Clusterin levels in undernourished SH-SY5Y cells
Abstract
Food-related disorders are increasingly common in developed societies, and the psychological component of these disorders has been gaining increasing attention. Both overnourishment with high-fat diets and perinatal undernourishment in mice have been linked to a higher motivation toward food, resulting in an alteration in food intake. Clusterin (CLU), a multifaced protein, is overexpressed in the nucleus accumbens (NAc) of overfed rats, as well as in those that suffered chronic undernutrition. Moreover, an increase of this protein was observed in the plasma of obese patients with food addiction, suggesting the implication of CLU in this eating disorder. To characterize CLU’s cellular mechanisms, in vitro experiments of undernutrition were performed using dopaminergic SH-SY5Y cells. To mimic in vivo dietary conditions, cells were treated with different fetal bovine serum (FBS) concentrations, resulting in control (C group) diet (10% FBS), undernourishment (U group) diet (0.5% FBS), and undernourishment diet followed by restoration of control diet (UC group) (0.5 + 10% FBS). Undernourishment compromised cell viability and proliferation, and concomitantly increased CLU secretion as well as the cytosolic pool of the protein, while decreasing the mitochondrial level. The restoration of normal conditions tended to recover cell physiology, and the normal levels and distribution of CLU. This research study is a step forward toward the characterization of clusterin as a potential marker for food addiction and nutritional status.
Downloads
References
- Segula D. Complications of obesity in adults: a short review of the literature. Malawi Med J 2014; 26(1): 20–4.
- Hruby A, Hu FB. The epidemiology of obesity: a big picture. Pharmacoeconomics 2015; 33(7): 673–89. doi: 10.1007/s40273-014-0243-x
- WHO. Obesity and overweight 2020. Available from: https://www.who.int/en/news-room/fact-sheets/detail/obesity-and-overweight.
- Fortuna JL. The obesity epidemic and food addiction: clinical similarities to drug dependence. J Psychoactive Drugs 2012; 44(1): 56–63. doi: 10.1080/02791072.2012.662092
- Sahu A. Minireview: a hypothalamic role in energy balance with special emphasis on leptin. Endocrinology 2004; 145(6): 2613–20. doi: 10.1210/en.2004-0032
- Zheng H, Berthoud HR. Eating for pleasure or calories. Curr Opin Pharmacol 2007; 7(6): 607–12. doi: 10.1016/j.coph.2007.10.011
- Volkow ND, O’Brien CP. Issues for DSM-V: should obesity be included as a brain disorder? Am J Psychiatry 2007; 164(5): 708–10. doi: 10.1176/ajp.2007.164.5.708
- Alsio J, Olszewski PK, Levine AS, Schioth HB. Feed-forward mechanisms: addiction-like behavioral and molecular adaptations in overeating. Front Neuroendocrinol 2012; 33(2): 127–39. doi: 10.1016/j.yfrne.2012.01.002
- Small DM, Jones-Gotman M, Dagher A. Feeding-induced dopamine release in dorsal striatum correlates with meal pleasantness ratings in healthy human volunteers. Neuroimage 2003; 19(4): 1709–15. doi: 10.1016/S1053-8119(03)00253-2
- Beaulieu JM, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 2011; 63(1): 182–217. doi: 10.1124/pr.110.002642
- de Melo Martimiano PH, da Silva GR, Coimbra VF, Matos RJ, de Souza BF, da Silva AA, et al. Perinatal malnutrition stimulates motivation through reward and enhances drd(1a) receptor expression in the ventral striatum of adult mice. Pharmacol Biochem Behav 2015; 134: 106–14. doi: 10.1016/j.pbb.2015.04.008
- Volkow ND, Wang GJ, Telang F, Fowler JS, Thanos PK, Logan J, et al. Low dopamine striatal D2 receptors are associated with prefrontal metabolism in obese subjects: possible contributing factors. Neuroimage 2008; 42(4): 1537–43. doi: 10.1016/j.neuroimage.2008.06.002
- Wang GJ, Volkow ND, Logan J, Pappas NR, Wong CT, Zhu W, et al. Brain dopamine and obesity. Lancet 2001; 357(9253): 354–7. doi: 10.1016/S0140-6736(00)03643-6
- Vucetic Z, Totoki K, Schoch H, Whitaker KW, Hill-Smith T, Lucki I, et al. Early life protein restriction alters dopamine circuitry. Neuroscience 2010; 168(2): 359–70. doi: 10.1016/j.neuroscience.2010.04.010
- da Silva AA, Borba TK, de Almeida Lira L, Cavalcante TC, de Freitas MF, Leandro CG, et al. Perinatal undernutrition stimulates seeking food reward. Int J Dev Neurosci 2013; 31(5): 334–41. doi: 10.1016/j.ijdevneu.2013.05.001
- da Silva AA, Oliveira MM, Cavalcante TC, do Amaral Almeida LC, de Souza JA, da Silva MC, et al. Low protein diet during gestation and lactation increases food reward seeking but does not modify sucrose taste reactivity in adult female rats. Int J Dev Neurosci 2016; 49: 50–9. doi: 10.1016/j.ijdevneu.2016.01.004
- Clark SM, Saules KK. Validation of the Yale Food Addiction Scale among a weight-loss surgery population. Eat Behav 2013; 14(2): 216–9. doi: 10.1016/j.eatbeh.2013.01.002
- Rodriguez-Rivera C, Perez-Garcia C, Munoz-Rodriguez JR, Vicente-Rodriguez M, Polo F, Ford RM, et al. Proteomic identification of biomarkers associated with eating control and bariatric surgery outcomes in patients with morbid obesity. World J Surg 2019; 43(3): 744–50. doi: 10.1007/s00268-018-4851-z
- Oberbach A, Bluher M, Wirth H, Till H, Kovacs P, Kullnick Y, et al. Combined proteomic and metabolomic profiling of serum reveals association of the complement system with obesity and identifies novel markers of body fat mass changes. J Proteome Res 2011; 10(10): 4769–88. doi: 10.1021/pr2005555
- Gil SY, Youn BS, Byun K, Huang H, Namkoong C, Jang PG, et al. Clusterin and LRP2 are critical components of the hypothalamic feeding regulatory pathway. Nat Commun 2013; 4: 1862. doi: 10.1038/ncomms2896
- Byun K, Gil SY, Namkoong C, Youn BS, Huang H, Shin MS, et al. Clusterin/ApoJ enhances central leptin signaling through Lrp2-mediated endocytosis. EMBO Rep 2014; 15(7): 801–8. doi: 10.15252/embr.201338317
- Urban J, Parczyk K, Leutz A, Kayne M, Kondor-Koch C. Constitutive apical secretion of an 80-kD sulfated glycoprotein complex in the polarized epithelial Madin-Darby canine kidney cell line. J Cell Biol 1987; 105(6 Pt 1): 2735–43. doi: 10.1083/jcb.105.6.2735
- Kapron JT, Hilliard GM, Lakins JN, Tenniswood MP, West KA, Carr SA, et al. Identification and characterization of glycosylation sites in human serum clusterin. Protein Sci 1997; 6(10): 2120–33. doi: 10.1002/pro.5560061007
- Humphreys DT, Carver JA, Easterbrook-Smith SB, Wilson MR. Clusterin has chaperone-like activity similar to that of small heat shock proteins. J Biol Chem 1999; 274(11): 6875–81. doi: 10.1074/jbc.274.11.6875
- Poon S, Rybchyn MS, Easterbrook-Smith SB, Carver JA, Pankhurst GJ, Wilson MR. Mildly acidic pH activates the extracellular molecular chaperone clusterin. J Biol Chem 2002; 277(42): 39532–40. doi: 10.1074/jbc.M204855200
- Wyatt AR, Yerbury JJ, Berghofer P, Greguric I, Katsifis A, Dobson CM, et al. Clusterin facilitates in vivo clearance of extracellular misfolded proteins. Cell Mol Life Sci 2011; 68(23): 3919–31. doi: 10.1007/s00018-011-0684-8
- Rohne P, Prochnow H, Wolf S, Renner B, Koch-Brandt C. The chaperone activity of clusterin is dependent on glycosylation and redox environment. Cell Physiol Biochem 2014; 34(5): 1626–39. doi: 10.1159/000366365
- Carver JA, Rekas A, Thorn DC, Wilson MR. Small heat-shock proteins and clusterIn: intra- and extracellular molecular chaperones with a common mechanism of action and function? IUBMB Life 2003; 55(12): 661–8. doi: 10.1080/15216540310001640498
- Rohne P, Prochnow H, Koch-Brandt C. The CLU-files: disentanglement of a mystery. Biomol Concepts 2016; 7(1): 1–15. doi: 10.1515/bmc-2015-0026
- Gregory JM, Whiten DR, Brown RA, Barros TP, Kumita JR, Yerbury JJ, et al. Clusterin protects neurons against intracellular proteotoxicity. Acta Neuropathol Commun 2017; 5(1): 81. doi: 10.1186/s40478-017-0481-1
- Nizard P, Tetley S, Le Drean Y, Watrin T, Le Goff P, Wilson MR, et al. Stress-induced retrotranslocation of clusterin/ApoJ into the cytosol. Traffic 2007; 8(5): 554–65. doi: 10.1111/j.1600-0854.2007.00549.x
- Li N, Zoubeidi A, Beraldi E, Gleave ME. GRP78 regulates clusterin stability, retrotranslocation and mitochondrial localization under ER stress in prostate cancer. Oncogene 2013; 32(15): 1933–42. doi: 10.1038/onc.2012.212
- Debure L, Vayssiere JL, Rincheval V, Loison F, Le Drean Y, Michel D. Intracellular clusterin causes juxtanuclear aggregate formation and mitochondrial alteration. J Cell Sci 2003; 116(Pt 15): 3109–21. doi: 10.1242/jcs.00619
- Kim YS, Choi MY, Ryu JH, Lee DH, Jeon BT, Roh GS, et al. Clusterin interaction with Bcl-xL is associated with seizure-induced neuronal death. Epilepsy Res 2012; 99(3): 240–51. doi: 10.1016/j.eplepsyres.2011.12.002
- Trougakos IP, Lourda M, Antonelou MH, Kletsas D, Gorgoulis VG, Papassideri IS, et al. Intracellular clusterin inhibits mitochondrial apoptosis by suppressing p53-activating stress signals and stabilizing the cytosolic Ku70-Bax protein complex. Clin Cancer Res 2009; 15(1): 48–59. doi: 10.1158/1078-0432.CCR-08-1805
- Zhang H, Kim JK, Edwards CA, Xu Z, Taichman R, Wang CY. Clusterin inhibits apoptosis by interacting with activated Bax. Nat Cell Biol 2005; 7(9): 909–15. doi: 10.1038/ncb1291
- Lizarraga-Mollinedo E, Alvarez C, Fernandez-Millan E, Escriva F, Gonzalez-Martin C, Salas E, et al. Undernutrition upregulates fumarate hydratase in the rat nucleus accumbens. Metab Brain Dis 2013; 28(1): 111–5. doi: 10.1007/s11011-012-9358-y
- Moyse E, Arsenault M, Gaudreau P, Ferland G, Ramassamy C. Brain region-specific effects of long-term caloric restriction on redox balance of the aging rat. Mech Ageing Dev 2019; 179: 51–9. doi: 10.1016/j.mad.2019.01.002
- Morgan TE, Xie Z, Goldsmith S, Yoshida T, Lanzrein AS, Stone D, et al. The mosaic of brain glial hyperactivity during normal ageing and its attenuation by food restriction. Neuroscience 1999; 89(3): 687–99. doi: 10.1016/S0306-4522(98)00334-0
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright of their work, with first publication rights granted to SNF Swedish Nutrition Foundation. Read the full Copyright- and Licensing Statement.