Corn peptides attenuate non-alcoholic fatty liver disease via PINK1/Parkin-mediated mitochondrial autophagy
Abstract
Background: Corn peptides, a novel food prepared from corn gluten meal (CGM) by enzymatic hydrolysis or microbial fermentation, have attracted considerable interest owing to their various bioactive properties. However, the underlying mechanism of corn peptides attenuate non-alcoholic fatty liver disease (NAFLD) remains unclear.
Objective: This study aimed to investigate the effect of corn peptides in NAFLD and to decipher the underlying mechanisms.
Design: NAFLD was induced by a high-fat diet (HFD) for 10 weeks. Corn peptides were administered during the period. Human hepatocellular carcinomas (HepG2) cells induced by free fatty acids were used for this mechanism study.
Results: Corn peptides alleviated HFD-induced histopathological changes, disorders of lipid metabolism, and mitochondrial damage. Moreover, corn peptides blocked mitophagy suppression by HFD based on the increased LC3, ATG7 expressions, as well as decreased P62 levels. Corn peptides increased the expression of proteins involved in fatty acid β-oxidation, such as PPARα and PGC-1α. Corn peptides also improved the Ser/Thr kinase PINK1 (PINK1) and the E3 ubiquitin ligase Parkin (Parkin) translocation to mitochondria, which is confirmed by immunofluorescence. Furthermore, stable knockdown of PINK1 by PINK1 SiRNA in HepG2 inhibited PINK1-Parkin-associated mitophagy and resulted in lipid accumulation.
Conclusion: Corn peptides improved cell injury and ameliorated mitochondrial dysfunction and lipid accumulation via PINK1/Parkin-mediated autophagy in NAFLD. Thus, corn peptides could be a promising nutritional molecule with natural functions for preventing NAFLD.
Downloads
References
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright of their work, with first publication rights granted to SNF Swedish Nutrition Foundation. Read the full Copyright- and Licensing Statement.