Synergistic antitumor effect of resveratrol and sorafenib on hepatocellular carcinoma through PKA/AMPK/eEF2K pathway

  • Meili Gao Department of Biological Science and Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
  • Chun Deng Department of Biological Science and Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
  • Fan Dang Department of Biological Science and Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
Keywords: Hepatocellular carcinoma; Resveratrol; Sorafenib; AMPK pathway


Although sorafenib (Sor) is the only effective drug for hepatocellular carcinoma (HCC), its therapeutic potential to date is mainly limited to the low tumor response. This study was designed to explore whether resveratrol (Res) could potentiate the anticancerous activity of Sor. We used HepG2 and Huh7 HCC cell lines and BALB/c nude mice for in vitro and in vivo studies, respectively. The cultured cell lines and tumor induction in the mice were treated with different concentrations of Res and Sor alone, and the combination of Res and Sor to observe the antitumor effects. Significant inhibitory effects were observed in the combined treatment of Res and Sor compared to Res and Sor alone treatments both in vitro and in vivo as demonstrated by significantly high number of S phase cells and apoptotic cells. Moreover, these findings were accompanied by the reduction of CDK2, CDC25A, PKA, p-AMPK, and eEF2K protein levels and the increment of cyclin A, cleavage caspase-3, caspase-8, and caspase-9 protein levels. The combinational treatment exhibited more significant anticancerous effect than the Res and Sor alone treatments in mice-bearing HepG2 xenograft. Overall, our results suggest that PKA/AMPK/eEF2K pathway is involved in the synergistic anticancerous activity of Res and Sor combination treatment in HCC cells. Thus, Res and Sor combination therapy may be promising in increasing the tumor response of Sor in the future.


Download data is not yet available.


  1. Williet N, Clavel L, Bourmaud A, Verot C, Bouarioua N, Roblin X, et al. Tolerance and outcomes of sorafenib in elderly patients treated for advanced hepatocellular carcinoma. Dig Liver Dis 2017; 49: 1043–9. doi: 10.1016/j.dld.2017.06.008

  2. Cidon EU. Systemic treatment of hepatocellular carcinoma: past, present and future. World J Hepatol 2017; 9: 797–807. doi: 10.4254/wjh.v9.i18.797

  3. Pu M, Wang J, Huang Q, Zhao G, Xia C, Shang R, et al. High MRPS23 expression contributes to hepatocellular carcinoma proliferation and indicates poor survival outcomes. Tumor Biol 2017; 39: 1010428317709127. doi: 10.1177/1010428317709127

  4. World Health Organization. Globocan 2012: estimated cancer incidence, mortality and prevalence worldwide in 2012.2012; Available from:

  5. Giovannini C, Minguzzi M, Genovese F, Baglioni M, Gualandi A, Ravaioli M, et al. Molecular and proteomic insight into Notch1 characterization in hepatocellular carcinoma. Oncotarget 2016; 7: 39609–26. doi: 10.18632/oncotarget.9203

  6. Yu Q, Liu ZY, Chen Q, Lin JS. Mcl-1 as a potential therapeutic target for human hepatocelluar carcinoma. J Huazhong Univ Sci Technolog Med Sci 2016; 36: 494–500. doi: 10.1007/s11596-016-1614-7

  7. Desai JR, Ochoa S, Prins PA, He AR. Systemic therapy for advanced hepatocellular carcinoma: an update. J Gastrointest Oncol 2017; 8: 243–55. doi: 10.21037/jgo.2017.02.01

  8. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008; 359: 378–90. doi: 10.1056/NEJMoa0708857

  9. Zhou J, Ng Y, Chng WJ. ENL: structure, function, and roles in hematopoiesis and acute myeloid leukemia. Cell Mol Life Sci 2018; 75: 3931–41. doi: 10.1007/s00018-018-2895-8

  10. Kondo M, Numata K. Treatment of advanced hepatocellular carcinoma after failure of sorafenib treatment: subsequent or additional treatment interventions contribute to prolonged survival postprogression. Gastroenterol Res Pract 2017; 2017: 5728946. doi: 10.1155/2017/5728946

  11. Moeini A, Cornella H, Villanueva A. Emerging signaling pathways in hepatocellular carcinoma. Liver Cancer 2012; 1: 83–93. doi: 10.1159/000342405

  12. Mondal A, Bennett LL. Resveratrol enhances the efficacy of sorafenib mediated apoptosis in human breast cancer MCF7 cells through ROS, cell cycle inhibition, caspase 3 and PARP cleavage. Biomed Pharmacother 2016; 84: 1906–14. doi: 10.1016/j.biopha.2016.10.096

  13. Deng Y, Gong W, Li Q, Wu X, Wu L, Zheng X, et al. Resveratrol inhibits high glucose-induced activation of AP-1 and NF-κB via SphK1/S1P2 pathway to attenuate mesangial cells proliferation and inflammation. J Funct Foods 2019; 55: 86–94. doi: 10.1016/j.jff.2019.02.014

  14. Zhao DR, Jiang YS, Sun JY, Li HH, Sun XT, Zhao MM. Amelioration of 4-methylguaiacol on LPS-induced inflammation in THP-1 cells through NF-κB/IκBα/AP-1 and Nrf2/HO-1 signaling pathway. J Funct Foods 2019; 55: 95–103. doi: 10.1016/j.jff.2019.01.047

  15. Dai W, Wang F, Lu J, Xia Y, He L, Chen K, et al. By reducing hexokinase 2, resveratrol induces apoptosis in HCC cells addicted to aerobic glycolysis and inhibits tumor growth in mice. Oncotarget 2015; 6: 13703–17. doi: 10.18632/oncotarget.3800

  16. Kim C, Baek SH, Um JY, Shim BS, Ahn KS. Resveratrol attenuates constitutive STAT3 and STAT5 activation through induction of PTPepsilon and SHP-2 tyrosine phosphatases and potentiates sorafenib-induced apoptosis in renal cell carcinoma. BMC Nephrol 2016; 17: 19. doi: 10.1186/s12882-016-0233-7

  17. Danz ED, Skramsted J, Henry N, Bennett JA, Keller RS. Resveratrol prevents doxorubicin cardiotoxicity through mitochondrial stabilization and the Sirt1 pathway. Free Radic Biol Med 2009; 46: 1589–97. doi: 10.1016/j.freeradbiomed.2009.03.011

  18. Huang F, Wu XN, Chen J, Wang WX, Lu ZF. Resveratrol reverses multidrug resistance in human breast cancer doxorubicin-resistant cells. Exp Ther Med 2014; 7: 1611–6. doi: 10.3892/etm.2014.1662

  19. Villa-Cuesta E, Boylan JM, Tatar M, Gruppuso PA. Resveratrol inhibits protein translation in hepatic cells. PLoS One 2011; 6: e29513. doi: 10.1371/journal.pone.0029513

  20. Tameda M, Sugimoto K, Shiraki K, Inagaki Y, Ogura S, Kasai C, et al. Resveratrol sensitizes HepG2 cells to TRAIL-induced apoptosis. Anticancer Drugs 2014; 25: 1028–34. doi: 10.1097/CAD.0000000000000128

  21. Yang W, Park IJ, Yun H, Im DU, Ock S, Kim J, et al. AMP-activated protein kinase alpha2 and E2F1 transcription factor mediate doxorubicin-induced cytotoxicity by forming a positive signal loop in mouse embryonic fibroblasts and non-carcinoma cells. J Biol Chem 2014; 289: 4839–52. doi: 10.1074/jbc.M113.496315

  22. Wei JL, Fang M, Fu ZX, Zhang SR, Guo JB, Wang R, et al. Sestrin 2 suppresses cells proliferation through AMPK/mTORC1 pathway activation in colorectal cancer. Oncotarget 2017; 8: 49318–28. doi: 10.18632/oncotarget.17595

  23. Xia S, Ma J, Bai X, Zhang H, Cheng S, Zhang M, et al. Prostaglandin E2 promotes the cell growth and invasive ability of hepatocellular carcinoma cells by upregulating c-Myc expression via EP4 receptor and the PKA signaling pathway. Oncol Rep 2014; 32: 1521–30. doi: 10.3892/or.2014.3393

  24. Ferretti AC, Tonucci FM, Hidalgo F, Almada E, Larocca MC, Favre C. AMPK and PKA interaction in the regulation of survival of liver cancer cells subjected to glucose starvation. Oncotarget 2016; 7: 17815–28. doi: 10.18632/oncotarget.7404

  25. Rose AJ, Alsted TJ, Jensen TE, Kobbero JB, Maarbjerg SJ, Jensen J, et al. A Ca(2+)-calmodulin-eEF2K-eEF2 signalling cascade, but not AMPK, contributes to the suppression of skeletal muscle protein synthesis during contractions. J Physiol 2009; 587: 1547–63. doi: 10.1113/jphysiol.2008.167528

  26. Kaul G, Pattan G, Rafeequi T. Eukaryotic elongation factor-2 (eEF2): its regulation and peptide chain elongation. Cell Biochem Funct 2011; 29: 227–34. doi: 10.1002/cbf.1740

  27. Garten A, Grohmann T, Kluckova K, Lavery GG, Kiess W, Penke M. Sorafenib-induced apoptosis in hepatocellular carcinoma is reversed by SIRT1. Int J Mol Sci 2019; 20: 4048. doi: 10.3390/ijms20164048

  28. Dai J, Qichao Q, Niu K, Wang B, Li Y, Dai C, et al. Sestrin 2 confers primary resistance to sorafenib by simultaneously activating AKT and AMPK in hepatocellular carcinoma. Cancer Med 2018; 7: 5691–703. doi: 10.1002/cam4.1826

  29. Zhu Y, Xu J, Hu W, Wang F, Zhou Y, Xu W, et al. TFAM depletion overcomes hepatocellular carcinoma resistance to doxorubicin and sorafenib through AMPK activation and mitochondrial dysfunction. Gene 2020; 753: 144807. doi: 10.1016/j.gene.2020

  30. Liu G, Kuang S, Cao R, Wang J, Peng Q, Sun C. Sorafenib kills liver cancer cells by disrupting SCD1-mediated synthesis of monounsaturated fatty acids via the ATP-AMPK-mTOR-SREBP1 signaling pathway. FASEB J 2019; 33: 10089–103. doi: 10.1096/fj.201802619RR

  31. Ma X, Qiu Y, Sun Y, Zhu L, Zhao Y, Li T, et al. NOD2 inhibits tumorigenesis and increases chemosensitivity of hepatocellular carcinoma by targeting AMPK pathway. Cell Death Dis 2020; 11: 174. doi: 10.1038/s41419-020-2368-5

  32. Liao PC, Ng LT, Lin LT, Richardson CD, Wang GH, Lin CC. Resveratrol arrests cell cycle and induces apoptosis in human hepatocellular carcinoma Huh-7 cells. J Med Food 2010; 13: 1415–23. doi: 10.1089/jmf.2010.1126

  33. Sudan S, Rupasinghe HV. Antiproliferative activity of long chain acylated esters of quercetin-3-O-glucoside in hepatocellular carcinoma HepG2 cells. Exp Biol Med (Maywood) 2015; 240: 1452–64. doi: 10.1177/1535370215570828

  34. Wang Z, Zhao Z, Wu T, Song L, Zhang Y. Sorafenib-irinotecan sequential therapy augmented the anti-tumor efficacy of monotherapy in hepatocellular carcinoma cells HepG2. Neoplasma 2015; 62: 172–9. doi: 10.4149/neo_2015_022

  35. Singh AR, Joshi S, Burgoyne AM, Sicklick JK, Ikeda S, Kono Y, et al. Single agent and synergistic activity of the ‘First-in-Class’ dual PI3K/BRD4 Inhibitor SF1126 with sorafenib in hepatocellular carcinoma. Mol Cancer Ther 2016; 15: 2553–62. doi: 10.1158/1535-7163.MCT-15-0976

  36. Bagi CM, Gebhard DF, Andresen CJ. Antitumor effect of vascular endothelial growth factor inhibitor sunitinib in preclinical models of hepatocellular carcinoma. Eur J Gastroenterol Hepatol 2012; 24: 563–74. doi: 10.1097/MEG.0b013e328350916f

  37. Cervello M, Bachvarov D, Lampiasi N, Cusimano A, Azzolina A, Mccubrey JA, et al. Novel combination of sorafenib and celecoxib provides synergistic anti-proliferative and pro-apoptotic effects in human liver cancer cells. PLoS One 2013; 8: e65569. doi: 10.1371/journal.pone.0065569

  38. Liu P, Barkley LR, Day T, Bi X, Slater DM, Alexandrow MG, et al. The Chk1-mediated S-phase checkpoint targets initiation factor Cdc45 via a Cdc25A/Cdk2-independent mechanism. J Biol Chem 2006; 281: 30631–44. doi: 10.1074/jbc.M602982200

  39. Tu YS, Kang XL, Zhou JG, Lv XF, Tang YB, Guan YY. Involvement of Chk1-Cdc25A-cyclin A/CDK2 pathway in simvastatin induced S-phase cell cycle arrest and apoptosis in multiple myeloma cells. Eur J Pharmacol 2011; 670: 356–64. doi: 10.1016/j.ejphar.2011.09.031

  40. White MJ, Mcarthur K, Metcalf D, Lane RM, Cambier JC, Herold MJ, et al. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell 2014; 159: 1549–62. doi: 10.1016/j.cell.2014.11.036

  41. Prieto-Dominguez N, Ordonez R, Fernandez A, Garcia-Palomo A, Muntane J, Gonzalez-Gallego J, et al. Modulation of autophagy by sorafenib: effects on treatment response. Front Pharmacol 2016; 7: 151. doi: 10.3389/fphar.2016.00151

  42. Rangwala F, Williams KP, Smith GR, Thomas Z, Allensworth JL, Lyerly HK, et al. Differential effects of arsenic trioxide on chemosensitization in human hepatic tumor and stellate cell lines. BMC Cancer 2012; 12: 402. doi: 10.1186/1471-2407-12-402

  43. Chen MB, Jiang Q, Liu YY, Zhang Y, He BS, Wei MX, et al. C6 ceramide dramatically increases vincristine sensitivity both in vivo and in vitro, involving AMP-activated protein kinase-p53 signaling. Carcinogenesis 2015; 36: 1061–70. doi: 10.1093/carcin/bgv094

  44. Shi Q, Xu X, Liu Q, Luo F, Shi J, He X. MicroRNA-877 acts as a tumor suppressor by directly targeting eEF2K in renal cell carcinoma. Oncol Lett 2016; 11: 1474–80. doi: 10.3892/ol.2015.4072

  45. Zhu H, Song H, Chen G, Yang X, Liu J, Ge Y, et al. eEF2K promotes progression and radioresistance of esophageal squamous cell carcinoma. Radiother Oncol 2017; 124: 439–47. doi: 10.1016/j.radonc.2017.04.001

  46. Hu S, Wang L, Zhang X, Wu Y, Yang J, Li J. Autophagy induces transforming growth factor-β-dependent epithelial-mesenchymal transition in hepatocarcinoma cells through cAMP response element binding signalling. J Cell Mol Med 2018; 22: 5518–32. doi: 10.1111/jcmm.13825

  47. Carr BI, Wang Z, Wang M, Cavallini A, D’Alessandro R, Refolo MG. c-Met-Akt pathway-mediated enhancement of inhibitory c-Raf phosphorylation is involved in vitamin K1 and sorafenib synergy on HCC growth inhibition. Cancer Biol Ther 2011; 12: 531–8. doi: 10.4161/cbt.12.6.16053

  48. Zhang JZ, Lu TW, Stolerman LM, Tenner B, Yang JR, Zhang JF, et al. Phase separation of a PKA regulatory subunit controls cAMP compartmentation and oncogenic signaling. Cell 2020; 182: 1531–44.e15. doi: 10.1016/j.cell.2020.07.043

How to Cite
Gao M., Deng C., & Dang F. (2021). Synergistic antitumor effect of resveratrol and sorafenib on hepatocellular carcinoma through PKA/AMPK/eEF2K pathway. Food & Nutrition Research, 65.
Original Articles