Immature ginger reduces triglyceride accumulation by downregulating Acyl CoA carboxylase and phosphoenolpyruvate carboxykinase-1 genes in 3T3-L1 adipocytes

  • Haiwen Li Food Chemistry and Nutrition Science Laboratory, Agricultural Research Station, College of Agriculture, Virginia State University, Petersburg, VA, USA
  • Ahmed Reza Rafie Cooperate Extension, College of Agriculture, Virginia State University, Petersburg, VA, USA
  • Anwar Hamama Common Research Laboratory, Agricultural Research Station, College of Agriculture, Virginia State University, Petersburg, VA, USA
  • Rafat A. Siddiqui Food Chemistry and Nutrition Science Laboratory, Agricultural Research Station, College of Agriculture, Virginia State University, Petersburg, VA, USA
Keywords: Lipid droplets, Fatty acids, Obesity, Glucose uptake, Lipogenesis, Adipogenesis

Abstract

Background: Obesity is the underlying risk factor for major metabolism complications, including non-alcoholic-fatty liver disease, atherosclerosis, and cardiovascular disease. The adipose tissue is a vital endocrine organ that plays a role in the synthesis and storage of lipid and, therefore, is a contributory factor to the development and progression of obesity. A growing interest in nutraceuticals suggests that natural products can alleviate the risk factors and may be effective in mitigating obesity.

Aim: The objective of this study was to examine the underlying mechanisms of immature ginger on adipocyte differentiation and lipogenesis in a 3T3-L1 cellular model.

Methods: Ginger samples, extracted in 80% methanol, were dried and resuspended in DMSO at 50 μg/mL as stock solution. For analysis, the extracted samples were further diluted in media. Effects on adipogenesis were evaluated by determining lipid droplet and triglyceride accumulation, whereas effects on lipogenesis were determined by measuring triglyceride contents and fatty acid profile. The expression of key regulatory genes involved in adipogenesis and lipogenesis was also determined.

Results: Our data indicate that the intracellular lipid accumulation decreased significantly by 15 or 25% on treatment with 25 or 50 μg/mL of ginger extract. Consistent with these data, significantly reduced triglyceride levels by 30 or 50% were observed on 25 or 50 μg/mL treatment with ginger extracts, respectively. In addition, ginger treatment significantly inhibited the differentiation-induced de novo lipogenesis and Δ9 desaturase activity. Furthermore, ginger treatment reduced adipogenesis genes, C/ebpβ and C/ebpδ, expression by 47 or 64%, respectively, but significantly increased Pparγ expression by 60% and adiponectin by 75%. Ginger extracts had no effect on Fas genes but reduced lipogenesis genes, acyl CoA carboxylase (Acc) expression by two-fold, and phosphoenolpyruvate carboxy kinase 1 (Pepck1) expression by 50%.

Conclusion: Our findings suggest immature ginger can potentially inhibit lipogenesis pathways by limiting the channeling of glucose carbon in fatty acid synthesis by inhibiting the expression of ACC and glycerol production via inhibiting the expression of PEPCK, which consequently inhibits triglyceride formation.

Downloads

Download data is not yet available.

References


1.
Fryar CD, Carroll MD, Ogden CL. Prevalence of overweight, obesity, and severe obesity among children and adolescents aged 2–19 years: United States, 1963–1965 through 2015–2016. In: STATISTICS NCFH, ed. Health e-stats. [cited 05 October 2022]. Available from: https://www.cdc.gov/nchs/data/hestat/obesity_child_15_16/obesity_child_15_16.htm2018


2.
Hales CM, Carroll MD, Fryar CD, Ogden CL. Prevalence of obesity and severe obesity among adults: United States, 2017–2018. NCHS Data Brief 2020; (360): 1–8.


3.
González-Muniesa P, Mártinez-González MA, Hu FB, Després JP, Matsuzawa Y, Loos RJF, et al. Obesity. Nat Rev Dis Primers 2017; 3: 17034. doi: 10.1038/nrdp.2017.34


4.
Dorresteijn JA, Visseren FL, Spiering W. Mechanisms linking obesity to hypertension. Obes Rev 2012; 13(1): 17–26. doi: 10.1111/j.1467-789X.2011.00914.x


5.
Milić S, Lulić D, Štimac D. Non-alcoholic fatty liver disease and obesity: biochemical, metabolic and clinical presentations. World J Gastroenterol 2014; 20(28): 9330–7.


6.
Ouimet M. Autophagy in obesity and atherosclerosis: interrelationships between cholesterol homeostasis, lipoprotein metabolism and autophagy in macrophages and other systems. Biochim Biophys Acta 2013; 1831(6): 1124–33. doi: 10.1016/j.bbalip.2013.03.007


7.
Moreno-Navarrete JM, Fernández-Real JM. Adipocyte differentiation. New York, NY: Springer; 2012. doi: 10.1007/978-1-4614-0965-6_2


8.
Khandekar MJ, Cohen P, Spiegelman BM. Molecular mechanisms of cancer development in obesity. Nat Rev Cancer 2011; 11(12): 886–95. doi: 10.1038/nrc3174


9.
Schwartz MW, Seeley RJ, Zeltser LM, Drewnowski A, Ravussin E, Redman LM, et al. Obesity pathogenesis: an endocrine society scientific statement. Endocr Rev 2017; 38(4): 267–96. doi: 10.1210/er.2017-00111


10.
Longo M, Zatterale F, Naderi J, Parrillo L, Formisano P, Raciti GA, et al. Adipose tissue dysfunction as determinant of obesity-associated metabolic complications. Int J Mol Sci 2019; 20(9): 2358. doi: 10.3390/ijms20092358


11.
Stenkula KG, Erlanson-Albertsson C. Adipose cell size: importance in health and disease. Am J Physiol Regul Integr Comp Physiol 2018; 315(2): R284–95. doi: 10.1152/ajpregu.00257.2017


12.
Wondmkun YT. Obesity, insulin resistance, and type 2 diabetes: associations and therapeutic implications. Diabetes Metab Syndr Obes 2020; 13: 3611–16. doi: 10.2147/DMSO.S275898


13.
Conde J, Scotece M, Gómez R, López V, Gómez-Reino JJ, Lago F, et al. Adipokines: biofactors from white adipose tissue. A complex hub among inflammation, metabolism, and immunity. Biofactors 2011; 37(6): 413–20. doi: 10.1002/biof.185


14.
Lehr S, Hartwig S, Sell H. Adipokines: a treasure trove for the discovery of biomarkers for metabolic disorders. Proteomics Clin Appl 2012; 6(1–2): 91–101. doi: 10.1002/prca.201100052


15.
Christiansen T, Richelsen B, Bruun JM. Monocyte chemoattractant protein-1 is produced in isolated adipocytes, associated with adiposity and reduced after weight loss in morbid obese subjects. Int J Obes (Lond) 2005; 29(1): 146–50. doi: 10.1038/sj.ijo.0802839


16.
Kim JH, Bachmann RA, Chen J. Interleukin-6 and insulin resistance. Vitam Horm 2009; 80: 613–33. doi: 10.1016/S0083-6729(08)00621-3


17.
Reilly SM, Saltiel AR. Adapting to obesity with adipose tissue inflammation. Nat Rev Endocrinol 2017; 13(11): 633–43. doi: 10.1038/nrendo.2017.90


18.
Antuna-Puente B, Feve B, Fellahi S, Bastard JP. Adipokines: the missing link between insulin resistance and obesity. Diabetes Metab 2008; 34(1): 2–11. doi: 10.1016/j.diabet.2007.09.004


19.
Rondinone CM. Adipocyte-derived hormones, cytokines, and mediators. Endocrine 2006; 29(1): 81–90. doi: 10.1385/ENDO:29:1:81


20.
Rutkowski JM, Stern JH, Scherer PE. The cell biology of fat expansion. J Cell Biol 2015; 208(5): 501–12. doi: 10.1083/jcb.201409063


21.
Pajvani UB, Accili D. The new biology of diabetes. Diabetologia 2015; 58(11): 2459–68. doi: 10.1007/s00125-015-3722-5


22.
Shimobayashi M, Albert V, Woelnerhanssen B, Frei IC, Weissenberger D, Meyer-Gerspach AC, et al. Insulin resistance causes inflammation in adipose tissue. J Clin Invest 2018; 128(4): 1538–50. doi: 10.1172/JCI96139


23.
Farag YM, Gaballa MR. Diabesity: an overview of a rising epidemic. Nephrol Dial Transplant 2011; 26(1): 28–35. doi: 10.1093/ndt/gfq576


24.
Abdullah A, Peeters A, de Courten M, Stoelwinder J. The magnitude of association between overweight and obesity and the risk of diabetes: a meta-analysis of prospective cohort studies. Diabetes Res Clin Pract 2010; 89(3): 309–19. doi: 10.1016/j.diabres.2010.04.012


25.
Rosen ED, Hsu CH, Wang X, Sakai S, Freeman MW, Gonzalez FJ, et al. C/EBPalpha induces adipogenesis through PPARgamma: a unified pathway. Genes Dev 2002; 16(1): 22–6. doi: 10.1101/gad.948702


26.
Ruiz-Ojeda FJ, Rupérez AI, Gomez-Llorente C, Gil A, Aguilera CM. Cell models and their application for studying adipogenic differentiation in relation to obesity: a review. Int J Mol Sci 2016; 17(7): 1040. doi: 10.3390/ijms17071040


27.
Farmer SR. Transcriptional control of adipocyte formation. Cell Metab 2006; 4(4): 263–73. doi: 10.1016/j.cmet.2006.07.001


28.
Green H, Meuth M. An established pre-adipose cell line and its differentiation in culture. Cell 1974; 3(2): 127–33. doi: 10.1016/0092-8674(74)90116-0


29.
MacDougald OA, Lane MD. Transcriptional regulation of gene expression during adipocyte differentiation. Annu Rev Biochem 1995; 64: 345–73. doi: 10.1146/annurev.bi.64.070195.002021


30.
Corin RE, Guller S, Wu KY, Sonenberg M. Growth hormone and adipose differentiation: growth hormone-induced antimitogenic state in 3T3-F442A preadipose cells. Proc Natl Acad Sci U S A 1990; 87(19): 7507–11. doi: 10.1073/pnas.87.19.7507


31.
Tang QQ, Lane MD. Adipogenesis: from stem cell to adipocyte. Annu Rev Biochem 2012; 81: 715–36. doi: 10.1146/annurev-biochem-052110-115718


32.
Haider N, Larose L. Harnessing adipogenesis to prevent obesity. Adipocyte 2019; 8(1): 98–104. doi: 10.1080/21623945.2019.1583037


33.
Lefterova MI, Lazar MA. New developments in adipogenesis. Trends Endocrinol Metab 2009; 20(3): 107–14. doi: 10.1016/j.tem.2008.11.005


34.
Ali AT, Hochfeld WE, Myburgh R, Pepper MS. Adipocyte and adipogenesis. Eur J Cell Biol 2013; 92(6–7): 229–36. doi: 10.1016/j.ejcb.2013.06.001


35.
Huang Q, Ma C, Chen L, Luo D, Chen R, Liang F. Mechanistic insights into the interaction between transcription factors and epigenetic modifications and the contribution to the development of obesity. Front Endocrinol (Lausanne) 2018; 9: 370. doi: 10.3389/fendo.2018.00370


36.
Yu X, Lin J, Zack DJ, Mendell JT, Qian J. Analysis of regulatory network topology reveals functionally distinct classes of microRNAs. Nucleic Acids Res 2008; 36(20): 6494–503. doi: 10.1093/nar/gkn712


37.
Zhang YY, Li X, Qian SW, Guo L, Huang HY, He Q, et al. Transcriptional activation of histone H4 by C/EBPβ during the mitotic clonal expansion of 3T3-L1 adipocyte differentiation. Mol Biol Cell 2011; 22(13): 2165–74. doi: 10.1091/mbc.e10-11-0912


38.
Guo L, Li X, Huang JX, Huang HY, Zhang YY, Qian SW, et al. Histone demethylase Kdm4b functions as a co-factor of C/EBPβ to promote mitotic clonal expansion during differentiation of 3T3-L1 preadipocytes. Cell Death Differ 2012; 19(12): 1917–27. doi: 10.1038/cdd.2012.75


39.
Kim JB, Wright HM, Wright M, Spiegelman BM. ADD1/SREBP1 activates PPARgamma through the production of endogenous ligand. Proc Natl Acad Sci U S A 1998; 95(8): 4333–7. doi: 10.1073/pnas.95.8.4333


40.
Rosen ED, MacDougald OA. Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol 2006; 7(12): 885–96. doi: 10.1038/nrm2066


41.
Bolamperti S, Signo M, Spinello A, Moro G, Fraschini G, Guidobono F, et al. GH prevents adipogenic differentiation of mesenchymal stromal stem cells derived from human trabecular bone via canonical Wnt signaling. Bone 2018; 112: 136–44. doi: 10.1016/j.bone.2018.04.014


42.
Khalilpourfarshbafi M, Gholami K, Murugan DD, Abdul Sattar MZ, Abdullah NA. Differential effects of dietary flavonoids on adipogenesis. Eur J Nutr 2019; 58(1): 5–25. doi: 10.1007/s00394-018-1663-8


43.
Ahmad B, Serpell CJ, Fong IL, Wong EH. Molecular mechanisms of adipogenesis: the anti-adipogenic role of AMP-activated protein kinase. Front Mol Biosci 2020; 7: 76. doi: 10.3389/fmolb.2020.00076


44.
Lazar A, Dinescu S, Costache M, Costache M. Adipose tissue engineering and adipogenesis – a review. Rev Biol Biomed Sci 2018; 1(1): 17–26. doi: 10.31178/rbbs.2018.1.1.3


45.
Yanovski SZ, Yanovski JA. Long-term drug treatment for obesity: a systematic and clinical review. JAMA 2014; 311(1): 74–86. doi: 10.1001/jama.2013.281361


46.
Hall KD, Kahan S. Maintenance of lost weight and long-term management of obesity. Med Clin North Am 2018; 102(1): 183–97. doi: 10.1016/j.mcna.2017.08.012


47.
Jimenez-Gomez Y, Mattison JA, Pearson KJ, Martin-Montalvo A, Palacios HH, Sossong AM, et al. Resveratrol improves adipose insulin signaling and reduces the inflammatory response in adipose tissue of rhesus monkeys on high-fat, high-sugar diet. Cell Metab 2013; 18(4): 533–45. doi: 10.1016/j.cmet.2013.09.004


48.
Wang J, Zhang L, Dong L, Hu X, Feng F, Chen F. 6-Gingerol, a functional polyphenol of ginger, promotes browning through an AMPK-dependent pathway in 3T3-L1 adipocytes. J Agric Food Chem 2019; 67(51): 14056–65. doi: 10.1021/acs.jafc.9b05072


49.
Ejaz A, Wu D, Kwan P, Meydani M. Curcumin inhibits adipogenesis in 3T3-L1 adipocytes and angiogenesis and obesity in C57/BL mice. J Nutr 2009; 139(5): 919–25. doi: 10.3945/jn.108.100966


50.
Mathew A. Natural Food Flavors and Colorants, 2nd Edition, Chapter 57 Ginger, John Wiley & Sons Ltd, Cochin, India, 209-214, 2017. https://www.wiley.com/en-us/Natural+Food+Flavors+and+Colorants%2C+2nd+Editionp-9781119114765.


51.
Grzanna R, Lindmark L, Frondoza CG. Ginger – an herbal medicinal product with broad anti-inflammatory actions. J Med Food 2005; 8(2): 125–32. doi: 10.1089/jmf.2005.8.125


52.
Lai YS, Lee WC, Lin YE, Ho CT, Lu KH, Lin SH, et al. Ginger essential oil ameliorates hepatic injury and lipid accumulation in high fat diet-induced nonalcoholic fatty liver disease. J Agric Food Chem 2016; 64(10): 2062–71. doi: 10.1021/acs.jafc.5b06159


53.
Bryer E. A literature review of the effectiveness of ginger in alleviating mild-to-moderate nausea and vomiting of pregnancy. J Midwifery Womens Health 2005; 50(1): e1–3. doi: 10.1016/j.jmwh.2004.08.023


54.
Panahi Y, Saadat A, Sahebkar A, Hashemian F, Taghikhani M, Abolhasani E. Effect of ginger on acute and delayed chemotherapy-induced nausea and vomiting: a pilot, randomized, open-label clinical trial. Integr Cancer Ther 2012; 11(3): 204–11. doi: 10.1177/1534735411433201


55.
Wang J, Ke W, Bao R, Hu X, Chen F. Beneficial effects of ginger Zingiber officinale Roscoe on obesity and metabolic syndrome: a review. Ann N Y Acad Sci 2017; 1398(1): 83–98. doi: 10.1111/nyas.13375


56.
Butt MS, Sultan MT. Ginger and its health claims: molecular aspects. Crit Rev Food Sci Nutr 2011; 51(5): 383–93. doi: 10.1080/10408391003624848


57.
Nammi S, Sreemantula S, Roufogalis BD. Protective effects of ethanolic extract of Zingiber officinale rhizome on the development of metabolic syndrome in high-fat diet-fed rats. Basic Clin Pharmacol Toxicol 2009; 104(5): 366–73. doi: 10.1111/j.1742-7843.2008.00362.x


58.
Gao H, Guan T, Li C, Zuo G, Yamahara J, Wang J, et al. Treatment with ginger ameliorates fructose-induced fatty liver and hypertriglyceridemia in rats: modulation of the hepatic carbohydrate response element-binding protein-mediated pathway. Evid Based Complement Alternat Med 2012; 2012: 570948. doi: 10.1155/2012/570948


59.
Tzeng TF, Liou SS, Chang CJ, Liu IM. [6]-gingerol dampens hepatic steatosis and inflammation in experimental nonalcoholic steatohepatitis. Phytomedicine 2015; 22(4): 452–61. doi: 10.1016/j.phymed.2015.01.015


60.
Li C, Zhou L. Inhibitory effect 6-gingerol on adipogenesis through activation of the Wnt/β-catenin signaling pathway in 3T3-L1 adipocytes. Toxicol In Vitro 2015; 30(1 Pt B): 394–401. doi: 10.1016/j.tiv.2015.09.023


61.
Dugasani S, Pichika MR, Nadarajah VD, Balijepalli MK, Tandra S, Korlakunta JN. Comparative antioxidant and anti-inflammatory effects of [6]-gingerol, [8]-gingerol, [10]-gingerol and [6]-shogaol. J Ethnopharmacol 2010; 127(2): 515–20. doi: 10.1016/j.jep.2009.10.004


62.
Brahma Naidu P, Uddandrao VV, Ravindar Naik R, Suresh P, Meriga B, Begum MS, et al. Ameliorative potential of gingerol: promising modulation of inflammatory factors and lipid marker enzymes expressions in HFD induced obesity in rats. Mol Cell Endocrinol 2016; 419: 139–47. doi: 10.1016/j.mce.2015.10.007


63.
Li H, Rafie R, Xu Z, Siddiqui RA. Phytochemical profile and anti-oxidation activity changes during ginger (Zingiber officinale) harvest: baby ginger attenuates lipid accumulation and ameliorates glucose uptake in HepG2 cells. Food Sci Nutr 2022; 10(1): 133–44. doi: 10.1002/fsn3.2654


64.
Wu D, Yotnda P. Production and detection of reactive oxygen species (ROS) in cancers. J Vis Exp 2011; (57): 3357. doi: 10.3791/3357


65.
Reed BC, Lane MD. Insulin receptor synthesis and turnover in differentiating 3T3-L1 preadipocytes. Proc Natl Acad Sci U S A 1980; 77(1): 285–9. doi: 10.1073/pnas.77.1.285


66.
Siddiqui RA, Xu Z, Harvey KA, Pavlina TM, Becker MJ, Zaloga GP. Comparative study of the modulation of fructose/sucrose-induced hepatic steatosis by mixed lipid formulations varying in unsaturated fatty acid content. Nutr Metab (Lond) 2015; 12: 41. doi: 10.1186/s12986-015-0038-x


67.
Al-Shaya HM, Li H, Beg OU, Hamama AA, Witiak SM, Kaseloo P, et al. Phytochemical profile and antioxidation activity of annona fruit and its effect on lymphoma cell proliferation. Food Sci Nutr 2020; 8(1): 58–68. doi: 10.1002/fsn3.1228


68.
McGowan MW, Artiss JD, Strandbergh DR, Zak B. A peroxidase-coupled method for the colorimetric determination of serum triglycerides. Clin Chem 1983; 29(3): 538–42. doi: 10.1093/clinchem/29.3.538


69.
Hudgins LC, Hellerstein M, Seidman C, Neese R, Diakun J, Hirsch J. Human fatty acid synthesis is stimulated by a eucaloric low fat, high carbohydrate diet. J Clin Invest 1996; 97(9): 2081–91. doi: 10.1172/JCI118645


70.
Chong MF, Hodson L, Bickerton AS, Roberts R, Neville M, Karpe F, et al. Parallel activation of de novo lipogenesis and stearoyl-CoA desaturase activity after 3 d of high-carbohydrate feeding. Am J Clin Nutr 2008; 87(4): 817–23. doi: 10.1093/ajcn/87.4.817


71.
Mai K, Andres J, Bobbert T, Assmann A, Biedasek K, Diederich S, et al. Rosiglitazone increases fatty acid Δ9-desaturation and decreases elongase activity index in human skeletal muscle in vivo. Metabolism 2012; 61(1): 108–16. doi: 10.1016/j.metabol.2011.05.018


72.
Chen Y, Zhang J, Zhang XY. 2-NBDG as a marker for detecting glucose uptake in reactive astrocytes exposed to oxygen-glucose deprivation in vitro. J Mol Neurosci 2015; 55(1): 126–30. doi: 10.1007/s12031-014-0385-5


73.
Etesami B, Ghaseminezhad S, Nowrouzi A, Rashidipour M, Yazdanparast R. Investigation of 3T3-L1 cell differentiation to adipocyte, affected by aqueous seed extract of. Rep Biochem Mol Biol 2020; 9(1): 14–25. doi: 10.29252/rbmb.9.1.14


74.
Jiang T, Shi X, Yan Z, Wang X, Gun S. Isoimperatorin enhances 3T3-L1 preadipocyte differentiation by regulating PPARγ and C/EBPα through the Akt signaling pathway. Exp Ther Med 2019; 18(3): 2160–6. doi: 10.3892/etm.2019.7820


75.
Sun NN, Wu TY, Chau CF. Natural dietary and herbal products in anti-obesity treatment. Molecules 2016; 21(10): 1351. doi: 10.3390/molecules21101351


76.
Liu K, Luo M, Wei S. The bioprotective effects of polyphenols on metabolic syndrome against oxidative stress: evidences and perspectives. Oxid Med Cell Longev 2019; 2019: 6713194. doi: 10.1155/2019/6713194


77.
Surh YJ, Lee E, Lee JM. Chemoprotective properties of some pungent ingredients present in red pepper and ginger. Mutat Res 1998; 402: 259–67. doi: 10.1016/S0027-5107(97)00305-9


78.
White B. Ginger: an overview. Am Fam Physician 2007; 75(11): 1689–91.


79.
Shanmugam MK, Lee JH, Chai EZ, Kanchi MM, Kar S, Arfuso F, et al. Cancer prevention and therapy through the modulation of transcription factors by bioactive natural compounds. Semin Cancer Biol 2016; 40–41: 35–47. doi: 10.1016/j.semcancer.2016.03.005


80.
Ghasemzadeh A, Jaafar H. Effect of salicylic acid application on biochemical changes in ginger (Zingiber officinale Roscoe). J Med Plants Res 2012; 6: 790–5. doi: 10.5897/JMPR11.1459


81.
Chen H, Fu J, Hu Y, Soroka DN, Prigge JR, Schmidt EE, et al. Ginger compound [6]-shogaol and its cysteine-conjugated metabolite (M2) activate Nrf2 in colon epithelial cells in vitro and in vivo. Chem Res Toxicol 2014; 27(9): 1575–85. doi: 10.1021/tx500211x


82.
Kanda Y, Hinata T, Kang SW, Watanabe Y. Reactive oxygen species mediate adipocyte differentiation in mesenchymal stem cells. Life Sci 2011; 89(7–8): 250–8. doi: 10.1016/j.lfs.2011.06.007


83.
Higuchi M, Dusting GJ, Peshavariya H, Jiang F, Hsiao ST, Chan EC, et al. Differentiation of human adipose-derived stem cells into fat involves reactive oxygen species and forkhead box O1 mediated upregulation of antioxidant enzymes. Stem Cells Dev 2013; 22(6): 878–88. doi: 10.1089/scd.2012.0306


84.
Carrière A, Carmona MC, Fernandez Y, Rigoulet M, Wenger RH, Pénicaud L, et al. Mitochondrial reactive oxygen species control the transcription factor CHOP-10/GADD153 and adipocyte differentiation: a mechanism for hypoxia-dependent effect. J Biol Chem 2004; 279(39): 40462–9. doi: 10.1074/jbc.M407258200


85.
Noipha K, Ratanachaiyavong S, Ninla-Aesong P. Enhancement of glucose transport by selected plant foods in muscle cell line L6. Diabetes Res Clin Pract 2010; 89(2): e22–6. doi: 10.1016/j.diabres.2010.04.021


86.
Oh S, Lee MS, Jung S, Kim S, Park H, Park S, et al. Ginger extract increases muscle mitochondrial biogenesis and serum HDL-cholesterol level in high-fat diet-fed rats. J Funct Foods 2017; 29: 193–200. doi: 10.1016/j.jff.2016.12.023


87.
Fischer-Rasmussen W, Kjaer SK, Dahl C, Asping U. Ginger treatment of hyperemesis gravidarum. Eur J Obstet Gynecol Reprod Biol 1991; 38(1): 19–24. doi: 10.1016/0028-2243(91)90202-V


88.
Portnoi G, Chng LA, Karimi-Tabesh L, Koren G, Tan MP, Einarson A. Prospective comparative study of the safety and effectiveness of ginger for the treatment of nausea and vomiting in pregnancy. Am J Obstet Gynecol 2003; 189(5): 1374–7. doi: 10.1067/S0002-9378(03)00649-5


89.
Ahd K, Dhibi S, Akermi S, Bouzenna H, Samout N, Elfeki A, et al. Protective effect of ginger (Zingiber officinale) against PCB-induced acute hepatotoxicity in male rats. RSC Adv 2019; 9(50): 29120–30. doi: 10.1039/C9RA03136G


90.
Plengsuriyakarn T, Viyanant V, Eursitthichai V, Tesana S, Chaijaroenkul W, Itharat A, et al. Cytotoxicity, toxicity, and anticancer activity of Zingiber officinale Roscoe against cholangiocarcinoma. Asian Pac J Cancer Prev 2012; 13(9): 4597–606. doi: 10.7314/APJCP.2012.13.9.4597


91.
Plengsuriyakarn T, Na-Bangchang K. Preclinical toxicology and anticholangiocarcinoma activity of oral formulation of standardized extract of zingiber officinale. Planta Med 2020; 86(2): 104–12. doi: 10.1055/a-1037-4081


92.
Rong X, Peng G, Suzuki T, Yang Q, Yamahara J, Li Y. A 35-day gavage safety assessment of ginger in rats. Regul Toxicol Pharmacol 2009; 54(2): 118–23. doi: 10.1016/j.yrtph.2009.03.002


93.
Jeena K, Liju VB, Kuttan R. A preliminary 13-week oral toxicity study of ginger oil in male and female Wistar rats. Int J Toxicol 2011; 30(6): 662–70. doi: 10.1177/1091581811419023


94.
Park SH, Jung SJ, Choi EK, Ha KC, Baek HI, Park YK, et al. The effects of steamed ginger ethanolic extract on weight and body fat loss: a randomized, double-blind, placebo-controlled clinical trial. Food Sci Biotechnol 2020; 29(2): 265–73. doi: 10.1007/s10068-019-00649-x


95.
Kim YJ, Choi J-S. Single-dose oral toxicity and acute dermal irritation ofsteamed and dried gingerextract in rat and white rabbit. J Anim Plant Sci 2017; 27(6): 1822–8.


96.
Lete I, Allué J. The effectiveness of ginger in the prevention of nausea and vomiting during pregnancy and chemotherapy. Integr Med Insights 2016; 11: 11–17. doi: 10.4137/IMI.S36273


97.
Marx WM, Teleni L, McCarthy AL, Vitetta L, McKavanagh D, Thomson D, et al. Ginger (Zingiber officinale) and chemotherapy-induced nausea and vomiting: a systematic literature review. Nutr Rev 2013; 71(4): 245–54. doi: 10.1111/nure.12016


98.
Srivastava KC. Isolation and effects of some ginger components of platelet aggregation and eicosanoid biosynthesis. Prostaglandins Leukot Med 1986; 25(2–3): 187–98. doi: 10.1016/0262-1746(86)90065-X


99.
Kim SY, Jang YJ, Park B, Yim JH, Lee HK, Rhee DK, et al. Ramalin inhibits differentiation of 3T3-L1 preadipocytes and suppresses adiposity and body weight in a high-fat diet-fed C57BL/6J mice. Chem Biol Interact 2016; 257: 71–80. doi: 10.1016/j.cbi.2016.07.034


100.
Calderon-Dominguez M, Mir JF, Fucho R, Weber M, Serra D, Herrero L. Fatty acid metabolism and the basis of brown adipose tissue function. Adipocyte 2016; 5(2): 98–118. doi: 10.1080/21623945.2015.1122857


101.
Sekiya K, Ohtani A, Kusano S. Enhancement of insulin sensitivity in adipocytes by ginger. Biofactors 2004; 22(1–4): 153–6. doi: 10.1002/biof.5520220130


102.
Wei CK, Tsai YH, Korinek M, Hung PH, El-Shazly M, Cheng YB, et al. 6-Paradol and 6-shogaol, the pungent compounds of ginger, promote glucose utilization in adipocytes and myotubes, and 6-paradol reduces blood glucose in high-fat diet-fed mice. Int J Mol Sci 2017; 18(1): 168. doi: 10.3390/ijms18010168


103.
Ali F, Ismail A, Esa NM, Pei CP. Transcriptomics expression analysis to unveil the molecular mechanisms underlying the cocoa polyphenol treatment in diet-induced obesity rats. Genomics 2015; 105(1): 23–30. doi: 10.1016/j.ygeno.2014.11.002


104.
Abdulrazaq NB, Cho MM, Win NN, Zaman R, Rahman MT. Beneficial effects of ginger (Zingiber officinale) on carbohydrate metabolism in streptozotocin-induced diabetic rats. Br J Nutr 2012; 108(7): 1194–201. doi: 10.1017/S0007114511006635


105.
Guo L, Li X, Tang QQ. Transcriptional regulation of adipocyte differentiation: a central role for CCAAT/enhancer-binding protein (C/EBP) β. J Biol Chem 2015; 290(2): 755–61. doi: 10.1074/jbc.R114.619957


106.
Tang QQ, Lane MD. Activation and centromeric localization of CCAAT/enhancer-binding proteins during the mitotic clonal expansion of adipocyte differentiation. Genes Dev 1999; 13(17): 2231–41. doi: 10.1101/gad.13.17.2231


107.
Tzeng TF, Liu IM. 6-gingerol prevents adipogenesis and the accumulation of cytoplasmic lipid droplets in 3T3-L1 cells. Phytomedicine 2013; 20(6): 481–7. doi: 10.1016/j.phymed.2012.12.006

108.
Tontonoz P, Spiegelman BM. Fat and beyond: the diverse biology of PPARgamma. Annu Rev Biochem 2008; 77: 289–312. doi: 10.1146/annurev.biochem.77.061307.091829


109.
Okamoto Y, Kihara S, Ouchi N, Nishida M, Arita Y, Kumada M, et al. Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice. Circulation 2002; 106(22): 2767–70. doi: 10.1161/01.CIR.0000042707.50032.19

110.
Fruebis J, Tsao TS, Javorschi S, Ebbets-Reed D, Erickson MR, Yen FT, et al. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc Natl Acad Sci U S A 2001; 98(4): 2005–10. doi: 10.1073/pnas.98.4.2005


111.
Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 2002; 8(11): 1288–95. doi: 10.1038/nm788


112.
Yang WS, Lee WJ, Funahashi T, Tanaka S, Matsuzawa Y, Chao CL, et al. Weight reduction increases plasma levels of an adipose-derived anti-inflammatory protein, adiponectin. J Clin Endocrinol Metab 2001; 86(8): 3815–19. doi: 10.1210/jcem.86.8.7741


113.
Nawrocki AR, Rajala MW, Tomas E, Pajvani UB, Saha AK, Trumbauer ME, et al. Mice lacking adiponectin show decreased hepatic insulin sensitivity and reduced responsiveness to peroxisome proliferator-activated receptor gamma agonists. J Biol Chem 2006; 281(5): 2654–60. doi: 10.1074/jbc.M505311200


114.
Achari AE, Jain SK. Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. Int J Mol Sci 2017; 18(6): 1321. doi: 10.3390/ijms18061321


115.
Kim JY, Van De Wall E, Laplante M, Azzara A, Trujillo ME, Hofmann SM, et al. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J Clin Invest 2007; 117(9): 2621–37. doi: 10.1172/JCI31021


116.
Astapova O, Leff T. Adiponectin and PPARγ: cooperative and interdependent actions of two key regulators of metabolism. Vitam Horm 2012; 90: 143–62. doi: 10.1016/B978-0-12-398313-8.00006-3


117.
Ishtiaq SM, Rashid H, Hussain Z, Arshad MI, Khan JA. Adiponectin and PPAR: a setup for intricate crosstalk between obesity and non-alcoholic fatty liver disease. Rev Endocr Metab Disord 2019; 20(3): 253–61. doi: 10.1007/s11154-019-09510-2


118.
Combs TP, Wagner JA, Berger J, Doebber T, Wang WJ, Zhang BB, et al. Induction of adipocyte complement-related protein of 30 kilodaltons by PPARgamma agonists: a potential mechanism of insulin sensitization. Endocrinology 2002; 143(3): 998–1007. doi: 10.1210/endo.143.3.8662


119.
Phillips SA, Ciaraldi TP, Kong AP, Bandukwala R, Aroda V, Carter L, et al. Modulation of circulating and adipose tissue adiponectin levels by antidiabetic therapy. Diabetes 2003; 52(3): 667–74. doi: 10.2337/diabetes.52.3.667


120.
Yu JG, Javorschi S, Hevener AL, Kruszynska YT, Norman RA, Sinha M, et al. The effect of thiazolidinediones on plasma adiponectin levels in normal, obese, and type 2 diabetic subjects. Diabetes 2002; 51(10): 2968–74. doi: 10.2337/diabetes.51.10.2968


121.
Riera-Guardia N, Rothenbacher D. The effect of thiazolidinediones on adiponectin serum level: a meta-analysis. Diabetes Obes Metab 2008; 10(5): 367–75. doi: 10.1111/j.1463-1326.2007.00755.x


122.
Sam S, Haffner S, Davidson MH, D’Agostino R, Perez A, Mazzone T. Pioglitazone-mediated changes in lipoprotein particle composition are predicted by changes in adiponectin level in type 2 diabetes. J Clin Endocrinol Metab 2012; 97(1): E110–14. doi: 10.1210/jc.2011-1699
Published
2023-03-02
How to Cite
Li H., Rafie A. R., Hamama A., & Siddiqui R. A. (2023). Immature ginger reduces triglyceride accumulation by downregulating Acyl CoA carboxylase and phosphoenolpyruvate carboxykinase-1 genes in 3T3-L1 adipocytes. Food & Nutrition Research, 67. https://doi.org/10.29219/fnr.v67.9126
Section
Original Articles