Antioxidant and anti-aging effects of polysaccharide LDP-1 from wild Lactarius deliciosus on Caenorhabditis elegans

  • Xiao-Hui Wang School of Life Sciences, Anhui University, Hefei, Anhui, China
  • Xiao-Du Cheng School of Life Sciences, Anhui University, Hefei, Anhui, China
  • Dong Wang School of Life Sciences, Anhui University, Hefei, Anhui, China
  • Zhi Wu School of Life Sciences, Anhui University, Hefei, Anhui, China
  • Yan Chen School of Life Sciences, Anhui University, Hefei, Anhui, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China; Key Laboratory of Eco-engineering and Biotechnology of Anhui Province, Hefei, Anhui, China
  • Qing-Xi Wu School of Life Sciences, Anhui University, Hefei, Anhui, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China; Key Laboratory of Eco-engineering and Biotechnology of Anhui Province, Hefei, Anhui, China
Keywords: Bioactive polysaccharide of LDP-1; Caenorhabditis elegans; Anti-oxidation; Anti-aging; Lactarius deliciosus

Abstract

Background: Edible fungi (mushrooms) have attracted much more concerns due to their abundant nutritions and functional bioactive substances like polysaccharides.

Objective: In this study, the anti-oxidation and anti-aging activities of polysaccharide fraction (LDP-1) from the wild Lactarius deliciosus fruiting bodies were systematically evaluated using Caenorhabditis elegans (C. elegans) as a model.

Methods: Lifetime determination of C. elegans (survival status) was observed via microscope. Effects of LDP-1 on C. elegans induced by heat and oxidative stress were, respectively, performed in an artificial climate chamber and Juglone solution. Determination of lipofuscin levels in C. elegans was observed by laser confocal scanning microscopy. Determination of reactive oxygen species in C. elegans in vivo was conducted via fluorescence spectrophotometer reader.

Results: The results revealed that LDP-1 could significantly extend the lifespan of C. elegans, and the lifetime of C. elegans treated with 1,000 μg/mL LDP-1 could be prolonged by 32.8% compared with the control. The survival rates of the experimental C. elegans under heat shock and oxidative stress conditions were clearly improved after treated with 1,000 μg/mL LDP-1 (40 and 19.8%, respectively), while under the same circumstances all the C. elegans in the blank group died. Fluorescence microscopy analysis confirmed that LDP-1 could effectively reduce the accumulation of lipofuscin and reactive oxygen free radicals in C. elegans, where the respective maximum reduction reached 22.8 and 42.7% compared with the control.

Conclusion: These results indicate that LDP-1 had favorable antioxidant and anti-aging effects, which could be explored as potential dietary additives to renovate oxidative damage and slow down aging process.

Downloads

Download data is not yet available.

References


1.
Feng SL, Cheng HR, Xu Z, Yuan M, Huang Y, Liao JQ, et al. Panax notoginseng polysaccharide increases stress resistance and extends lifespan in Caenorhabditis elegans. J Funct Foods 2018; 45: 15–23. doi: 10.1016/j.jff.2018.03.034


2.
Feng S, Cheng H, Xu Z, Feng S, Yuan M, Huang Y, et al. Antioxidant and anti-aging activities and structural elucidation of polysaccharides from Panax notoginseng root. Process Biochem 2019; 78: 189–99. doi: 10.1016/j.procbio.2019.01.007


3.
Tang C, Sun J, Liu J, Jin C, Wu X, Zhang X, et al. Immune-enhancing effects of polysaccharides from purple sweet potato. Int J Biol Macromol 2019; 123: 923–30. doi: 10.1016/j.ijbiomac.2018.11.187


4.
Yang H, Hua JL, Wang C. Anti-oxidation and anti-aging activity of polysaccharide from Malus micromalus Makino fruit wine. Int J Biol Macromol 2019; 121: 1203–12. doi: 10.1016/j.ijbiomac.2018.10.096


5.
Yuan FF, Gao Z, Liu WB, Li HP, Zhang YW, Feng YB, et al. Characterization, antioxidant, anti-aging and organ protective effects of sulfated polysaccharides from Flammulina velutipes. Molecules 2019; 24(19): 3517. doi: 10.3390/molecules24193517


6.
Feng SL, Cheng HR, Xu Z, Shen S, Yuan M, Liu J, et al. Thermal stress resistance and aging effects of Panax notoginseng polysaccharides on Caenorhabditis elegans. Int J Biol Macromol 2015; 81: 188–94. doi: 10.1016/j.ijbiomac.2015.07.057


7.
Alim A, Li T, Nisar T, Ren D, Zhai X, Pang Y, et al. Antioxidant, antimicrobial, and antiproliferative activity-based comparative study of peel and flesh polyphenols from Actinidia chinensis. Food Nutr Res 2019; 63:1577. doi: 10.29219/fnr.v63.1577


8.
Chen YX, Liu XY, Wu LX, Tong AJ, Zhao LN, Liu B, et al. Physicochemical characterization of polysaccharides from Chlorella pyrenoidosa and its anti-ageing effects in Drosophila melanogaster. Carbohydr Polym 2018; 185: 120–6. doi: 10.1016/j.carbpol.2017.12.077


9.
Jing HJ, Zhang Q, Liu M, Zhang JJ, Zhang C, Li SS, et al. Polysaccharides with antioxidative and antiaging activities from enzymatic-extractable mycelium by Agrocybe aegerita (Brig.) Sing. Evid-Based Compl Alt 2018; 2018: 1584647. doi: 10.1155/2018/1584647


10.
Liu Y, Sun YY, Huang GL. Preparation and antioxidant activities of important traditional plant polysaccharides. Int J Biol Macromol 2018; 111: 780–6. doi: 10.1016/j.ijbiomac.2018.01.086


11.
Fang ZY, Chen YT, Wang G, Feng T, Shen M, Xiao B, et al. Evaluation of the antioxidant effects of acid hydrolysates from Auricularia auricular polysaccharides using a Caenorhabditis elegans model. Food Funct 2019; 10(9): 5531–43. doi: 10.1039/c8fo02589d


12.
Li HP, Zhao HJ, Gao Z, Song XL, Wang WS, Yuan FF, et al. The antioxidant and anti-aging effects of acetylated mycelia polysaccharides from Pleurotus djamor. Molecules 2019; 24(15): 2698. doi: 10.3390/molecules24152698


13.
Jiang JY, Kong FS, Li NS, Zhang DZ, Yan CY, Lv HC. Purification, structural characterization and in vitro antioxidant activity of a novel polysaccharide from Boshuzhi. Carbohydr Polym 2016; 147: 365–71. doi: 10.1016/j.carbpol.2016.04.001


14.
Fan J, Feng HB, Yu Y, Sun MX, Liu YR, Li TZ, et al. Antioxidant activities of the polysaccharides of Chuanminshen violaceum. Carbohydr Polym 2017; 157: 629–36. doi: 10.1016/j.carbpol.2016.10.040


15.
Kou X, Han L, Li X, Xue Z, Zhou F. Antioxidant and antitumor effects and immunomodulatory activities of crude and purified polyphenol extract from blueberries. Front Chem Sci Eng 2016; 10(1): 108–19. doi: 10.1007/s11705-016-1553-7


16.
Wang Y, Tian Y, Shao J, Shu X, Jia J, Ren X, et al. Macrophage immunomodulatory activity of the polysaccharide isolated from Collybia radicata mushroom. Int J Biol Macromol 2018; 108: 300–6. doi: 10.1016/j.ijbiomac.2017.12.025


17.
Yuan Y, Kang N, Lu Y, Miao X, Zhang X, Liu Y, et al. The effects of polysaccharides from Rehmannia glutinosa on Caenorhabditis elegans. Pharmacogn Mag 2019; 15(63): 385–91. doi: 10.4103/pm.pm_618_18


18.
Li SS, Liu H, Wang WS, Wang XX, Zhang C, Zhang JJ, et al. Antioxidant and anti-aging effects of acidic-extractable polysaccharides by Agaricus bisporus. Int J Biol Macromol 2018; 106: 1297–306. doi: 10.1016/j.ijbiomac.2017.08.135


19.
Jing HJ, Li J, Zhang JJ, Wang WS, Li SS, Ren ZZ, et al. The antioxidative and anti-aging effects of acidic- and alkalic-extractable mycelium polysaccharides by Agrocybe aegerita (Brig.) Sing. Int J Biol Macromol 2018; 106: 1270–8. doi: 10.1016/j.ijbiomac.2017.08.138


20.
Zhao HJ, Li J, Zhang JJ, Wang XX, Hao L, Jia L. Purification, in vitro antioxidant and in vivo anti-aging activities of exopolysaccharides by Agrocybe cylindracea. Int J Biol Macromol 2017; 102: 351–7. doi: 10.1016/j.ijbiomac.2017.04.039


21.
Wu YJ, Wei ZX, Zhang FM, Linhardt RJ, Sun PL, Zhang AQ. Structure, bioactivities and applications of the polysaccharides from Tremella fuciformis mushroom: a review. Int J Biol Macromol 2019; 121: 1005–10. doi: 10.1016/j.ijbiomac.2018.10.117


22.
He XR, Wang XX, Fang JC, Chang Y, Ning N, Guo H, et al. Structures, biological activities, and industrial applications of the polysaccharides from Hericium erinaceus (Lion’s Mane) mushroom: a review. Int J Biol Macromol 2017; 97: 228–37. doi: 10.1016/j.ijbiomac.2017.01.040


23.
Zhao J, Wu Q, Cheng X, Su T, Wang X, Zhang W, et al. Biodegradation and detoxification of the triphenylmethane dye coomassie brilliant blue by the extracellular enzymes from mycelia of Lactarius deliciosus. Front Chem Sci Eng 2020; 15: 421–36. doi: 10.1007/s11705-020-1952-7


24.
Su SY, Ding X, Fu L, Hou YL. Structural characterization and immune regulation of a novel polysaccharide from Maerkang Lactarius deliciosus Gray. Int J Mol Med 2019; 44(2): 713–24. doi: 10.3892/ijmm.2019.4219


25.
Hou Y, Ding X, Hou W, Song B, Wang T, Wang F, et al. Immunostimulant Activity of a novel polysaccharide isolated from Lactarius deliciosus (L. ex Fr.) Gray. Indian J Pharm Sci 2013; 75(4): 393–9. doi: 10.4103/0250-474X.119809


26.
Ding X, Hou YL, Hou WR. Structure feature and antitumor activity of a novel polysaccharide isolated from Lactarius deliciosus Gray. Carbohydr Polym 2012; 89(2): 397–402. doi: 10.1016/j.carbpol.2012.03.020


27.
Cheng XD, Wu QX, Zhao J, Su T, Lu YM, Zhang WN, et al. Immunomodulatory effect of a polysaccharide fraction on RAW 264.7 macrophages extracted from the wild Lactarius deliciosus. Int J Biol Macromol 2019; 128: 732–9. doi: 10.1016/j.ijbiomac.2019.01.201


28.
Lin Q, Long L, Zhuang Z, Wu L, Wu S, Zhan W. Antioxidant activity of water extract from fermented mycelia of Cordyceps sobolifera (Ascomycetes) in Caenorhabditis elegans. Int J Med Mushrooms 2018; 20(1): 61–70. doi: 10.1615/IntJMedMushrooms.2018025324


29.
Fang Z, Chen Y, Wang G, Feng T, Shen M, Xiao B, et al. Evaluation of the antioxidant effects of acid hydrolysates from Auricularia auricular polysaccharides using a Caenorhabditis elegans model. Food Funct 2019; 10(9): 5531–43. doi: 10.1039/c8fo02589d


30.
Pannakal ST, Jager S, Duranton A, Tewari A, Saha S, Radhakrishnan A, et al. Longevity effect of a polysaccharide from Chlorophytum borivilianum on Caenorhabditis elegans and Saccharomyces cerevisiae. PLoS One 2017; 12: e179813. doi: 10.1371/journal.pone.0179813


31.
Sugawara T, Furuhashi T, Shibata K, Abe M, Kikuchi K, Arai M, et al. Fermented product of rice with Lactobacillus kefiranofaciens induces anti-aging effects and heat stress tolerance in nematodes via DAF-16. Biosci Biotech Biochem 2019; 83(8): 1484–9. doi: 10.1080/09168451.2019.1606696


32.
Liu XJ, Huang YC, Chen YJ, Cao Y. Partial structural characterization, as well as immunomodulatory and anti-aging activities of CP2-c2-s2 polysaccharide from Cordyceps militaris. RSC Adv 2016; 6(106): 104094–103. doi: 10.1039/c6ra23612j


33.
Zhang YS, Lv T, Li M, Xue T, Liu H, Zhang WM, et al. Anti-aging effect of polysaccharide from Bletilla striate on nematode Caenorhabditis elegans. Pharmacogn Mag 2015; 11(43): 449–54. doi: 10.4103/0973-1296.1604471


34.
Li H, Shi R, Ding F, Wang H, Han W, Ma F, et al. Astragalus polysaccharide suppresses 6-Hydroxydopamine-induced neurotoxicity in Caenorhabditis elegans. Oxid Med Cell Longev 2016; 2016: 4856761. doi: 10.1155/2016/4856761


35.
Zhang Y, Mi DY, Wang J, Luo YP, Yang X, Dong S, et al. Constituent and effects of polysaccharides isolated from Sophora moorcroftiana seeds on lifespan, reproduction, stress resistance, and antimicrobial capacity in Caenorhabditis elegans. Chin J Nat Med 2018; 16(4): 252–60. doi: 10.1016/S1875-5364(18)30055-4


36.
Cai K, Jiang S, Ren C, He Y. Significant damage-rescuing effects of wood vinegar extract in living Caenorhabditis elegans under oxidative stress. J Sci Food Agr 2012; 92(1): 29–36. doi: 10.1002/jsfa.4624


37.
Soh MS, Cheng X, Vijayaraghavan T, Vernon A, Liu J, Neumann B. Disruption of genes associated with Charcot-Marie-Tooth type 2 lead to common behavioural, cellular and molecular defects in Caenorhabditis elegans. PLoS One 2020; 15: e0231600. doi: 10.1371/journal.pone.0231600


38.
Fei T, Fei J, Huang F, Xie T, Xu J, Zhou Y, et al. The anti-aging and anti-oxidation effects of tea water extract in Caenorhabditis elegans. Exp Gerontol 2017; 97: 89–96. doi: 10.1016/j.exger.2017.07.015


39.
Jeon H, Cha DS. Anti-aging properties of Ribes fasciculatum in Caenorhabditis elegans. Chin J Nat Med 2016; 14(5): 335–42. doi: 10.3724/SP.J.1009.2016.00335


40.
Ding QY, Yang D, Zhang WN, Lu YM, Zhang MZ, Wang L, et al. Antioxidant and anti-aging activities of the polysaccharide TLH-3 from Tricholoma lobayense. Int J Biol Macromol 2016; 85: 133–40. doi: 10.1016/j.ijbiomac.2015.12.058


41.
Wang Q, Huang Y, Qin C, Liang M, Mao X, Li S, et al. Bioactive peptides from Angelica sinensis protein hydrolyzate delay senescence in Caenorhabditis elegans through antioxidant activities. Oxid Med Cell Longev 2016; 2016: 8956981. doi: 10.1155/2016/8956981
Published
2022-09-19
How to Cite
Wang X.-H., Cheng X.-D., Wang D., Wu Z., Chen Y., & Wu Q.-X. (2022). Antioxidant and anti-aging effects of polysaccharide LDP-1 from wild <em>Lactarius deliciosus</em> on <em>Caenorhabditis elegans</em&gt;. Food & Nutrition Research, 66. https://doi.org/10.29219/fnr.v66.8110
Section
Original Articles