D, Ahmadieh H. Resveratrol improves diabetic retinopathy possibly through oxidative stress – nuclear factor κb – apoptosis pathway. Pharmacol Rep 2012; 64(6): 1505–14.


96.
Soufi FG, Vardyani M, Sheervalilou R, Mohammadi M, Somi MH. Long-term treatment with resveratrol attenuates oxidative stress pro-inflammatory mediators and apoptosis in streptozotocin-nicotinamide-induced diabetic rats. Gen Physiol Biophys 2012; 31(4): 431–8.


97.
Mohammad G, Abdelaziz GM, Siddiquei MM, Ahmad A, De Hertogh G, Abu El-Asrar AM. Cross-talk between sirtuin 1 and the proinflammatory mediator high-mobility group box-1 in the regulation of blood-retinal barrier breakdown in diabetic retinopathy. Curr Eye Res 2019; 44(10): 1133–43. doi: 10.1080/02713683.2019.1625406


98.
Ghadiri Soufi F, Arbabi-Aval E, Rezaei Kanavi M, Ahmadieh H. Anti-inflammatory properties of resveratrol in the retinas of type 2 diabetic rats. Clin Exp Pharmacol Physiol 2015; 42(1): 63–8.


99.
Losso JN, Truax RE, Richard G. Trans-resveratrol inhibits hyperglycemia-induced inflammation and connexin downregulation in retinal pigment epithelial cells. J Agric Food Chem 2010; 58(14): 8246–52. doi: 10.1021/jf1012067


100.
Kern TS. Contributions of inflammatory processes to the development of the early stages of diabetic retinopathy. Exp Diabetes Res 2007; 2007: 95103. doi: 10.1155/2007/95103


101.
Ahmad I, Hoda M. Attenuation of diabetic retinopathy and neuropathy by resveratrol: review on its molecular mechanisms of action. Life Sci 2020; 245: 117350. doi: 10.1016/j.lfs.2020.117350


102.
Kowluru RA, Mishra M. Oxidative stress, mitochondrial damage and diabetic retinopathy. Biochim Biophys Acta 2015; 1852(11): 2474–83. doi: 10.1016/j.bbadis.2015.08.001


103.
Chang Y-C, Lin C-W, Hsieh M-C, Wu H-J, Wu W-S, Wu W-C, et al. High mobility group B1 up-regulates angiogenic and fibrogenic factors in human retinal pigment epithelial ARPE-19 cells. Cell Signal 2017; 40: 248–57.


104.
Li J, Yu S, Ying J, Shi T, Wang P. Resveratrol prevents ROS-induced apoptosis in high glucose-treated retinal capillary endothelial cells via the activation of AMPK/Sirt1/PGC-1α pathway. Oxid Med Cell Longev 2017; 2017: 7584691. doi: 10.1155/2017/7584691


105.
Giordo R, Nasrallah GK, Posadino AM, Galimi F, Capobianco G, Eid AH, et al. Resveratrol-elicited pkc inhibition counteracts nox-mediated endothelial to mesenchymal transition in human retinal endothelial cells exposed to high glucose. Antioxidants 2021; 10(2): 224. doi: 10.3390/antiox10020224


106.
Lançon A, Frazzi R, Latruffe N. Anti-oxidant, anti-inflammatory and anti-angiogenic properties of resveratrol in ocular diseases. Molecules 2016; 21(3): 304. doi: 10.3390/molecules21030304


107.
Yar AS, Menevse S, Dogan I, Alp E, Ergin V, Cumaoglu A, et al. Investigation of ocular neovascularization–related genes and oxidative stress in diabetic rat eye tissues after resveratrol treatment. J Med Food 2012; 15(4): 391–8. doi: 10.1089/jmf.2011.0135


108.
Kim YH, Kim YS, Roh GS, Choi WS, Cho GJ. Resveratrol blocks diabetes-induced early vascular lesions and vascular endothelial growth factor induction in mouse retinas. Acta Ophthalmol 2012; 90(1): e31–7.


109.
Michan S, Juan AM, Hurst CG, Cui Z, Evans LP, Hatton CJ, et al. Sirtuin1 over-expression does not impact retinal vascular and neuronal degeneration in a mouse model of oxygen-induced retinopathy. PLoS One 2014; 9(1): e85031. doi: 10.1371/journal.pone.0085031


110.
Ruginǎ D, Ghiman R, Focșan M, Tăbăran F, Copaciu F, Suciu M, et al. Resveratrol-delivery vehicle with anti-VEGF activity carried to human retinal pigmented epithelial cells exposed to high-glucose induced conditions. Colloids Surf B Biointerfaces 2019; 181: 66–75. doi: 10.1016/j.colsurfb.2019.04.022


111.
Gonzalez-Gonzalez S, Cazevieille C, Caumes B. Resveratrol treatment reduces neuromotor impairment and hearing loss in a mouse model of diabetic neuropathy and nerve injury. J Diabetes Clin Res 2020; 2(2): 59–67. doi: 10.33696/diabetes.1.020


112.
Vincent AM, Edwards JL, Sadidi M, Feldman EL. The antioxidant response as a drug target in diabetic neuropathy. Curr Drug Targets 2008; 9(1): 94–100. doi: 10.2174/138945008783431754


113.
Fujii H, Kono K, Nakai K, Goto S, Komaba H, Hamada Y, et al. Oxidative and nitrosative stress and progression of diabetic nephropathy in type 2 diabetes. Am J Nephrol 2010; 31(4): 342–52. doi: 10.1159/000297290


114.
Obrosova IG, Xu W, Lyzogubov VV, Ilnytska O, Mashtalir N, Vareniuk I, et al. PARP inhibition or gene deficiency counteracts intraepidermal nerve fiber loss and neuropathic pain in advanced diabetic neuropathy. Free Radic Biol Med 2008; 44(6): 972–81. doi: 10.1016/j.freeradbiomed.2007.09.013


115.
Yorek MA, Coppey LJ, Gellett JS, Davidson EP, Bing X, Lund DD, et al. Effect of treatment of diabetic rats with dehydroepiandrosterone on vascular and neural function. Am J Physiol Endocrinol Metab 2002; 283(5): E1067–75. doi: 10.1152/ajpendo.00173.2002


116.
Grosso G, Stepaniak U, Micek A, Kozela M, Stefler D, Bobak M, et al. Dietary polyphenol intake and risk of type 2 diabetes in the Polish arm of the Health, Alcohol and Psychosocial factors in Eastern Europe (HAPIEE) study. Br J Nutr 2017; 118(1): 60–8. doi: 10.1017/S0007114517001805


117.
Koushki M, Amiri-Dashatan N, Pourfarjam Y, Doustimotlagh AH. Effect of garlic intake on inflammatory mediators: a systematic review and meta-analysis of randomised controlled trials. Postgrad Med J 2021; 97(1145): 156–63. doi: 10.1136/postgradmedj-2019-137267


118.
Bastianetto S, Ménard C, Quirion R. Neuroprotective action of resveratrol. Biochim Biophys Acta 2015; 1852(6): 1195–201.


119.
Kumar A, Negi G, Sharma S. Neuroprotection by resveratrol in diabetic neuropathy: concepts & mechanisms. Curr Med Chem 2013; 20(36): 4640–5. doi: 10.2174/09298673113209990151


120.
Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell 2006; 127(6): 1109–22. doi: 10.1016/j.cell.2006.11.013


121.
Kabir MT, Tabassum N, Uddin MS, Aziz F, Behl T, Mathew B, et al. Therapeutic potential of polyphenols in the management of diabetic neuropathy. Evid Based Complement Alternat Med 2021; 2021: 1–20. doi: 10.1155/2021/9940169


122.
Ates O, Cayli SR, Yucel N, Altinoz E, Kocak A, Durak MA, et al. Central nervous system protection by resveratrol in streptozotocin-induced diabetic rats. J Clin Neurosci 2007; 14(3): 256–60.


123.
Ferreira PEB, Beraldi EJ, Borges SC, Natali MRM, Buttow NC. Resveratrol promotes neuroprotection and attenuates oxidative and nitrosative stress in the small intestine in diabetic rats. Biomed Pharmacother 2018; 105: 724–33. doi: 10.1016/j.biopha.2018.06.030


124.
Zhang W, Yu H, Lin Q, Liu X, Cheng Y, Deng B. Anti-inflammatory effect of resveratrol attenuates the severity of diabetic neuropathy by activating the Nrf2 pathway. Aging 2021; 13(7): 10659. doi: 10.18632/aging.202830


125.
Kumar A, Kaundal RK, Iyer S, Sharma SS. Effects of resveratrol on nerve functions, oxidative stress and DNA fragmentation in experimental diabetic neuropathy. Life Sci 2007; 80(13): 1236–44. doi: 10.1016/j.lfs.2006.12.036


126.
Lee M-J, Feliers D, Mariappan MM, Sataranatarajan K, Mahimainathan L, Musi N, et al. A role for AMP-activated protein kinase in diabetes-induced renal hypertrophy. Am J Physiol Renal Physiol 2007; 292(2): F617–27. doi: 10.1152/ajprenal.00278.2006


127.
Wang S, Zhang M, Liang B, Xu J, Xie Z, Liu C, et al. AMPKα2 deletion causes aberrant expression and activation of NAD (P) H oxidase and consequent endothelial dysfunction in vivo: role of 26S proteasomes. Circ Res 2010; 106(6): 1117–28. doi: 10.1161/CIRCRESAHA.109.212530


128.
Um J-H, Park S-J, Kang H, Yang S, Foretz M, McBurney MW, et al. AMP-activated protein kinase–deficient mice are resistant to the metabolic effects of resveratrol. Diabetes 2010; 59(3): 554–63. doi: 10.2337/db09-0482


129.
Saed A, Mojtabavi S, Najafi M, Ziar A, Haghi H, Ataee R. Evaluation of Anti-diabetic and Anti-neuropathy Properties of Resveratrol and its Effect on Sirt-1 Expression in Mice. J Maz Univ Med Sci 2018; 27(157): 59–69.


130.
Wang C, Chi J, Che K, Ma X, Qiu M, Wang Z, et al. The combined effect of mesenchymal stem cells and resveratrol on type 1 diabetic neuropathy. Exp Ther Med 2019; 17(5): 3555–63. doi: 10.3892/etm.2019.7383


131.
Guastella V, Mick G. Strategies for the diagnosis and treatment of neuropathic pain secondary to diabetic peripheral sensory polyneuropathy. Diabetes Metab 2009; 35(1): 12–9. doi: 10.1016/j.diabet.2008.09.003


132.
Rajchgot T, Thomas SC, Wang J-C, Ahmadi M, Balood M, Crosson T, et al. Neurons and microglia; a sickly-sweet duo in diabetic pain neuropathy. Front Neurosci 2019; 13: 25. doi: 10.3389/fnins.2019.00025


133.
Cui Y, Li Y, Ning J, Mi Y, Wang X, Qiu Z, et al. Resveratrol alleviates diabetic mechanical allodynia in rats by downregulating P2X3R. Mol Med Rep 2020; 22(2): 957–63.


134.
Mohamed HE, El-Swefy SE, Hasan RA, Hasan AA. Neuroprotective effect of resveratrol in diabetic cerebral ischemic-reperfused rats through regulation of inflammatory and apoptotic events. Diabetol Metab Syndr 2014; 6(1): 1–14. doi: 10.1186/1758-5996-6-88


135.
Sharma SS, Kumar A, Arora M, Kaundal RK. Neuroprotective potential of combination of resveratrol and 4-amino 1, 8 naphthalimide in experimental diabetic neuropathy: focus on functional, sensorimotor and biochemical changes. Free Radic Res 2009; 43(4): 400–8. doi: 10.1080/10715760902801509


136.
Kumar A, Sharma SS. NF-κB inhibitory action of resveratrol: a probable mechanism of neuroprotection in experimental diabetic neuropathy. Biochem Biophys Res Commun 2010; 394(2): 360–5.


137.
Sharma S, Kulkarni SK, Chopra K. Effect of resveratrol, a polyphenolic phytoalexin, on thermal hyperalgesia in a mouse model of diabetic neuropathic pain. Fundam Clin Pharmacol 2007; 21(1): 89–94.


138.
Sharma S, Chopra K, Kulkarni SK. Effect of insulin and its combination with resveratrol or curcumin in attenuation of diabetic neuropathic pain: participation of nitric oxide and TNF-alpha. Phytother Res 2007; 21(3): 278–83. doi: 10.1002/ptr.2070


139.
Menard C, Bastianetto S, Quirion R. Neuroprotective effects of resveratrol and epigallocatechin gallate polyphenols are mediated by the activation of protein kinase C gamma. Front Cell Neurosci 2013; 7: 281.


140.
Roy Chowdhury SK, Smith DR, Saleh A, Schapansky J, Marquez A, Gomes S, et al. Impaired adenosine monophosphate-activated protein kinase signalling in dorsal root ganglia neurons is linked to mitochondrial dysfunction and peripheral neuropathy in diabetes. Brain 2012; 135(6): 1751–66. doi: 10.1093/brain/aws097


141.
Vincent AM, Kato K, McLean LL, Soules ME, Feldman EL. Sensory neurons and schwann cells respond to oxidative stress by increasing antioxidant defense mechanisms. Antioxid Redox Signal 2009; 11(3): 425–38. doi: 10.1089/ars.2008.2235


142.
Sadi G, Konat D. Resveratrol regulates oxidative biomarkers and antioxidant enzymes in the brain of streptozotocin-induced diabetic rats. Pharm Biol 2016; 54(7): 1156–63.


143.
Tian Z, Wang J, Xu M, Wang Y, Zhang M, Zhou Y. Resveratrol improves cognitive impairment by regulating apoptosis and synaptic plasticity in streptozotocin-induced diabetic rats. Cell Physiol Biochem 2016; 40(6): 1670–7. doi: 10.1159/000453216


144.
El-Sayed NS, Elatrebi S, Said R, Ibrahim HF, Omar EM. Potential mechanisms underlying the association between type II diabetes mellitus and cognitive dysfunction in rats: a link between miRNA-21 and Resveratrol’s neuroprotective action. Metab Brain Dis 2022; 37(7): 2375–88.


145.
Xu M, Cheng Z, Ding Z, Wang Y, Guo Q, Huang C. Resveratrol enhances IL-4 receptor-mediated anti-inflammatory effects in spinal cord and attenuates neuropathic pain following sciatic nerve injury. Mol Pain 2018; 14: 1744806918767549. doi: 10.1177/1744806918767549


146.
Dong Z-B, Wang Y-J, Wan W-J, Wu J, Wang B-J, Zhu H-L, et al. Resveratrol ameliorates oxaliplatin-induced neuropathic pain via anti-inflammatory effects in rats. Exp Ther Med 2022; 24(3): 1–10. doi: 10.3892/etm.2022.11523


147.
Phyu HE, Irwin JC, Vella RK, Fenning AS. Resveratrol shows neuronal and vascular-protective effects in older, obese, streptozotocin-induced diabetic rats. Br J Nutr 2016; 115(11): 1911–8. doi: 10.1017/S0007114516001069


148.
Anselmo MI, Nery M, Parisi MC. The effectiveness of educational practice in diabetic foot: a view from Brazil. Diabetol Metab Syndr 2010; 2(1): 1–4. doi: 10.1186/1758-5996-2-45


149.
Pendsey SP. Understanding diabetic foot. Int J Diabetes Dev Ctries 2010; 30(2): 75. doi: 10.4103/0973-3930.62596


150.
Brem H, Sheehan P, Rosenberg HJ, Schneider JS, Boulton AJ. Evidence-based protocol for diabetic foot ulcers. Plast Reconstr Surg 2006; 117(7S): 193S–209S. doi: 10.1097/01.prs.0000225459.93750.29


151.
Boulton AJ. The diabetic foot: grand overview, epidemiology and pathogenesis. Diabetes Metab Res Rev 2008; 24(S1): S3–6. doi: 10.1002/dmrr.833


152.
Khanolkar M, Bain S, Stephens J. The diabetic foot. QJM 2008; 101(9): 685–95. doi: 10.1093/qjmed/hcn027


153.
Waaijman R, De Haart M, Arts ML, Wever D, Verlouw AJ, Nollet F, et al. Risk factors for plantar foot ulcer recurrence in neuropathic diabetic patients. Diabetes Care 2014; 37(6): 1697–705.


154.
Weigelt C, Rose B, Poschen U, Ziegler D, Friese G, Kempf K, et al. Immune mediators in patients with acute diabetic foot syndrome. Diabetes Care 2009; 32(8): 1491–6. doi: 10.2337/dc08-2318


155.
Khodarahmian M, Amidi F, Moini A, Kashani L, Salahi E, Danaii-Mehrabad S, et al. A randomized exploratory trial to assess the effects of resveratrol on VEGF and TNF-α 2 expression in endometriosis women. J Reprod Immunol 2021; 143: 103248. doi: 10.1016/j.jri.2020.103248


156.
Khojah HM, Ahmed S, Abdel-Rahman MS, Elhakeim EH. Resveratrol as an effective adjuvant therapy in the management of rheumatoid arthritis: a clinical study. Clin Rheumatol 2018; 37: 2035–42. doi: 10.1007/s10067-018-4080-8


157.
Shen T, Dai K, Yu Y, Wang J, Liu C. Sulfated chitosan rescues dysfunctional macrophages and accelerates wound healing in diabetic mice. Acta Biomater 2020; 117: 192–203.


158.
Komi DEA, Khomtchouk K, Santa Maria PL. A review of the contribution of mast cells in wound healing: involved molecular and cellular mechanisms. Clin Rev Allergy Immunol 2020; 58: 298–312. doi: 10.1007/s12016-019-08729-w


159.
Li Y, Gao S, Shi S, Xiao D, Peng S, Gao Y, et al. Tetrahedral framework nucleic acid-based delivery of resveratrol alleviates insulin resistance: from innate to adaptive immunity. Nanomicro Lett 2021; 13: 1–16. doi: 10.1007/s40820-021-00614-6


160.
Ding Y, Yang P, Li S, Zhang H, Ding X, Tan Q. Resveratrol accelerates wound healing by inducing M2 macrophage polarisation in diabetic mice. Pharm Biol 2022; 60(1): 2328–37. doi: 10.1080/13880209.2022.2149821


161.
Prabhakar PK, Singh K, Kabra D, Gupta J. Natural SIRT1 modifiers as promising therapeutic agents for improving diabetic wound healing. Phytomedicine 2020; 76: 153252. doi: 10.1016/j.phymed.2020.153252


162.
Tao K, Bai X, Jia W, Liu Y, Zhu X, Han J, et al. Effects of resveratrol on the treatment of inflammatory response induced by severe burn. Inflammation 2015; 38: 1273–80.


163.
Pignet A-L, Schellnegger M, Hecker A, Kohlhauser M, Kotzbeck P, Kamolz L-P. Resveratrol-induced signal transduction in wound healing. Int J Mol Sci 2021; 22(23): 12614. doi: 10.3390/ijms222312614


164.
Çetinkalp Ş, Gökçe EH, Şimşir I, Tuncay Tanrıverdi S, Doğan F, Biray Avcı Ç, et al. Comparative evaluation of clinical efficacy and safety of collagen laminin–based dermal matrix combined with resveratrol microparticles (Dermalix) and standard wound Care for Diabetic Foot Ulcers. Int J Low Extrem Wounds 2021; 20(3): 217–26. doi: 10.1177/1534734620907773


165.
Gokce EH, Tanrıverdi ST, Eroglu I, Tsapis N, Gokce G, Tekmen I, et al. Wound healing effects of collagen-laminin dermal matrix impregnated with resveratrol loaded hyaluronic acid-DPPC microparticles in diabetic rats. Eur J Pharm Biopharm 2017; 119: 17–27.


166.
Huang X, Sun J, Chen G, Niu C, Wang Y, Zhao C, et al. Resveratrol promotes diabetic wound healing via SIRT1-FOXO1-c-Myc signaling pathway-mediated angiogenesis. Front Pharmacol 2019; 10: 421. doi: 10.3389/fphar.2019.00421


167.
Bashmakov YK, Assaad-Khalil SH, Abou Seif M, Udumyan R, Megallaa M, Rohoma KH, et al. Resveratrol promotes foot ulcer size reduction in type 2 diabetes patients. ISRN Endocrinol 2014; 2014: 816307. doi: 10.1155/2014/816307


168.
El Barky AR, Mohamed TM. Cardiovascular disease as one of the main complication of uncontrolled diabetes. Diabetes Manag 2017; 7: 319–21.


169.
Leon BM, Maddox TM. Diabetes and cardiovascular disease: epidemiology, biological mechanisms, treatment recommendations and future research. World J Diabetes 2015; 6(13): 1246.


170.
Nangia R, Singh H, Kaur K. Prevalence of cardiovascular disease (CVD) risk factors. Med J Armed Forces India 2016; 72(4): 315–9. doi: 10.1016/j.mjafi.2014.07.007


171.
Eijgenraam TR, Silljé HH, de Boer RA. Current understanding of fibrosis in genetic cardiomyopathies. Trends Cardiovasc Med 2020; 30(6): 353–61. doi: 10.1016/j.tcm.2019.09.003


172.
Selthofer-Relatić K, Kibel A, Delić-Brkljačić D, Bošnjak I. Cardiac obesity and cardiac cachexia: is there a pathophysiological link? J Obes 2019; 2019. 1–7.


173.
Filardi T, Ghinassi B, Di Baldassarre A, Tanzilli G, Morano S, Lenzi A, et al. Cardiomyopathy associated with diabetes: the central role of the cardiomyocyte. Int J Mol Sci 2019; 20(13): 3299. doi: 10.3390/ijms20133299


174.
Falcão-Pires I, Leite-Moreira AF. Diabetic cardiomyopathy: understanding the molecular and cellular basis to progress in diagnosis and treatment. Heart Fail Rev 2012; 17(3): 325–44.


175.
Xu Y-J, Tappia PS, Neki NS, Dhalla NS. Prevention of diabetes-induced cardiovascular complications upon treatment with antioxidants. Heart Fail Rev 2014; 19(1): 113–21. doi: 10.1007/s10741-013-9379-6


176.
Csiszar A. Anti-inflammatory effects of resveratrol: possible role in prevention of age-related cardiovascular disease. Ann N Y Acad Sci 2011; 1215(1): 117–22. doi: 10.1111/j.1749-6632.2010.05848.x


177.
Khullar M, Al-Shudiefat AA-RS, Ludke A, Binepal G, Singal PK. Oxidative stress: a key contributor to diabetic cardiomyopathy. Can J Physiol Pharmacol 2010; 88(3): 233–40. doi: 10.1139/Y10-016


178.
Tian J, Tang W, Xu M, Zhang C, Zhao P, Cao T, et al. Shengmai san alleviates diabetic cardiomyopathy through improvement of mitochondrial lipid metabolic disorder. Cell Physiol Biochem 2018; 50(5): 1726–39. doi: 10.1159/000494791


179.
Jia G, Whaley-Connell A, Sowers JR. Diabetic cardiomyopathy: a hyperglycaemia-and insulin-resistance-induced heart disease. Diabetologia 2018; 61(1): 21–8.


180.
Jia G, DeMarco VG, Sowers JR. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nat Rev Endocrinol 2016; 12(3): 144–53. doi: 10.1038/nrendo.2015.216


181.
Kandula V, Kosuru R, Li H, Yan D, Zhu Q, Lian Q, et al. Forkhead box transcription factor 1: role in the pathogenesis of diabetic cardiomyopathy. Cardiovasc Diabetol 2016; 15(1): 1–12. doi: 10.1186/s12933-016-0361-1


182.
Öztürk E, Arslan AKK, Yerer MB, Bishayee A. Resveratrol and diabetes: a critical review of clinical studies. Biomed Pharmacother 2017; 95: 230–4.


183.
Mao Z-J, Lin H, Hou J-W, Zhou Q, Wang Q, Chen Y-H. A meta-analysis of resveratrol protects against myocardial ischemia/reperfusion injury: evidence from small animal studies and insight into molecular mechanisms. Oxid Med Cell Longev 2019; 2019. 1–11.


184.
Araim O, Ballantyne J, Waterhouse AL, Sumpio BE. Inhibition of vascular smooth muscle cell proliferation with red wine and red wine polyphenols. J Vasc Surg 2002; 35(6): 1226–32.


185.
Thirunavukkarasu M, Penumathsa SV, Koneru S, Juhasz B, Zhan L, Otani H, et al. Resveratrol alleviates cardiac dysfunction in streptozotocin-induced diabetes: role of nitric oxide, thioredoxin, and heme oxygenase. Free Radic Biol Med 2007; 43(5): 720–9. doi: 10.1016/j.freeradbiomed.2007.05.004


186.
Huynh K, Bernardo BC, McMullen JR, Ritchie RH. Diabetic cardiomyopathy: mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacol Ther 2014; 142(3): 375–415.


187.
Gencoglu H, Tuzcu M, Hayirli A, Sahin K. Protective effects of resveratrol against streptozotocin-induced diabetes in rats by modulation of visfatin/sirtuin-1 pathway and glucose transporters. Int J Food Sci Nutr 2015; 66(3): 314–20. doi: 10.3109/09637486.2014.1003534


188.
Liu M-H, Yuan C, He J, Tan T-P, Wu S-J, Fu H-Y, et al. Resveratrol protects PC12 cells from high glucose-induced neurotoxicity via PI3K/Akt/FoxO3a pathway. Cell Mol Neurobiol 2015; 35(4): 513–22.


189.
Wu Z, Huang A, Yan J, Liu B, Liu Q, Zhang J, et al. Resveratrol ameliorates cardiac dysfunction by inhibiting apoptosis via the PI3K/Akt/FoxO3a pathway in a rat model of diabetic cardiomyopathy. J Cardiovasc Pharmacol 2017; 70(3):
Published
2024-05-02
How to Cite
Koushki M., Farahani M., Farrokhi Yekta R., Frazizadeh N., Bahari P., Parsamanesh N., Chiti H., Chahkandi S., Fridoni M., & Amiri-Dashatan N. (2024). Potential role of resveratrol in prevention and therapy of diabetic complications: a critical review. Food & Nutrition Research, 68. https://doi.org/10.29219/fnr.v68.9731
Section
Review Articles