Effects of mineral waters on acid–base status in healthy adults: results of a randomized trial

  • Paulina Wasserfurth
  • Inga Schneider
  • Alexander Ströhle
  • Josefine Nebl
  • Norman Bitterlich
  • Andreas Hahn
Keywords: mineral water, acid-base status, dietary acid load, net acid excretion

Abstract

Background: The ‘Western diet’ typically consumed in industrialized countries is characterized by high amounts of processed cereal grains and animal products while being low in vegetables, tubers, and fruits. This dietary behavior leads to imbalances of acid–base status in favor of the acids and may cause low-grade metabolic acidosis (LGMA) that is associated with negative effects on health in the long run, including urolithiasis, bone loss, and even cardiometabolic diseases. Therefore, it has become of great interest to find dietary strategies that can be used to neutralize the acid load associated with Western diets.

Objective: The aim of this study was to investigate whether the diet-dependent net acid load can be reduced by the daily consumption of mineral waters with different bicarbonate content and different potential renal acid load (PRAL).

Methods: A single-centered, randomized trial including 129 healthy men and women aged from 18 to 75 years was conducted. Participants consumed 1,500–2,000 mL of one of four mineral waters with different bicarbonate content and different PRAL values daily for 4 weeks: low bicarbonate, high PRAL (LBHP, HCO3 −: 403.0 mg/L, PRAL: 10.7); medium-high bicarbonate, medium PRAL (MBMP, HCO3 − : 1816.0 mg/L, PRAL: −10.8); high bicarbonate, low PRAL (HBLP, HCO3 −: 2451.0 mg/L, PRAL: −19.3); medium-high bicarbonate, low PRAL (MBLP, HCO3 −: 1846.0 mg/L, PRAL: −22.1). Throughout the study, participants were asked to maintain their usual dietary habits. The primary outcome was the net acid excretion (NAE) measured in the 24-h urine output.

Results: Consumption of the three mineral waters: MBMP, HBLP, and MBLP led to a significant decrease in NAE values. Within the MBMP group, the NAE could be reduced by 48% (P = 0.001), while consumption of HBLP led to a reduction of 68% (P < 0.001) and MBLP to a reduction of 53% (P = 0.001). Moreover, a slight increase in serum bicarbonate could also be observed in the groups that drank HBLP (P = 0.057) and MBLP (P = 0.001).

Conclusion: Daily consumption of at least 1,500–2,000 mL of mineral water rich in bicarbonate (>1800.0 mg/L) with medium or low PRAL (<−11 mEq/L) can effectively reduce the NAE level by reducing the dietary acid load under free-living conditions in healthy adults..

Downloads

Download data is not yet available.

References


  1. Blatherwick NR. The specific role of foods in relation to the composition of urine. Arch Intern Med 1914; XIV: 409. doi: 10.1001/archinte.1914.00070150122008.

  2. Sherman HC, Gettler AO. The balance of acid-forming and base-forming elements in foods, and its relation to ammonia metabolism. J Biol Chem 1912; 11: 323–38. doi: 10.1136/bmjopen-2015-010438

  3. Della Guardia L, Roggi C, Cena H. Diet-induced acidosis and alkali supplementation. Int J Food Sci Nutr 2016; 67: 754–61. doi: 10.1080/09637486.2016.1198889.

  4. Jayedi A, Shab-Bidar S. Dietary acid load and risk of type 2 diabetes: a systematic review and dose–response meta-analysis of prospective observational studies. Clin Nutr ESPEN 2018; 23: 10–18. doi: 10.1016/j.clnesp.2017.12.005.

  5. Souto G, Donapetry C, Calviño J, Adeva MM. Metabolic acidosis-induced insulin resistance and cardiovascular risk. Metab Syndr Relat Disord 2011; 9: 247–53. doi: 10.1089/met.2010.0108.

  6. Lambert H, Frassetto L, Moore JB, Torgerson D, Gannon R, Burckhardt P, et al. The effect of supplementation with alkaline potassium salts on bone metabolism: a meta-analysis. Osteoporos Int 2015; 26: 1311–18. doi: 10.1007/s00198-014-3006-9.

  7. Adeva MM, Souto G. Diet-induced metabolic acidosis. Clin Nutr 2011; 30: 416–21. doi: 10.1016/j.clnu.2011.03.008.

  8. Cordain L, Eaton SB, Sebastian A, Mann N, Lindeberg S, Watkins BA, et al. Origins and evolution of the Western diet: health implications for the 21st century. Am J Clin Nutr 2005; 81: 341–54. doi: 10.1093/ajcn.81.2.341.

  9. Pizzorno J, Frassetto LA, Katzinger J. Diet-induced acidosis: is it real and clinically relevant? Br J Nutr 2010; 103: 1185–94. doi: 10.1017/S0007114509993047.

  10. Remer T. Influence of nutrition on acid-base balance – metabolic aspects. Eur J Nutr 2001; 40: 214–20. doi:10.1007/s394-001-8348-1.

  11. Ströhle A, Waldmann A, Koschizke J, Leitzmann C, Hahn A. Diet-dependent net endogenous acid load of vegan diets in relation to food groups and bone health-related nutrients: results from the German Vegan Study. Ann Nutr Metab 2011; 59: 117–26. doi: 10.1159/000331572.

  12. Rylander R. Drinking water constituents and disease. J Nutr 2008; 138: 423S–5S. doi: 10.1093/jn/138.2.423S.

  13. Burckhardt P. The effect of the alkali load of mineral water on bone metabolism: interventional studies. J Nutr 2008; 138: 435S–437S. doi: 10.1093/jn/138.2.435S.

  14. Wynn E, Raetz E, Burckhardt P. The composition of mineral waters sourced from Europe and North America in respect to bone health: composition of mineral water optimal for bone. Br J Nutr 2009; 101: 1195. doi: 10.1017/S0007114508061515.

  15. Frassetto L, Morris RC, Sebastian A. Potassium bicarbonate reduces urinary nitrogen excretion in postmenopausal women. J Clin Endocrinol Metab 1997; 82: 254–9. doi: 10.1210/jcem.82.1.3663.

  16. Heil DP. Acid–base balance and hydration status following consumption of mineral-based alkaline bottled water. J Int Soc Sports Nutr 2010; 7: 29. doi: 10.1186/1550-2783-7-29.

  17. König D, Muser K, Dickhuth H-H, Berg A, Deibert P. Effect of a supplement rich in alkaline minerals on acid-base balance in humans. Nutr J 2009; 8. doi: 10.1186/1475-2891-8-23.

  18. Deutsche Gesellschaft für Ernährung (DGE), Österreichische Gesellschaft für Ernährung (ÖGE), Schweizerische Gesellschaft für Ernährung (SGE). Referenzwerte für die Nährstoffzufuhr. 2. Auflage. Bonn: Neuer Umschau Buchverlag; 2016.

  19. Remer T, Dimitriou T, Manz F. Dietary potential renal acid load and renal net acid excretion in healthy, free-living children and adolescents. Am J Clin Nutr 2003; 77: 1255–60. doi: 10.1093/ajcn/77.5.1255.

  20. Remer T, Manz F. Potential renal acid load of foods and its influence on urine pH. J Am Diet Assoc 1995; 95: 791–7. doi: 10.1016/S0002-8223(95)00219-7.

  21. Remer T, Montenegro-Bethancourt G, Shi L. Long-term urine biobanking: storage stability of clinical chemical parameters under moderate freezing conditions without use of preservatives. Clin Biochem 2014; 47: 307–11. doi: 10.1016/j.clinbiochem.2014.09.009.

  22. Lüthy C, Moser C, Oetliker O. Dreistufige Säure-Basen-Titration im Urin. (Three-phasic acid/base titration in urine.). Med Lab 1977; 30: 174–81. PubMed-ID: 20563.

  23. Hamm LL, Nakhoul N, Hering-Smith KS. Acid–base homeostasis. Clin J Am Soc Nephrol 2015; 10: 2232–42. doi: 10.2215/CJN.07400715.

  24. Mohammed HM, Abdelatief DA. Easy blood gas analysis: implications for nursing. Egypt J Chest Dis Tuberc 2016; 65: 369–76. doi: 10.1016/j.ejcdt.2015.11.009.

  25. Sood P, Paul G, Puri S. Interpretation of arterial blood gas. Indian J Crit Care Med 2010; 14: 57. doi: 10.4103/0972-5229.68215.

  26. Kellum JA. Clinical review: reunification of acid-base physiology. Crit Care Lond Engl 2005; 9: 500–7. doi: 10.1186/cc3789.

  27. Seifter JL, Chang H-Y. Disorders of acid–base balance: new perspectives. Kidney Dis 2016; 2: 170–86. doi: 10.1159/000453028.

  28. Sirker AA, Rhodes A, Grounds RM, Bennett ED. Acid-base physiology: the ‘traditional’ and the ‘modern’ approaches. Anaesthesia 2002; 57: 348–56. doi: 10.1046/j.0003-2409.2001.02447.x.

  29. Verma AK, Roach P. Abnormal laboratory results: the interpretation of arterial blood gases. Aust Prescr 2010; 33: 124–9. doi: 10.18773/austprescr.2010.059.

  30. Awasthi S, Malviya D, Rani R. Peripheral venous blood gas analysis: an alternative to arterial blood gas analysis for initial assessment and resuscitation in emergency and intensive care unit patients. Anesth Essays Res 2013; 7: 355. doi: 10.4103/0259-1162.123234.

  31. Pitts RF. Acid–base regulation by the kidneys. Am J Med 1950; 9: 356–72. doi: 10.1016/0002-9343(50)90431-1.

  32. Manz F. History of nutrition and acid–base physiology. Eur J Nutr 2001; 40: 189–99. doi: 10.1007/s394-001-8346-7.

  33. Welch AA, Mulligan A, Bingham SA, Khaw K. Urine pH is an indicator of dietary acid–base load, fruit and vegetables and meat intakes: results from the European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk population study. Br J Nutr 2008; 99 1134–41. doi: 10.1017/S0007114507862350.

  34. Kessler T, Hesse A. Cross-over study of the influence of bicarbonate-rich mineral water on urinary composition in comparison with sodium potassium citrate in healthy male subjects. Br J Nutr. 2000; 84(6): 865–71.

  35. Siener R, Jahnen A, Hesse A. Influence of a mineral water rich in calcium, magnesium and bicarbonate on urine composition and the risk of calcium oxalate crystallization. Eur J Clin Nutr 2004; 58: 270–6. doi: 10.1038/sj.ejcn.1601778.

  36. Ausman LM, Oliver LM, Goldin BR, Woods MN, Gorbach SL, Dwyer JT. Estimated net acid excretion inversely correlates with urine pH in Vegans, lacto-ovovegetarians, and omnivores. J Ren Nutr 2008; 18: 456–65. doi: 10.1053/j.jrn.2008.04.007.

  37. Max-Rubner-Institut. Nationale Verzehrsstudie II. Ergebnisbericht, Teil 2. Karlsruhe, Germany: Max-Rubner-Institut; 2008:307. Available from: https://www.bmel.de/SharedDocs/Downloads/Ernaehrung/NVS_ErgebnisberichtTeil2.pdf?__blob=publicationFile

  38. Lopez HW, Leenhardt F, Remesy C. New data on the bioavailability of bread magnesium. Magnes Res 2004; 17: 335–40. PubMed-ID:15726909.

  39. Greupner T, Schneider I, Hahn A. Calcium bioavailability from mineral waters with different mineralization in comparison to milk and a supplement. J Am Coll Nutr 2017; 36: 386–90. doi: 10.1080/07315724.2017.1299651.

  40. Schneider I, Greupner T, Hahn A. Magnesium bioavailability from mineral waters with different mineralization levels in comparison to bread and a supplement. Food Nutr Res 2017; 61: 1384686. doi: 10.1080/16546628.2017.1384686.

  41. Naumann J, Sadaghiani C, Alt F, Huber R. Effects of sulfate-rich mineral water on functional constipation: adouble-blind, randomized, placebo-controlled study. Complement Med Res 2016; 23: 356–63. doi: 10.1159/000449436.

  42. Naska A, Lagiou A, Lagiou P. Dietary assessment methods in epidemiological research: current state of the art and future prospects. F1000 Res 2017; 6: 926. doi: 10.12688/f1000research.10703.1

Published
2019-12-03
How to Cite
1.
Wasserfurth P, Schneider I, Ströhle A, Nebl J, Bitterlich N, Hahn A. Effects of mineral waters on acid–base status in healthy adults: results of a randomized trial. fnr [Internet]. 2019Dec.3 [cited 2019Dec.6];630. Available from: https://foodandnutritionresearch.net/index.php/fnr/article/view/3515
Section
Original Articles