Gardenia jasminoides J. Ellis extract GJ-4 attenuates hyperlipidemic vascular dementia in rats via regulating PPAR-γ-mediated microglial polarization
Abstract
Background: GJ-4 is extracted from Gardenia jasminoides J. Ellis (Fructus Gardenia) with crocin composition and has been demonstrated to improve memory deficits in several dementia models in our previous studies.
Objective: This study aimed to evaluate the effects of GJ-4 on hyperlipidemic vascular dementia (VD) and explore the underlying mechanisms.
Design: In the current study, we employed a chronic hyperlipidemic VD rat model by permanent bilateral common carotid arteries occlusion (2-VO) based on high-fat diet (HFD), which is an ideal model to mimic the clinical pathogenesis of human VD.
Results: Our results showed that GJ-4 could significantly reduce serum lipids level and improve cerebral blood flow in hyperlipidemic VD rats. Additionally, treatment with GJ-4 remarkedly ameliorated memory impairment and alleviated neuronal injury. Mechanistic investigation revealed that the neuroprotective effects of GJ-4 might be attributed to the inhibition of microglia-mediated neuro-inflammation via regulating the M1/M2 polarization. Our data further illustrated that GJ-4 could regulate the phenotype of microglia through activating the peroxisome proliferator-activated receptor-γ (PPAR-γ) and subsequently inhibited nuclear factor-κB (NF-κB) nuclear translocation and increased CCAAT/enhancer-binding protein β (C/EBPβ) expression.
Conclusion: Our results implied that GJ-4 might be a promising drug to improve VD through the regulation of microglial M1/M2 polarization and the subsequent inhibition of neuro-inflammation.
Downloads
References
- O’Brien JT, Thomas A. Vascular dementia. Lancet 2015; 386(10004): 1698–706. doi: 10.1016/S0140-6736(15)00463-8
- Venkat P, Chopp M, Chen J. Models and mechanisms of vascular dementia. Exp Neurol 2015; 272: 97–108. doi: 10.1016/j.expneurol.2015.05.006
- Kandasamy M, Anusuyadevi M, Aigner KM, Unger MS, Kniewallner KM, de Sousa DMB, et al. TGF-β signaling: a therapeutic target to reinstate regenerative plasticity in vascular dementia? Aging Disease 2020; 11(4): 828–50. doi: 10.14336/ad.2020.0222
- Sorrentino G, Migliaccio R, Bonavita V. Treatment of vascular dementia: the route of prevention. Eur Neurol 2008; 60(5): 217–23. doi: 10.1159/000151696
- Appleton JP, Scutt P, Sprigg N, Bath PM. Hypercholesterolaemia and vascular dementia. Clin Sci (Lond) 2017; 131(14): 1561–78. doi: 10.1042/CS20160382
- Reitz C, Tang MX, Luchsinger J, Mayeux R. Relation of plasma lipids to Alzheimer disease and vascular dementia. Arch Neurol 2004; 61(5): 705–14. doi: 10.1001/archneur.61.5.705
- Toscano R, Millan-Linares MC, Lemus-Conejo A, Claro C, Sanchez-Margalet V, Montserrat-de la Paz S. Postprandial triglyceride-rich lipoproteins promote M1/M2 microglia polarization in a fatty-acid-dependent manner. J Nutr Biochem 2020; 75: 108248. doi: 10.1016/j.jnutbio.2019.108248
- Ye Y, Zhu W, Wang XR, Yang JW, Xiao LY, Liu Y, et al. Mechanisms of acupuncture on vascular dementia-A review of animal studies. Neurochem Int 2017; 107: 204–10. doi: 10.1016/j.neuint.2016.12.001
- Stranahan AM, Norman ED, Lee K, Cutler RG, Telljohann RS, Egan JM, et al. Diet-induced insulin resistance impairs hippocampal synaptic plasticity and cognition in middle-aged rats. Hippocampus 2008; 18(11): 1085–8. doi: 10.1002/hipo.20470
- Orihuela R, McPherson CA, Harry GJ. Microglial M1/M2 polarization and metabolic states. Br J Pharmacol 2016; 173(4): 649–65. doi: 10.1111/bph.13139
- David S, Kroner A. Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci 2011; 12(7): 388–99. doi: 10.1038/nrn3053
- Gaire BP, Bae YJ, Choi JW. S1P1 regulates M1/M2 polarization toward brain injury after transient focal cerebral ischemia. Biomol Ther (Seoul) 2019;6(11):522–9. doi: 10.4062/biomolther.2019.005
- Saijo K, Glass CK. Microglial cell origin and phenotypes in health and disease. Nat Rev Immunol 2011; 11(11): 775–87. doi: 10.1038/nri3086
- Tang Y, Le W. Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol Neurobiol 2016; 53(2): 1181–94. doi: 10.1007/s12035-014-9070-5
- Culman J, Zhao Y, Gohlke P, Herdegen T. PPAR-gamma: therapeutic target for ischemic stroke. Trends Pharmacol Sci 2007; 28(5): 244–9. doi: 10.1016/j.tips.2007.03.004
- Feng X, Weng D, Zhou F, Owen YD, Qin H, Zhao J, et al. Activation of PPARγ by a natural flavonoid modulator, apigenin ameliorates obesity-related inflammation via regulation of macrophage polarization. EBioMedicine 2016; 9: 61–76. doi: 10.1016/j.ebiom.2016.06.017
- Sharma B, Singh N. Behavioral and biochemical investigations to explore pharmacological potential of PPAR-gamma agonists in vascular dementia of diabetic rats. Pharmacol Biochem Behav 2011; 100(2): 320–9. doi: 10.1016/j.pbb.2011.08.020
- Lue LF, Kuo YM, Beach T, Walker DG. Microglia activation and anti-inflammatory regulation in Alzheimer’s disease. Mol Neurobiol 2010; 41(2–3): 115–28. doi: 10.1007/s12035-010-8106-8
- Pan J, Jin JL, Ge HM, Yin KL, Chen X, Han LJ, et al. Malibatol A regulates microglia M1/M2 polarization in experimental stroke in a PPARγ-dependent manner. J Neuroinflammation 2015; 12: 51. doi: 10.1186/s12974-015-0270-3
- Sain H, Sharma B, Jaggi AS, Singh N. Pharmacological investigations on potential of peroxisome proliferator-activated receptor-gamma agonists in hyperhomocysteinemia-induced vascular dementia in rats. Neuroscience 2011; 192: 322–33. doi: 10.1016/j.neuroscience.2011.07.002
- Cai W, Yang T, Liu H, Han L, Zhang K, Hu X, et al. Peroxisome proliferator-activated receptor γ (PPARγ): a master gatekeeper in CNS injury and repair. Prog Neurobiol 2018; 163–4: 27–58. doi: 10.1016/j.pneurobio.2017.10.002
- Higashino S, Sasaki Y, Giddings JC, Hyodo K, Sakata SF, Matsuda K, et al. Crocetin, a carotenoid from Gardenia jasminoides Ellis, protects against hypertension and cerebral thrombogenesis in stroke-prone spontaneously hypertensive rats. Phytother Res 2014; 28(9): 1315–9. doi: 10.1002/ptr.5130
- Chen L, Li M, Yang Z, Tao W, Wang P, Tian X, et al. Gardenia jasminoides Ellis: ethnopharmacology, phytochemistry, and pharmacological and industrial applications of an important traditional Chinese medicine. J Ethnopharmacol 2020; 257: 112829. doi: 10.1016/j.jep.2020.112829
- Zhang H, Xue W, Wu R, Gong T, Tao W, Zhou X, et al. Rapid antidepressant activity of ethanol extract of Gardenia jasminoides Ellis is associated with upregulation of BDNF expression in the hippocampus. Evid Based Complement Alternat Med 2015; 2015: 761238. doi: 10.1155/2015/761238
- Zhang H, Lai Q, Li Y, Liu Y, Yang M. Learning and memory improvement and neuroprotection of Gardenia jasminoides (Fructus gardenia) extract on ischemic brain injury rats. J Ethnopharmacol 2017; 196: 225–35. doi: 10.1016/j.jep.2016.11.042
- Zhao C, Zhang H, Li H, Lv C, Liu X, Li Z, et al. Geniposide ameliorates cognitive deficits by attenuating the cholinergic defect and amyloidosis in middle-aged Alzheimer model mice. Neuropharmacology 2017; 116: 18–29. doi: 10.1016/j.neuropharm.2016.12.002
- Pang Q, Zhang W, Li C, Li H, Zhang Y, Li L, et al. Antidementia effects, metabolic profiles and pharmacokinetics of GJ-4, a crocin-rich botanical candidate from Gardeniae fructus. Food Funct 2020; 11(10): 8825–36. doi: 10.1039/d0fo01678k
- Zang CX, Bao XQ, Li L, Yang HY, Wang L, Yu Y, et al. The protective effects of Gardenia jasminoides (Fructus Gardenia) on amyloid-β-induced mouse cognitive impairment and neurotoxicity. Am J Chin Med 2018; 46(2): 389–405. doi: 10.1142/s0192415x18500192
- Liu H, Zhang Z, Zang C, Wang L, Yang H, Sheng C, et al. GJ-4 ameliorates memory impairment in focal cerebral ischemia/reperfusion of rats via inhibiting JAK2/STAT1-mediated neuroinflammation. J Ethnopharmacol 2021; 267: 113491. doi: 10.1016/j.jep.2020.113491
- Ni Y, Li L, Zhang W, Lu D, Zang C, Zhang D, et al. Discovery and LC-MS characterization of new crocins in gardeniae fructus and their neuroprotective potential. J Agric Food Chem 2017; 65(14): 2936–46. doi: 10.1021/acs.jafc.6b03866
- Liu JM, Wu PF, Rao J, Zhou J, Shen ZC, Luo H, et al. ST09, a novel thioester derivative of tacrine, alleviates cognitive deficits and enhances glucose metabolism in vascular dementia rats. CNS Neurosci Ther 2016; 22(3): 220–9. doi: 10.1111/cns.12495
- Du SQ, Wang XR, Zhu W, Ye Y, Yang JW, Ma SM, et al. Acupuncture inhibits TXNIP-associated oxidative stress and inflammation to attenuate cognitive impairment in vascular dementia rats. CNS Neurosci Ther 2018; 24(1): 39–46. doi: 10.1111/cns.12773
- Tuzcu Z, Orhan C, Sahin N, Juturu V, Sahin K. Cinnamon polyphenol extract inhibits hyperlipidemia and inflammation by modulation of transcription factors in high-fat diet-fed rats. Oxid Med Cell Longev 2017; 2017: 1583098. doi: 10.1155/2017/1583098
- Sun MK. Potential therapeutics for vascular cognitive impairment and dementia. Curr Neuropharmacol 2018; 16(7): 1036–44. doi: 10.2174/1570159x15666171016164734
- Dai SJ, Zhang JY, Bao YT, Zhou XJ, Lin LN, Fu YB, et al. Intracerebroventricular injection of Aβ(1-42) combined with two-vessel occlusion accelerate Alzheimer’s disease development in rats. Pathol Res Pract 2018; 214(10): 1583–95. doi: 10.1016/j.prp.2018.07.020
- Serra D, Almeida LM, Dinis TC. Anti-inflammatory protection afforded by cyanidin-3-glucoside and resveratrol in human intestinal cells via Nrf2 and PPAR-γ: comparison with 5-aminosalicylic acid. Chem Biol Interact 2016; 260: 102–9. doi: 10.1016/j.cbi.2016.11.003
- Bouhlel MA, Derudas B, Rigamonti E, Dièvart R, Brozek J, Haulon S, et al. PPARgamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metab 2007; 6(2): 137–43. doi: 10.1016/j.cmet.2007.06.010
- Villapol S. Roles of peroxisome proliferator-activated receptor gamma on brain and peripheral inflammation. Cell Mol Neurobiol 2018; 38(1): 121–32. doi: 10.1007/s10571-017-0554-5
- Huang M, Li Y, Wu K, Yan W, Tian T, Wang Y, et al. Paraquat modulates microglia M1/M2 polarization via activation of TLR4-mediated NF-κB signaling pathway. Chem Biol Interact 2019; 310: 108743. doi: 10.1016/j.cbi.2019.108743
- Shi H, Wang XL, Quan HF, Yan L, Pei XY, Wang R, et al. Effects of betaine on LPS-stimulated activation of microglial M1/M2 phenotypes by suppressing TLR4/NF-κB pathways in N9 cells. Molecules 2019;1(21):367 doi: 10.3390/molecules24020367
- Arranz A, Doxaki C, Vergadi E, Martinez de la Torre Y, Vaporidi K, Lagoudaki ED, et al. Akt1 and Akt2 protein kinases differentially contribute to macrophage polarization. Proc Natl Acad Sci U S A 2012; 109(24): 9517–22. doi: 10.1073/pnas.1119038109
- Zhong XM, Ren XC, Lou YL, Chen MJ, Li GZ, Gong XY, et al. Effects of in-vitro cultured calculus bovis on learning and memory impairments of hyperlipemia vascular dementia rats. J Ethnopharmacol 2016; 192: 390–7. doi: 10.1016/j.jep.2016.09.014
- Yang X, Xu S, Qian Y, Xiao Q. Resveratrol regulates microglia M1/M2 polarization via PGC-1alpha in conditions of neuroinflammatory injury. Brain Behav Immun 2017; 64: 162–72. doi: 10.1016/j.bbi.2017.03.003
- Hase Y, Horsburgh K, Ihara M, Kalaria RN. White matter degeneration in vascular and other ageing-related dementias. J Neurochem 2018; 144(5): 617–33. doi: 10.1111/jnc.14271
- Subhramanyam CS, Wang C, Hu Q, Dheen ST. Microglia-mediated neuroinflammation in neurodegenerative diseases. Semin Cell Dev Biol 2019; 94: 112–20. doi: 10.1016/j.semcdb.2019.05.004
- Du L, Zhang Y, Chen Y, Zhu J, Yang Y, Zhang HL. Role of microglia in neurological disorders and their potentials as a therapeutic target. Mol Neurobiol 2017; 54(10): 7567–84. doi: 10.1007/s12035-016-0245-0
- Gaire BP, Song MR, Choi JW. Sphingosine 1-phosphate receptor subtype 3 (S1P3) contributes to brain injury after transient focal cerebral ischemia via modulating microglial activation and their M1 polarization. J Neuroinflammation 2018; 15(1): 284. doi: 10.1186/s12974-018-1323-1
- Hu X, Leak RK, Shi Y, Suenaga J, Gao Y, Zheng P, et al. Microglial and macrophage polarization-new prospects for brain repair. Nat Rev Neurol 2015; 11(1): 56–64. doi: 10.1038/nrneurol.2014.207
- Du Y, Luo M, Du Y, Xu M, Yao Q, Wang K, et al. Liquiritigenin decreases Aβ levels and ameliorates cognitive decline by regulating microglia M1/M2 transformation in AD mice. Neurotox Res 2021;4:349–58. doi: 10.1007/s12640-020-00284-z
- Luo XQ, Li A, Yang X, Xiao X, Hu R, Wang TW, et al. Paeoniflorin exerts neuroprotective effects by modulating the M1/M2 subset polarization of microglia/macrophages in the hippocampal CA1 region of vascular dementia rats via cannabinoid receptor 2. Chin Med 2018; 13: 14. doi: 10.1186/s13020-018-0173-1
- Geloso MC, Corvino V, Marchese E, Serrano A, Michetti F, D’Ambrosi N. The dual role of microglia in ALS: mechanisms and therapeutic approaches. Front Aging Neurosci 2017; 9: 242. doi: 10.3389/fnagi.2017.00242
- Mrak RE, Landreth GE. PPARgamma, neuroinflammation, and disease. J Neuroinflammation 2004; 1(1): 5. doi: 10.1186/1742-2094-1-5
- Luo Y, Yin W, Signore AP, Zhang F, Hong Z, Wang S, et al. Neuroprotection against focal ischemic brain injury by the peroxisome proliferator-activated receptor-gamma agonist rosiglitazone. J Neurochem 2006; 97(2): 435–48. doi: 10.1111/j.1471-4159.2006.03758.x
- Zuhayra M, Zhao Y, von Forstner C, Henze E, Gohlke P, Culman J, et al. Activation of cerebral peroxisome proliferator-activated receptors γ (PPARγ) reduces neuronal damage in the substantia nigra after transient focal cerebral ischaemia in the rat. Neuropathol Appl Neurobiol 2011; 37(7): 738–52. doi: 10.1111/j.1365-2990.2011.01169.x
- Khan MA, Alam Q, Haque A, Ashafaq M, Khan MJ, Ashraf GM, et al. Current progress on peroxisome proliferator-activated receptor gamma agonist as an emerging therapeutic approach for the treatment of alzheimer’s disease: an update. Curr Neuropharmacol 2019; 17(3): 232–46. doi: 10.2174/1570159x16666180828100002
- Pena-Altamira E, Prati F, Massenzio F, Virgili M, Contestabile A, Bolognesi ML, et al. Changing paradigm to target microglia in neurodegenerative diseases: from anti-inflammatory strategy to active immunomodulation. Expert Opin Ther Targets 2016; 20(5): 627–40. doi: 10.1517/14728222.2016.1121237
- Yunna C, Mengru H, Lei W, Weidong C. Macrophage M1/M2 polarization. Eur J Pharmacol 2020; 877: 173090. doi: 10.1016/j.ejphar.2020.173090
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright of their work, with first publication rights granted to SNF Swedish Nutrition Foundation. Read the full Copyright- and Licensing Statement.