Arborinine from Glycosmis parva leaf extract inhibits clear-cell renal cell carcinoma by inhibiting KDM1A/UBE2O signaling

  • Chenchen Feng Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China; Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
  • Lingxiao Gong Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
  • Jing Wang Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
Keywords: Arborinine, Clear-cell renal cell carcinoma, KDM1A, UBE2O

Abstract

Background: Arborinine is a natural product isolated from Globigerina parva (G. parva) leaf extract that shows strong anticancer activity with its role in clear-cell renal cell carcinoma (ccRCC) unreported.

Objective: We aim to evaluate the role of Arborinine in ccRCC.

Design: Arborinine was tested for its effects in ccRCC cell lines in vitro and in silico.

Results: Arborinine conferred inhibitory effect to ccRCC cells at reasonable doses. Arborinine showed inhibitory effects on Lysine Demethylase 1A (KDM1A) in ccRCC cells and decreased levels of KDM1A outputs and on epithelial mesenchymal transition (EMT) markers. Arborinine significantly inhibited proliferation, apoptosis, and cell cycle progression and migration of ccRCC cells. Using in silico ChIP analysis and luciferase activity validation, we identified Ubiquitin-conjugating enzyme E2O (UBE2O) as an active transcription target downstream of KDM1A. UBE2O expression was not only correlated with KDM1A expression but also associated with worsened prognosis in ccRCC. Overexpression of UBE2O abrogated cancer-inhibitory effect of Arborinine.

Discussion: Arborinine holds promise as an additive in the treatment of ccRCC.

Conclusions: We have shown for the first time that Arborinine showed inhibitory effect on ccRCC via KDM1A/UBE2O signaling.

Downloads

Download data is not yet available.

References


1.
Moch H, Cubilla AL, Humphrey PA, Reuter VE, Ulbright TM. The 2016 WHO classification of tumours of the urinary system and male genital organs-part A: renal, penile, and testicular tumours. Eur Urol 2016; 70(1): 93–105. doi: 10.1016/j.eururo.2016.02.029


2.
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin 2019; 69(1): 7–34. doi: 10.3322/caac.21551


3.
Makhov P, Joshi S, Ghatalia P, Kutikov A, Uzzo RG, Kolenko VM. Resistance to systemic therapies in clear cell renal cell carcinoma: mechanisms and management strategies. Mol Cancer Ther 2018; 17(7): 1355–64. doi: 10.1158/1535-7163.MCT-17-1299


4.
Motzer RJ, Penkov K, Haanen J, Rini B, Albiges L, Campbell MT, et al. Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med 2019; 380(12): 1103–15. doi: 10.1056/NEJMoa1816047


5.
Rini BI, Plimack ER, Stus V, Gafanov R, Hawkins R, Nosov D, et al. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med 2019; 380(12): 1116–27. doi: 10.1056/NEJMoa1816714


6.
Rini BI, Powles T, Atkins MB, Escudier B, McDermott DF, Suarez C, et al. Atezolizumab plus bevacizumab versus sunitinib in patients with previously untreated metastatic renal cell carcinoma (IMmotion151): a multicentre, open-label, phase 3, randomised controlled trial. Lancet 2019; 393(10189): 2404–15. doi: 10.1016/S0140-6736(19)30723-8


7.
Motzer RJ, Tannir NM, McDermott DF, Aren Frontera O, Melichar B, Choueiri TK, et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N Engl J Med 2018; 378(14): 1277–90. doi: 10.1056/NEJMoa1712126


8.
Wahyuni TS, Widyawaruyanti A, Lusida MI, Fuad A, Soetjipto, Fuchino H, et al. Inhibition of hepatitis C virus replication by chalepin and pseudane IX isolated from Ruta angustifolia leaves. Fitoterapia 2014; 99: 276–83. doi: 10.1016/j.fitote.2014.10.011


9.
Riemenschneider W. Esters, organic. In: Ullmann’s encyclopedia of industrial chemistry. 2000.


10.
Buranabunwong N, Ruangrungsi N, Chansriniyom C, Limpanasithikul W. Ethyl acetate extract from Glycosmis parvaleaf induces apoptosis and cell-cycle arrest by decreasing expression of COX-2 and altering BCL-2 family gene expression in human colorectal cancer HT-29 cells. Pharmaceut Biol 2014; 53(4): 540–7. doi: 10.3109/13880209.2014.931442


11.
Piboonprai K, Khumkhrong P, Khongkow M, Yata T, Ruangrungsi N, Chansriniyom C, et al. Anticancer activity of arborinine from Glycosmis parva leaf extract in human cervical cancer cells. Biochem Biophys Res Commun 2018; 500(4): 866–72. doi: 10.1016/j.bbrc.2018.04.175


12.
Chu Y, Xiao Z, Jing N, Yan W, Wang S, Ma B, et al. Arborinine, a potential LSD1 inhibitor, inhibits epithelial-mesenchymal transition of SGC-7901 cells and adriamycin-resistant gastric cancer SGC-7901/ADR cells. Investig New Drugs 2020; 39(3): 627–35. doi: 10.1007/s10637-020-01016-y


13.
Li N, Yang L, Zuo H. Arborinine suppresses ovarian cancer development through inhibition of LSD1. Life Sci 2022; 291: 120275. doi: 10.1016/j.lfs.2021.120275


14.
Lyu Y, Li K, Li Y, Wen H, Feng C. BCL2L2 loss renders - 14q renal cancer dependent on BCL2L1 that mediates resistance to tyrosine kinase inhibitors. Clin Transl Med 2021; 11(3): e348. doi: 10.1002/ctm2.348


15.
Ombito JO, Chi GF, Wansi JD. Ethnomedicinal uses, phytochemistry, and pharmacology of the genus Vepris (Rutaceae): a review. J Ethnopharmacol 2021; 267: 113622. doi: 10.1016/j.jep.2020.113622


16.
Richardson JSM, Sethi G, Lee GS, Malek SNA. Chalepin: isolated from Ruta angustifolia L. Pers induces mitochondrial mediated apoptosis in lung carcinoma cells. BMC Complement Altern Med 2016; 16(1): 389. doi: 10.1186/s12906-016-1368-6


17.
Zheng YC, Ma J, Wang Z, Li J, Jiang B, Zhou W, et al. A systematic review of histone lysine-specific demethylase 1 and its inhibitors. Med Res Rev 2015; 35(5): 1032–71. doi: 10.1002/med.21350


18.
Carpenter RL, Lo HW. STAT3 target genes relevant to human cancers. Cancers (Basel) 2014; 6(2): 897–925. doi: 10.3390/cancers6020897


19.
Fu L, Minden MD, Benchimol S. Translational regulation of human p53 gene expression. EMBO J 1996; 15(16): 4392–401.


20.
Lee PP, Fitzpatrick DR, Beard C, Jessup HK, Lehar S, Makar KW, et al. A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. Immunity 2001; 15(5): 763–74. doi: 10.1016/s1074-7613(01)00227-8


21.
Wells J, Graveel CR, Bartley SM, Madore SJ, Farnham PJ. The identification of E2F1-specific target genes. Proc Natl Acad Sci U S A 2002; 99(6): 3890–5. doi: 10.1073/pnas.062047499


22.
Wu L, Timmers C, Maiti B, Saavedra HI, Sang L, Chong GT, et al. The E2F1-3 transcription factors are essential for cellular proliferation. Nature 2001; 414(6862): 457–62. doi: 10.1038/35106593


23.
Magliulo D, Bernardi R, Messina S. Lysine-specific demethylase 1A as a promising target in acute myeloid leukemia. Front Oncol 2018; 8: 255. doi: 10.3389/fonc.2018.00255


24.
Lee K-H, Kim B-C, Jeong S-H, Jeong CW, Ku JH, Kwak C, et al. Histone demethylase LSD1 regulates kidney cancer progression by modulating androgen receptor activity. Int J Mol Sci 2020; 21(17): 6089. doi: 10.3390/ijms21176089


25.
Ma Y, Zheng Y, Ji Y, Wang X, Ye B. Raloxifene, identified as a novel LSD1 inhibitor, suppresses the migration of renal cell carcinoma. Fut Med Chem 2021; 13(6): 533–42. doi: 10.4155/fmc-2020-0323


26.
Wu K, Woo SM, Kwon TK. The histone lysine-specific demethylase 1 Inhibitor, SP2509 exerts cytotoxic effects against renal cancer cells through downregulation of Bcl-2 and Mcl-1. J Cancer Prev 2020; 25(2), 79–86. doi: 10.15430/jcp.2020.25.2.79


27.
Zheng Y, Ma Y, Cao H, Yan L, Gu Y, Ren X, et al. Identification of fenoldopam as a novel LSD1 inhibitor to abrogate the proliferation of renal cell carcinoma using drug repurposing strategy. Bioorg Chem 2021; 108: 104561. doi: 10.1016/j.bioorg.2020.104561


28.
Huang Y, Yang X, Lu Y, Zhao Y, Meng R, Zhang S, et al. UBE2O targets Mxi1 for ubiquitination and degradation to promote lung cancer progression and radioresistance. Cell Death Differ 2020; 28(2): 671–84. doi: 10.1038/s41418-020-00616-8


29.
Liu X, Ma F, Liu C, Zhu K, Li W, Xu Y, et al. UBE2O promotes the proliferation, EMT and stemness properties of breast cancer cells through the UBE2O/AMPKα2/mTORC1-MYC positive feedback loop. Cell Death Dis 2020; 11(1): 10. doi: 10.1038/s41419-019-2194-9


30.
Kim J-H, Yang H-J, Lee C-H, Jeon Y-S, Park J-J, Lee K-W, et al. The positive correlations between the expression of histopathological ubiquitin-conjugating enzyme 2O staining and prostate cancer advancement. Pharmaceuticals 2021; 14(8): 778. doi: 10.3390/ph14080778


31.
Shi Z, Liu R, Lu Q, Zeng Z, Liu Y, Zhao J, et al. UBE2O promotes hepatocellular carcinoma cell proliferation and invasion by regulating the AMPKα2/mTOR pathway. Int J Med Sci 2021; 18(16): 3749–58. doi: 10.7150/ijms.63220


32.
Chen X, Zhang S, Liu C, Li G, Lu S, Wang Y, et al. UBE2O promotes progression and epithelial–mesenchymal transition in head and neck squamous cell carcinoma. Onco Targets Ther 2020; 13: 6191–202. doi: 10.2147/ott.S253861


33.
Feng C, Lyu Y, Gong L, Wang J. Therapeutic potential of natural products in the treatment of renal cell carcinoma: a review. Nutrients 2022; 14(11): 2274. doi: 10.3390/nu14112274
Published
2022-09-16
How to Cite
Feng C., Gong L., & Wang J. (2022). Arborinine from <em>Glycosmis parva</em&gt; leaf extract inhibits clear-cell renal cell carcinoma by inhibiting KDM1A/UBE2O signaling. Food & Nutrition Research, 66. https://doi.org/10.29219/fnr.v66.8714
Section
Original Articles