Tea and its components reduce the production of uric acid by inhibiting xanthine oxidase

  • Dan Wu College of Horticulture, South China Agricultural University, Guangzhou 510000, China
  • Ruohong Chen Tea Research Institute, Guangdong Academy of Agricultural Sciences/ Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization
  • Wenji Zhang Tea Research Institute, Guangdong Academy of Agricultural Sciences/ Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization
  • Xingfei Lai Tea Research Institute, Guangdong Academy of Agricultural Sciences/ Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization
  • Lingli Sun Tea Research Institute, Guangdong Academy of Agricultural Sciences/ Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization
  • Qiuhua Li Tea Research Institute, Guangdong Academy of Agricultural Sciences/ Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization
  • Zhenbiao Zhang Tea Research Institute, Guangdong Academy of Agricultural Sciences/ Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization
  • Junxi Cao Tea Research Institute, Guangdong Academy of Agricultural Sciences/ Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization
  • Shuai Wen Tea Research Institute, Guangdong Academy of Agricultural Sciences/ Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization
  • Zhaoxiang Lai Tea Research Institute, Guangdong Academy of Agricultural Sciences/ Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization
  • Zhigang Li Tea Research Institute, Guangdong Academy of Agricultural Sciences/ Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization
  • Fanrong Cao College of Horticulture, South China Agricultural University, Guangzhou 510000, China.
  • Shili Sun Tea Research Institute, Guangdong Academy of Agricultural Sciences/ Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization
Keywords: tea, gallic acid, tea polyphenols, xanthine oxidase, uric acid, hyperuricemia

Abstract

Background: The health benefits of tea are as diverse including the reduction of uric acid levels. Xanthine oxidase is the most directly mediated enzyme in the production of uric acid.

Objective: To explore the inhibitory effects of different teas and its main bioactive components on the production of uric acid.

Design: Experimental study. The experiments were conducted in vitro using human immortalized normal liver cell line HL-7702 (L-02).

Results: The inhibition of the xanthine oxidase activities and the expression level of xanthine dehydrogenase mRNA stimulated in the hyperuric hepatocyte cell model showed that the unfermented green tea and th1e lightly fermented yellow tea, white tea, and oolong tea significantly stronger than the highly fermented black tea and dark tea. The main bioactive compound, gallic acid, showed the strongest inhibitory effect on uric acid production, followed by tea polyphenols and theaflavins.

Discussion: All teas exhibited significant inhibition of xanthine oxidase activities, and the degree of fermentation of tea may be inversely proportional to its ability to inhibit the production of uric acid. Compared with tea polyphenols rich in tea, gallic acid may be a more potential uric acid-lowering component.

Conclusion: In this article, we first compared the effects of six traditional Chinese tea made from a single variety in stabilizing the synthesis of uric acid and found that the lighter the fermentation, the greater the potential for inhibiting the production of uric acid. Furthermore, we analyzed the inhibitory effects of its main biochemical active ingredients and found that the inhibitory effects of polyphenols rich in lightly fermented tea were significantly stronger than caffeine rich in highly fermented tea. Our findings will be helpful for people to choose a proper tea for alleviating hyperuricemia and provide a scientific basis for uric acid-lowering tea processing.

Downloads

Download data is not yet available.

References


  1. Brody H. Tea. Nature 2019; 566(7742): S1. doi: 10.1038/d41586-019-00394-5

  2. Ye NS. A minireview of analytical methods for the geographical origin analysis of teas (Camellia sinensis). Crit Rev Food Sci Nutr 2012; 52(9): 775–80. doi: 10.1080/10408398.2010.508568

  3. Zhu C, Tai LL, Wan XC, Li DX, Zhao YQ, Xu Y. Comparative effects of green and black tea extracts on lowering serum uric acid in hyperuricemic mice. Pharm Biol 2017; 55(1): 2123–8. doi: 10.1080/13880209.2017.1377736

  4. Wang Y, Kan Z, Thompson HJ, Ling T, Ho CT, Li D, et al. Impact of six typical processing methods on the chemical composition of tea leaves using a single Camellia sinensis Cultivar, Longjing 43. J Agric Food Chem 2019; 67(19): 5423–36. doi: 10.1021/acs.jafc.8b05140

  5. Wang S, Huang Y, Xu H, Zhu Q, Lu H, Zhang M, et al. Oxidized tea polyphenols prevent lipid accumulation in liver and visceral white adipose tissue in rats. Eur J Nutr 2017; 56(6): 2037–48. doi: 10.1007/s00394-016-1241-x

  6. Zhou J, Ho CT, Long P, Meng Q, Zhang L, Wan X. Preventive efficiency of green tea and its components on nonalcoholic fatty liver disease. J Agric Food Chem 2019; 67(19): 5306–17. doi: 10.1021/acs.jafc.8b05032

  7. Browne LD, Jaouimaa FZ, Walsh C, Perez-Ruiz F, Richette P, Burke K, et al. Serum uric acid and mortality thresholds among men and women in the Irish health system: a cohort study. Eur J Intern Med 2020; 84: 46–55. doi: 10.1016/j.ejim.2020.10.001

  8. Pan L, Han P, Ma S, Peng R, Wang C, Kong W, et al. Abnormal metabolism of gut microbiota reveals the possible molecular mechanism of nephropathy induced by hyperuricemia. Acta Pharm Sin B 2020; 10(2): 249–61. doi: 10.1016/j.apsb.2019.10.007

  9. Bursill D, Taylor WJ, Terkeltaub R, Kuwabara M, Merriman TR, Grainger R, et al. Gout, hyperuricemia, and crystal-associated disease network consensus statement regarding labels and definitions for disease elements in gout. Arthritis Care Res (Hoboken) 2019; 71(3): 427–34. doi: 10.1002/acr.23607

  10. Chen G, Tan ML, Li KK, Leung PC, Ko CH. Green tea polyphenols decreases uric acid level through xanthine oxidase and renal urate transporters in hyperuricemic mice. J Ethnopharmacol 2015; 175: 14–20. doi: 10.1016/j.jep.2015.08.043

  11. Furuhashi M. New insights into purine metabolism in metabolic diseases: role of xanthine oxidoreductase activity. Am J Physiol Endocrinol Metab 2020; 319(5): E827–34. doi: 10.1152/ajpendo.00378.2020

  12. Ju C, Lai RWC, Li KHC, Hung JKF, Lai JCL, Ho J, et al. Comparative cardiovascular risk in users versus non-users of xanthine oxidase inhibitors and febuxostat versus allopurinol users. Rheumatology (Oxford) 2020; 59(9): 2340–9. doi: 10.1093/rheumatology/kez576

  13. Lin J-K, Chen P-C, Ho C-T, Lin-Shiau S-Y. Inhibition of xanthine oxidase and suppression of intracellular reactive oxygen species in HL-60 cells by theaflavin-3,3’-digallate, (-)-epigallocatechin-3-gallate, and propyl gallate. J Agric Food Chem 2000; 48(7): 2736–43. doi: 10.1021/jf000066d

  14. Asci H, Ozmen O, Ellidag HY, Aydin B, Bas E, Yilmaz N. The impact of gallic acid on the methotrexate-induced kidney damage in rats. J Food Drug Anal 2017; 25(4): 890–7. doi: 10.1016/j.jfda.2017.05.001

  15. Yoshino K, Yamazaki K, Sano M. Preventive effects of black tea theaflavins against mouse type IV allergy. J Sci Food Agric 2010; 90(12): 1983–7. doi: 10.1002/jsfa.4035

  16. He W, Su G, Sun-Waterhouse D, Waterhouse GIN, Zhao M, Liu Y. In vivo anti-hyperuricemic and xanthine oxidase inhibitory properties of tuna protein hydrolysates and its isolated fractions. Food Chem 2019; 272: 453–61. doi: 10.1016/j.foodchem.2018.08.057

  17. Heimler D, Vignolini P, Dini MG, Vincieri FF, Romani A. Antiradical activity and polyphenol composition of local Brassicaceae edible varieties. Food Chem 2006; 99(3): 464–9. doi: 10.1016/j.foodchem.2005.07.057

  18. Liu C, Guo Y, Sun L, Lai X, Li Q, Zhang W, et al. Six types of tea reduce high-fat-diet-induced fat accumulation in mice by increasing lipid metabolism and suppressing inflammation. Food Funct 2019; 10(4): 2061–74. doi: 10.1039/c8fo02334d

  19. Pomozi V, Brampton C, Szeri F, Dedinszki D, Kozak E, van de Wetering K, et al. Functional rescue of ABCC6 deficiency by 4-phenylbutyrate therapy reduces dystrophic calcification in Abcc6(-/-) mice. J Invest Dermatol 2017; 137(3): 595–602. doi: 10.1016/j.jid.2016.10.035

  20. Zhao F, Lin HT, Zhang S, Lin YF, Yang JF, Ye NX. Simultaneous determination of caffeine and some selected polyphenols in Wuyi Rock tea by high-performance liquid chromatography. J Agric Food Chem 2014; 62(13): 2772–81. doi: 10.1021/jf4056314

  21. Hou C, Liu D, Wang M, Gong C, Li Y, Yang L, et al. Novel xanthine oxidase-based cell model using HK-2cell for screening antihyperuricemic functional compounds. Free Radic Biol Med 2019; 136: 135–45. doi: 10.1016/j.freeradbiomed.2019.04.007

  22. Tanaka M, Kishimoto Y, Sasaki M, Sato A, Kamiya T, Kondo K, et al. Terminalia bellirica (Gaertn.) Roxb. Extract and gallic acid attenuate LPS-induced inflammation and oxidative stress via MAPK/NF-kappaB and Akt/AMPK/Nrf2 pathways. Oxid Med Cell Longev 2018; 2018: 9364364. doi: 10.1155/2018/9364364

  23. Sarris J, Byrne GJ, Cribb L, Oliver G, Murphy J, Macdonald P, et al. L-theanine in the adjunctive treatment of generalized anxiety disorder: a double-blind, randomised, placebo-controlled trial. J Psychiatr Res 2019; 110: 31–7. doi: 10.1016/j.jpsychires.2018.12.014

  24. Li H, Fang Q, Nie Q, Hu J, Yang C, Huang T, et al. Hypoglycemic and hypolipidemic mechanism of tea polysaccharides on type 2 diabetic rats via gut microbiota and metabolism alteration. J Agric Food Chem 2020; 68(37): 10015–28. doi: 10.1021/acs.jafc.0c01968

  25. Huang F, Zheng X, Ma X, Jiang R, Zhou W, Zhou S, et al. Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism. Nat Commun 2019; 10(1): 4971. doi: 10.1038/s41467-019-12896-x

  26. Peluso I, Teichner A, Manafikhi H, Palmery M. Camellia sinensis in asymptomatic hyperuricemia: a meta-analysis of tea or tea extract effects on uric acid levels. Crit Rev Food Sci Nutr 2017; 57(2): 391–8. doi: 10.1080/10408398.2014.889653

  27. Wu D, Zhang W, Lai X, Li Q, Sun L, Chen R, et al. Regulation of catechins in uric acid metabolism disorder related human diseases. Mini Rev Med Chem 2020; 20(18): 1857–66. doi: 10.2174/1389557520666200719015919

  28. Hou CW, Lee YC, Hung HF, Fu HW, Jeng KC. Longan seed extract reduces hyperuricemia via modulating urate transporters and suppressing xanthine oxidase activity. Am J Chin Med 2012; 40(5): 979–91. doi: 10.1142/S0192415X12500723

  29. Chen Y, Zhao Z, Li Y, Yang Y, Li L, Jiang Y, et al. Baicalein alleviates hyperuricemia by promoting uric acid excretion and inhibiting xanthine oxidase. Phytomedicine 2021; 80: 153374. doi: 10.1016/j.phymed.2020.153374

  30. Shaik AH, Shaik SR, Shaik AS, Daoud A, Salim M, Kodidhela LD. Analysis of maslinic acid and gallic acid compounds as xanthine oxidase inhibitors in isoprenaline administered myocardial necrotic rats. Saudi J Biol Sci 2021; 28(4): 2575–80. doi: 10.1016/j.sjbs.2021.01.062

  31. Jung MH, Seong PN, Kim MH, Myong N-H, Chang M-J. Effect of green tea extract microencapsulation on hypertriglyceridemia and cardiovascular tissues in high fructose-fed rats. Nutr Res Pract 2013; 7(5): 366–72. doi: 10.4162/nrp.2013.7.5.366

  32. Zhao R, Chen D, Wu H. Effects of Pu-erh ripened tea on hyperuricemic mice studied by serum metabolomics. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1068–1069: 149–56. doi: 10.1016/j.jchromb.2017.10.002

  33. Peluso I, Serafini M. Antioxidants from black and green tea: from dietary modulation of oxidative stress to pharmacological mechanisms. Br J Pharmacol 2017; 174(11): 1195–208. doi: 10.1111/bph.13649

  34. Koutelidakis AE, Rallidis L, Koniari K, Panagiotakos D, Komaitis M, Zampelas A, et al. Effect of green tea on postprandial antioxidant capacity, serum lipids, C-reactive protein and glucose levels in patients with coronary artery disease. Eur J Nutr 2014; 53(2): 479–86. doi: 10.1007/s00394-013-0548-0

  35. Wang W, Tan H, Liu H, Peng H, Li X, Dang X, et al. Green tea polyphenols protect against preglomerular arteriopathy via the jagged1/notch1 pathway. Am J Transl Res 2018; 10(10): 3276–90.

  36. Deb S, Dutta A, Phukan BC, Manivasagam T, Justin Thenmozhi A, Bhattacharya P, et al. Neuroprotective attributes of L-theanine, a bioactive amino acid of tea, and its potential role in Parkinson’s disease therapeutics. Neurochem Int 2019; 129: 104478. doi: 10.1016/j.neuint.2019.104478

  37. Uchiyama S, Taniguchi Y, Saka A, Yoshida A, Yajima H. Prevention of diet-induced obesity by dietary black tea polyphenols extract in vitro and in vivo. Nutrition 2011; 27(3): 287–92. doi: 10.1016/j.nut.2010.01.019

  38. Towiwat P, Tangsumranjit A, Ingkaninan K, Jampachaisri K, Chaichamnong N, Buttham B, et al. Effect of caffeinated and decaffeinated coffee on serum uric acid and uric acid clearance, a randomised within-subject experimental study. Clin Exp Rheumatol 2021; 39(5): 1003–1010.

  39. Park KY, Kim HJ, Ahn HS, Kim SH, Park EJ, Yim SY, et al. Effects of coffee consumption on serum uric acid: systematic review and meta-analysis. Semin Arthritis Rheum 2016; 45(5): 580–6. doi: 10.1016/j.semarthrit.2016.01.003

  40. Chen L, Li M, Wu J-L, Li J-X, Ma Z-C. Effect of lemon water soluble extract on hyperuricemia in a mouse model. Food Funct 2019; 10(9): 6000–8. doi: 10.1039/c9fo00509a

  41. Milic S, Lulic D, Stimac D. Non-alcoholic fatty liver disease and obesity: biochemical, metabolic and clinical presentations. World J Gastroenterol 2014; 20(28): 9330–7. doi: 10.3748/wjg.v20.i28.9330

  42. Wu QQ, Liang YF, Ma SB, Li H, Gao WY. Stability and stabilization of (-)-gallocatechin gallate under various experimental conditions and analyses of its epimerization, auto-oxidation, and degradation by LC-MS. J Sci Food Agric 2019; 99(13): 5984–93. doi: 10.1002/jsfa.9873

Published
2022-06-15
How to Cite
Wu D., Chen R., Zhang W., Lai X., Sun L., Li Q., Zhang Z., Cao J., Wen S., Lai Z., Li Z., Cao F., & Sun S. (2022). Tea and its components reduce the production of uric acid by inhibiting xanthine oxidase. Food & Nutrition Research, 66. https://doi.org/10.29219/fnr.v66.8239
Section
Original Articles

Most read articles by the same author(s)