VMP35 MNC, a novel iron-free supplement, enhances cytoprotection against anemia in human subjects: a novel hypothesis

  • Jean-Ronel Corbier
  • Berrnard William Downs
  • Steve Kushner
  • Ted Aloisio
  • Debasis Bagchi
  • Manashi Bagchi
Keywords: VMP35; A liquid multi-nutrient complex; anemia; human subjects; live blood cell imaging (LBCI); morphology; hematology; rheology; safety


Background: The American Society of Hematology reported that according to the National Heart, Lung, and Blood Institute (NHLBI) anemia is the most common blood disorder, which affects more than 3 million Americans, while the Global Burden of Disease 2016 (GBD 2016) reported that iron deficiency anemia (IDA) is the leading cause of anemia, which affects 1.93 billion people worldwide. Anemia is intricately linked to chronic inflammation, chronic kidney disease, gastrointestinal and gynecological malignancies, and autoimmune disorders. Hemorrhagic anemia results in substantial loss of blood, which causes significant alterations in all blood parameters, including reduced iron. The other type of anemia is chronic anemia syndrome (CAS), which is a constellation of disorders and chronic inflammatory events caused by an increasing anaerobic/acidic environment (promoting the growth of anaerobic organisms), inducing a defensive expenditure of alkalinizing buffers in hemoglobin (i.e. histidine), to prevent a dangerous lowering of blood pH. In this process, iron is cleaved from heme groups and transferred out of blood circulation into other organs, like the liver, appearing to be IDA, where excessive accumulation can lead to hemochromatosis, also known as ‘iron overload anemia’.

Design: A pilot clinical study was conducted in 38 subjects (men = 10; women = 28; age = 22–82 years) to evaluate the rate of absorption and effects on blood of VMP35 multi-nutrient complex (MNC), a non-iron containing liquid nutraceutical supplement. Subjects consumed either placebo or VMP35 (30 mL) over a period of 0, 5, or 30 min.

Methods: Changes in peripheral blood smears from 38 subjects were observed using live blood cell imaging (LBCI) with phase contrast microscopy. Adverse events were rigorously monitored.

Results: VMP35 caused positive changes in the blood, including morphological, hematological (including restoration of hemoglobin), and rheological changes following 5 min of administration, which were sustained for at least 30 min.

Conclusion: Overall, the non-iron containing VMP35 can induce improvements in blood properties and potential benefits for subjects even with compromised digestive systems. No adverse events were reported. Further research studies are in progress to explore the mechanistic insight.


Download data is not yet available.


  1. Kassebaum NJ. The global burden of anemia. Hematol Oncol Clin North Am 2016; 30(2): 247–308. doi:10.1016/j.hoc.2015.11.002

  2. Iron deficiency anemia. Available from: https://www.mayoclinic.org/diseases-conditions/iron-deficiency-anemia/symptoms-causes/syc-20355034 [cited 16 December 2018].

  3. Kassebaum NJ, Jasrasaria R, Naghavi M, Wulf SK, Johns N, Lozano R, et al. A systematic analysis of global anemia burden from 1990 to 2010. Blood 2014; 123(5): 615–24. doi:10.1182/blood-2013-06-508325

  4. Camaschella C. Iron deficiency anemia. N Engl J Med 2015; 372: 1832–43. doi:10.1056/NEJMra1401038

  5. Killip S, Bennett JM, Chambers MD. Iron deficiency anemia. Am Fam Physician 2007; 75(5): 671–8. PMID: 17375513

  6. Lopez MA, Martos FC. Iron availability: an updated review. Int J Food Sci Nutr 2004; 55(8): 597–606. doi:10.1080/09637480500085820

  7. Lozoff B, Jimenez E, Wolf AW. Long-term developmental outcome of infants with iron deficiency. N Engl J Med 1991; 325: 687–94. doi:10.1056/NEJM199109053251004

  8. Lynch SR. Why nutritional iron deficiency persists as a worldwide problem. J Nutr 2011; 141(4); 763S–8S. doi:10.3945/jn.110.130609

  9. Macdougall LG, Judisch JM, Mistry SB. Red cell metabolism in iron deficiency anemia. II. The relationship between red cell survival and alterations in red cell metabolism. J Pediatr 1970; 76(5): 660–75. doi:10.1016/S0022-3476(70)80283-9

  10. Miller JL. Iron deficiency anemia: a common and curable disease. Cold Spring Harb Perspect Med 2013; 3(7): pii: a011866. doi:10.1101/cshperspect.a011866

  11. Fraenkel PG. Anemia of inflammation: a review. Med Clin North Am 2017; 101(2): 285–96. doi:10.1016/j.mcna.2016.09.005

  12. Rosner MH, Perazella MA. Acute kidney injury in patients with cancer. N Engl J Med 2017; 377(5): 500–1. doi:10.1056/NEJMra1613984

  13. Rosner MH, Perazella MA. Acute kidney injury in patients with cancer. N Engl J Med 2017; 376(18): 1770–81. doi:10.1056/NEJMra1613984

  14. Nishikura K. Identification of histidine-122a in human haemoglobin as one of the unknown alkaline Bohr groups by hydrogen-tritium exchange. Biochem J 1978; 173(2): 651–7. doi:10.1042/bj1730651

  15. Simã;o M, Camacho A, Ostertag A, Cohen-Solal M, Pinto IJ, Porto G, et al. Identification of histidine-122a in human hemoglobin as one of the unknown alkaline Bohr groups by hydrogen-tritium exchange. PLoS One 2018; 13(11): e0207441. doi:10.1371/journal.pone.0207441

  16. Adams PC. Epidemiology and diagnostic testing for hemochromatosis and iron overload. Int J Lab Hematol 2015;37(Suppl 1):25–30. doi:10.1111/ijlh.12347

  17. Zoller H, Henninger B. Pathogenesis, diagnosis and treatment of hemochromatosis. Dig Dis 2016; 34(4): 364–73. doi:10.1159/000444549

  18. Downs BW, Kushner S, Aloisio T, Cronje FJ, Blum K. The effect of VMP35 supplement ingredients encapsulated in a novel phospholipid Prodosome SK713 SLP nutrient delivery technology observed as a result of changes in properties of live human blood. Funct Foods Health Dis 2015; 5(9): 292–303. doi: 10.31989/ffhd.v5i9.212

  19. Stauder R, Valent P, Theurl I. Anemia at older age: etiologies, clinical implications, and management. Blood 2018; 131: 505–14. doi:10.1182/blood-2017-07-746446

  20. de Benoist B, McLean E, Egli I, Cogswell M. Worldwide prevalence of anemia 1993–2005: WHO global database on anemia. World Health Organization. Available from: http://apps.who.int/iris/bitstream/handle/10665/43894/9789241596657_eng.pdf;jsessionid=031F07AE771D458E41369447BD86FE63?sequence=1 [cited 20 December 2018].

  21. Pasricha SR. Anemia: a comprehensive global estimate comment on Kassebaum et al. Blood 2014; 123(5): 611–12. doi:10.1182/blood-2013-12-543405

  22. National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). Anemia of inflammation or chronic disease. Available from: https://www.niddk.nih.gov/health-information/blood-diseases/anemia-inflammation-chronic-disease [cited 20 December 2018].

  23. American Society of Hematology. Available from: http://www.hematology.org/Patients/Anemia/ [cited 20 December 2018].

  24. Beutler E. Red cell enzyme defects. Hematol Pathol 1990; 4(3): 103–114. PMID: 2258359.

  25. Valentine WN, Tanaka KR, Paglia DE. Hemolytic anemias and erythrocyte enzymopathies. Ann Intern Med 1985; 103(2): 245–57. doi:10.7326/0003-4819-103-2-245

  26. Bile A, Le Gallais D, Mercier J, Boqui P, Prefaut C. Sickle cell trait in Ivory Coast atheletic throw and jump champions, 1956–1995. Int J Sports Med 1998; 19(3): 215–19. doi:10.1055/s-2007-971907

  27. Luzzatto L. Hemolytic anemias due to enzyme deficiencies. Schweiz Med Wochenschr Suppl 1991; 43: 103–105. PMID: 1843031.

  28. Yoshida T, Shevkoplyas SS. Anaerobic storage of red blood cells. Blood Transfus 2010; 8(4): 220–36. doi:10.2450/2010.0022-10. PMID: 20967163.

  29. Brown KA. Erythrocyte metabolism and enzyme defects. Lab Med 1996; 27(5): 329–33. doi:10.1093/labmed/27.5.329

  30. Hamm LL, Nakhoul N, Hering-Smith KS. Acid-base homeostasis. Clin J Am Soc Nephrol 2015; 10(12): 2232–42. doi:10.2215/CJN.07400715

  31. Reddy P, Mooradian AD. Clinical utility of anion gap in deciphering acid-base disorders. Int J Clin Pract 2009; 63(10): 1516–1525. doi:10.1111/j.1742-1241.2009.02000.x

  32. Thomas CP, Hamawi K. What is the role of acidemia and alkalemia in the pathogenesis of metabolic acidosis? Available from: https://www.medscape.com/answers/242975-154551/what-is-the-role-of-acidemia-and-alkalemia-in-the-pathogenesis-of-metabolic-acidosis [cited 20 December 2018].

  33. Hopkins E, Sharma S. Physiology, acid base balance. StatPearls. Available from: https://www.ncbi.nlm.nih.gov/books/NBK507807/ [cited 20 December 2018].

  34. Phypers B, Pierce T. Lactate physiology in health and disease. Contin Educ Anaesth Crit Care Pain 2006; 6(3): 128–32. doi:10.1093/bjaceaccp/mkl018

  35. An overview of hemoglobin. Available from: http://sickle.bwh.harvard.edu/hemoglobin.html [cited 21 December 2018].

  36. Weiss G, Goodnough LT. Anemia of chronic disease. N Engl J Med 2005; 352(10): 1011–1023. doi:10.1056/NEJMra041809

  37. Sankaran VG, Weiss MJ. Anemia: progress in molecular mechanisms and therapy. Nat Med 2015; 21(3): 221–30. doi:10.1038/nm.3814

  38. Touret N, Martin-Orozco N, Paroutis P, Furuya W, Lam-Yuk-Tseung S, Forbes J, et al. Molecular and cellular mechanisms underlying iron transport deficiency inmicrocytic anemia. Blood 2004; 104(5): 1526–33. doi:10.1182/blood-2004-02-0731

  39. Voet D, Voet JG, Pratt CW. Fundamentals of biochemistry: life at the molecular level. 4th ed. Wiley, New York; 2013, p. 189.

  40. Jacob HS, Winterhalter KH. The role of hemoglobin heme lkoss in Heinz body formation: studies with a partially heme-deficient hemoglobin with genetically unstable hemoglobins. J Clin Invest 1970; 49(11): 2008–16. doi:10.1172/JCI106421

  41. Miller DK, Rhoads CP. The experimental production of loss of hematopoietic elements of the gastric secretion and of the liver in swine with achlorhydria and anemia. J Clin Invest 1935; 14(2): 153–72. doi:10.1172/JCI100664

How to Cite
Corbier J.-R., Downs B. W., Kushner S., Aloisio T., Bagchi D., & Bagchi M. (2019). VMP35 MNC, a novel iron-free supplement, enhances cytoprotection against anemia in human subjects: a novel hypothesis. Food & Nutrition Research, 63. https://doi.org/10.29219/fnr.v63.3410
Original Articles

Most read articles by the same author(s)