Clusterin levels in undernourished SH-SY5Y cells

  • Carmen Rodríguez-Rivera Facultad de Farmacia, Universidad CEU San Pablo, Alcorcón, Madrid, Spain
  • María Dolores Pérez-Carrión Facultad de Farmacia, Universidad CEU San Pablo, Alcorcón, Madrid; and Facultad de Medicina, Universidad de Castilla-la Mancha, Albacete, Spain
  • Lucía Casariego Olavarría Facultad de Farmacia, Universidad CEU San Pablo, Alcorcón, Madrid, Spain
  • Luis F. Alguacil Facultad de Farmacia, Universidad CEU San Pablo, Alcorcón, Madrid; and Facultad de Farmacia, Instituto de Estudio de las Adicciones, Universidad CEU San Pablo, Alcorcón, Madrid, Spain
  • María José Polanco Mora Facultad de Farmacia, Universidad CEU San Pablo, Alcorcón, Madrid; and Facultad de Farmacia, Instituto de Estudio de las Adicciones, Universidad CEU San Pablo, Alcorcón, Madrid, Spain
  • Carmen González-Martín Facultad de Farmacia, Universidad CEU San Pablo, Alcorcón, Madrid; and Facultad de Farmacia, Instituto de Estudio de las Adicciones, Universidad CEU San Pablo, Alcorcón, Madrid, Spain
Keywords: clusterin, food addiction, undernutrition, mitochondria, cell survival


Food-related disorders are increasingly common in developed societies, and the psychological component of these disorders has been gaining increasing attention. Both overnourishment with high-fat diets and perinatal undernourishment in mice have been linked to a higher motivation toward food, resulting in an alteration in food intake. Clusterin (CLU), a multifaced protein, is overexpressed in the nucleus accumbens (NAc) of overfed rats, as well as in those that suffered chronic undernutrition. Moreover, an increase of this protein was observed in the plasma of obese patients with food addiction, suggesting the implication of CLU in this eating disorder. To characterize CLU’s cellular mechanisms, in vitro experiments of undernutrition were performed using dopaminergic SH-SY5Y cells. To mimic in vivo dietary conditions, cells were treated with different fetal bovine serum (FBS) concentrations, resulting in control (C group) diet (10% FBS), undernourishment (U group) diet (0.5% FBS), and undernourishment diet followed by restoration of control diet (UC group) (0.5 + 10% FBS). Undernourishment compromised cell viability and proliferation, and concomitantly increased CLU secretion as well as the cytosolic pool of the protein, while decreasing the mitochondrial level. The restoration of normal conditions tended to recover cell physiology, and the normal levels and distribution of CLU. This research study is a step forward toward the characterization of clusterin as a potential marker for food addiction and nutritional status.


Download data is not yet available.


  1. Segula D. Complications of obesity in adults: a short review of the literature. Malawi Med J 2014; 26(1): 20–4.

  2. Hruby A, Hu FB. The epidemiology of obesity: a big picture. Pharmacoeconomics 2015; 33(7): 673–89. doi: 10.1007/s40273-014-0243-x

  3. WHO. Obesity and overweight 2020. Available from:

  4. Fortuna JL. The obesity epidemic and food addiction: clinical similarities to drug dependence. J Psychoactive Drugs 2012; 44(1): 56–63. doi: 10.1080/02791072.2012.662092

  5. Sahu A. Minireview: a hypothalamic role in energy balance with special emphasis on leptin. Endocrinology 2004; 145(6): 2613–20. doi: 10.1210/en.2004-0032

  6. Zheng H, Berthoud HR. Eating for pleasure or calories. Curr Opin Pharmacol 2007; 7(6): 607–12. doi: 10.1016/j.coph.2007.10.011

  7. Volkow ND, O’Brien CP. Issues for DSM-V: should obesity be included as a brain disorder? Am J Psychiatry 2007; 164(5): 708–10. doi: 10.1176/ajp.2007.164.5.708

  8. Alsio J, Olszewski PK, Levine AS, Schioth HB. Feed-forward mechanisms: addiction-like behavioral and molecular adaptations in overeating. Front Neuroendocrinol 2012; 33(2): 127–39. doi: 10.1016/j.yfrne.2012.01.002

  9. Small DM, Jones-Gotman M, Dagher A. Feeding-induced dopamine release in dorsal striatum correlates with meal pleasantness ratings in healthy human volunteers. Neuroimage 2003; 19(4): 1709–15. doi: 10.1016/S1053-8119(03)00253-2

  10. Beaulieu JM, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 2011; 63(1): 182–217. doi: 10.1124/pr.110.002642

  11. de Melo Martimiano PH, da Silva GR, Coimbra VF, Matos RJ, de Souza BF, da Silva AA, et al. Perinatal malnutrition stimulates motivation through reward and enhances drd(1a) receptor expression in the ventral striatum of adult mice. Pharmacol Biochem Behav 2015; 134: 106–14. doi: 10.1016/j.pbb.2015.04.008

  12. Volkow ND, Wang GJ, Telang F, Fowler JS, Thanos PK, Logan J, et al. Low dopamine striatal D2 receptors are associated with prefrontal metabolism in obese subjects: possible contributing factors. Neuroimage 2008; 42(4): 1537–43. doi: 10.1016/j.neuroimage.2008.06.002

  13. Wang GJ, Volkow ND, Logan J, Pappas NR, Wong CT, Zhu W, et al. Brain dopamine and obesity. Lancet 2001; 357(9253): 354–7. doi: 10.1016/S0140-6736(00)03643-6

  14. Vucetic Z, Totoki K, Schoch H, Whitaker KW, Hill-Smith T, Lucki I, et al. Early life protein restriction alters dopamine circuitry. Neuroscience 2010; 168(2): 359–70. doi: 10.1016/j.neuroscience.2010.04.010

  15. da Silva AA, Borba TK, de Almeida Lira L, Cavalcante TC, de Freitas MF, Leandro CG, et al. Perinatal undernutrition stimulates seeking food reward. Int J Dev Neurosci 2013; 31(5): 334–41. doi: 10.1016/j.ijdevneu.2013.05.001

  16. da Silva AA, Oliveira MM, Cavalcante TC, do Amaral Almeida LC, de Souza JA, da Silva MC, et al. Low protein diet during gestation and lactation increases food reward seeking but does not modify sucrose taste reactivity in adult female rats. Int J Dev Neurosci 2016; 49: 50–9. doi: 10.1016/j.ijdevneu.2016.01.004

  17. Clark SM, Saules KK. Validation of the Yale Food Addiction Scale among a weight-loss surgery population. Eat Behav 2013; 14(2): 216–9. doi: 10.1016/j.eatbeh.2013.01.002

  18. Rodriguez-Rivera C, Perez-Garcia C, Munoz-Rodriguez JR, Vicente-Rodriguez M, Polo F, Ford RM, et al. Proteomic identification of biomarkers associated with eating control and bariatric surgery outcomes in patients with morbid obesity. World J Surg 2019; 43(3): 744–50. doi: 10.1007/s00268-018-4851-z

  19. Oberbach A, Bluher M, Wirth H, Till H, Kovacs P, Kullnick Y, et al. Combined proteomic and metabolomic profiling of serum reveals association of the complement system with obesity and identifies novel markers of body fat mass changes. J Proteome Res 2011; 10(10): 4769–88. doi: 10.1021/pr2005555

  20. Gil SY, Youn BS, Byun K, Huang H, Namkoong C, Jang PG, et al. Clusterin and LRP2 are critical components of the hypothalamic feeding regulatory pathway. Nat Commun 2013; 4: 1862. doi: 10.1038/ncomms2896

  21. Byun K, Gil SY, Namkoong C, Youn BS, Huang H, Shin MS, et al. Clusterin/ApoJ enhances central leptin signaling through Lrp2-mediated endocytosis. EMBO Rep 2014; 15(7): 801–8. doi: 10.15252/embr.201338317

  22. Urban J, Parczyk K, Leutz A, Kayne M, Kondor-Koch C. Constitutive apical secretion of an 80-kD sulfated glycoprotein complex in the polarized epithelial Madin-Darby canine kidney cell line. J Cell Biol 1987; 105(6 Pt 1): 2735–43. doi: 10.1083/jcb.105.6.2735

  23. Kapron JT, Hilliard GM, Lakins JN, Tenniswood MP, West KA, Carr SA, et al. Identification and characterization of glycosylation sites in human serum clusterin. Protein Sci 1997; 6(10): 2120–33. doi: 10.1002/pro.5560061007

  24. Humphreys DT, Carver JA, Easterbrook-Smith SB, Wilson MR. Clusterin has chaperone-like activity similar to that of small heat shock proteins. J Biol Chem 1999; 274(11): 6875–81. doi: 10.1074/jbc.274.11.6875

  25. Poon S, Rybchyn MS, Easterbrook-Smith SB, Carver JA, Pankhurst GJ, Wilson MR. Mildly acidic pH activates the extracellular molecular chaperone clusterin. J Biol Chem 2002; 277(42): 39532–40. doi: 10.1074/jbc.M204855200

  26. Wyatt AR, Yerbury JJ, Berghofer P, Greguric I, Katsifis A, Dobson CM, et al. Clusterin facilitates in vivo clearance of extracellular misfolded proteins. Cell Mol Life Sci 2011; 68(23): 3919–31. doi: 10.1007/s00018-011-0684-8

  27. Rohne P, Prochnow H, Wolf S, Renner B, Koch-Brandt C. The chaperone activity of clusterin is dependent on glycosylation and redox environment. Cell Physiol Biochem 2014; 34(5): 1626–39. doi: 10.1159/000366365

  28. Carver JA, Rekas A, Thorn DC, Wilson MR. Small heat-shock proteins and clusterIn: intra- and extracellular molecular chaperones with a common mechanism of action and function? IUBMB Life 2003; 55(12): 661–8. doi: 10.1080/15216540310001640498

  29. Rohne P, Prochnow H, Koch-Brandt C. The CLU-files: disentanglement of a mystery. Biomol Concepts 2016; 7(1): 1–15. doi: 10.1515/bmc-2015-0026

  30. Gregory JM, Whiten DR, Brown RA, Barros TP, Kumita JR, Yerbury JJ, et al. Clusterin protects neurons against intracellular proteotoxicity. Acta Neuropathol Commun 2017; 5(1): 81. doi: 10.1186/s40478-017-0481-1

  31. Nizard P, Tetley S, Le Drean Y, Watrin T, Le Goff P, Wilson MR, et al. Stress-induced retrotranslocation of clusterin/ApoJ into the cytosol. Traffic 2007; 8(5): 554–65. doi: 10.1111/j.1600-0854.2007.00549.x

  32. Li N, Zoubeidi A, Beraldi E, Gleave ME. GRP78 regulates clusterin stability, retrotranslocation and mitochondrial localization under ER stress in prostate cancer. Oncogene 2013; 32(15): 1933–42. doi: 10.1038/onc.2012.212

  33. Debure L, Vayssiere JL, Rincheval V, Loison F, Le Drean Y, Michel D. Intracellular clusterin causes juxtanuclear aggregate formation and mitochondrial alteration. J Cell Sci 2003; 116(Pt 15): 3109–21. doi: 10.1242/jcs.00619

  34. Kim YS, Choi MY, Ryu JH, Lee DH, Jeon BT, Roh GS, et al. Clusterin interaction with Bcl-xL is associated with seizure-induced neuronal death. Epilepsy Res 2012; 99(3): 240–51. doi: 10.1016/j.eplepsyres.2011.12.002

  35. Trougakos IP, Lourda M, Antonelou MH, Kletsas D, Gorgoulis VG, Papassideri IS, et al. Intracellular clusterin inhibits mitochondrial apoptosis by suppressing p53-activating stress signals and stabilizing the cytosolic Ku70-Bax protein complex. Clin Cancer Res 2009; 15(1): 48–59. doi: 10.1158/1078-0432.CCR-08-1805

  36. Zhang H, Kim JK, Edwards CA, Xu Z, Taichman R, Wang CY. Clusterin inhibits apoptosis by interacting with activated Bax. Nat Cell Biol 2005; 7(9): 909–15. doi: 10.1038/ncb1291

  37. Lizarraga-Mollinedo E, Alvarez C, Fernandez-Millan E, Escriva F, Gonzalez-Martin C, Salas E, et al. Undernutrition upregulates fumarate hydratase in the rat nucleus accumbens. Metab Brain Dis 2013; 28(1): 111–5. doi: 10.1007/s11011-012-9358-y

  38. Moyse E, Arsenault M, Gaudreau P, Ferland G, Ramassamy C. Brain region-specific effects of long-term caloric restriction on redox balance of the aging rat. Mech Ageing Dev 2019; 179: 51–9. doi: 10.1016/j.mad.2019.01.002

  39. Morgan TE, Xie Z, Goldsmith S, Yoshida T, Lanzrein AS, Stone D, et al. The mosaic of brain glial hyperactivity during normal ageing and its attenuation by food restriction. Neuroscience 1999; 89(3): 687–99. doi: 10.1016/S0306-4522(98)00334-0

How to Cite
Rodríguez-Rivera C., Pérez-Carrión M. D., Casariego Olavarría L., Alguacil L. F., Polanco Mora M. J., & González-Martín C. (2021). Clusterin levels in undernourished SH-SY5Y cells. Food & Nutrition Research, 65.
Original Articles