Antidiabetic and antihyperlipidemic activities of Phyllanthus emblica L. extract in vitro and the regulation of Akt phosphorylation, gluconeogenesis, and peroxisome proliferator-activated receptor α in streptozotocin-induced diabetic mice

  • Shin-Ming Huang Department of Gastroenterology, Jen-Ai Hospital, Dali Branch, Taichung City, Taiwan
  • Cheng-Hsiu Lin Department of Internal Medicine, Fengyuan Hospital, Ministry of Health and Welfare, Taichung City, Taiwan
  • Wen-Fang Chang Department of Cardiology, Jen-Ai Hospital, Taichung City, Taiwan
  • Chun-Ching Shih Department of Nursing, College of Nursing, Central Taiwan University of Science and Technology, Taichung City, Taiwan
Keywords: diabetes, streptozotocin, Phyllanthus emblica L, antihyperlipidemic, gluconeogenesis, insulin-expressing β cells

Abstract

Background: The fruits of Phyllanthus emblica L. are high in nutrients and have excellent health care function and developmental value. There are many management strategies available for diabetes and hyperlipidemia. Nevertheless, there is a lack of an effective and nontoxic drug.

Objective: The present study was designed to first screen four extracts of P. emblica L. on insulin signaling target gene expression levels, including glucose transporter 4 (GLUT4) and p-Akt/t-Akt. The ethyl acetate extract of P. emblica L. (EPE) exhibited the most efficient activity among the four extracts and was thus chosen to explore the antidiabetic and antihyperlipidemic activities in streptozotocin (STZ)-induced type 1 diabetic mice.

Design: All mice (in addition to one control (CON) group) were administered STZ injections (intraperitoneal) for 5 consecutive days, and then STZ-induced mice were administered EPE (at 100, 200, or 400 mg/kg body weight), fenofibrate (Feno) (at 250 mg/kg body weight), glibenclamide (Glib) (at 10 mg/kg body weight), or vehicle by oral gavage once daily for 4 weeks. Finally, histological examination, blood biochemical parameters, and target gene mRNA expression levels were measured, and liver tissue was analyzed for the levels of malondialdehyde (MDA), a maker of lipid peroxidation.

Results: EPE treatment resulted in decreased levels of blood glucose, HbA1C, triglycerides (TGs), and total cholesterol and increased levels of insulin compared with the vehicle-treated STZ group. EPE treatment decreased blood levels of HbA1C and MDA but increased glutathione levels in liver tissue, implying that EPE exerts antioxidant activity and could prevent oxidative stress and diabetes. The EPE-treated STZ mice displayed an improvement in the sizes and numbers of insulin-expressing β cells. EPE treatment increased the membrane expression levels of skeletal muscular GLUT4, and also reduced hepatic mRNA levels of glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase thereby inhibiting hepatic gluconeogenesis. This resulted in a net glucose lowering effect in EPE-treated STZ mice. Furthermore, EPE increased the expression levels of p-AMPK/t-AMPK in both the skeletal muscle and liver tissue compared with vehicle-treated STZ mice. EPE-treated STZ mice showed enhanced expression levels of fatty acid oxidation enzymes, including peroxisome proliferator-activated receptor α (PPARα), but reduced expression levels of lipogenic genes including fatty acid synthase, as well as decreased mRNA levels of sterol regulatory element binding protein 1c (SREBP1c), apolipoprotein-CIII (apo-CIII), and diacylglycerol acyltransferase-2 (DGAT2). This resulted in a reduction in plasma TG levels. EPE-treated STZ mice also showed reduced expression levels of PPAR γ. This resulted in decreased adipogenesis, fatty acid synthesis, and lipid accumulation within liver tissue, and consequently, lower TG levels in liver tissue and blood. Furthermore, EPE treatment not only displayed an increase in the Akt activation in liver tissue, but also in C2C12 myotube in the absence of insulin. These results implied that EPE acts as an activator of AMPK and /or as a regulator of the insulin (Akt) pathway.

Downloads

Download data is not yet available.

References


1.
Daneman D. Type 1 diabetes. Lancet 2006; 367(9513): 847–58. doi: 10.1016/S0140-6736(18)31320-5


2.
Atkinson MA, Maclaren NK. The pathogenesis of insulin dependent diabetes mellitus. N Engl J Med 1994; 331(21); 1428–36. doi: 10.1056/NEJM199411243312107


3.
Roep BO, Kallan AA, De Vries RR. Beta-cell antigen-specific lysis of macrophages by CD4 T-cell clones from newly diagnosed IDDM patient, A putative mechanism of T-cell-mediated autoimmune islet cell destruction. Diabetes 1992; 41(11): 1380–4. doi: 10.2337/DIAB.41.11.1380


4.
Chiang JL, Kirkman MS, Laffel LM, Peters AL, Type 1 Diabetes Sourcebook Authors. Type 1 diabetes through the life span: a position statement of the American Diabetes Association. Diabetes Care 2014; 37(7): 2034–54. doi: 10.2337/dc14-1140


5.
Scartezzini P, Speroni E. Review on some plants of Indian traditional medicine with antioxidant activity. J Ethnopharmacol 2000; 71(1–2): 23–43. doi: 10.1016/S0378-8741(00)00213-0


6.
Tanaka T, Yang CR, Kouno I. Phyllanemblinins A-F, new ellagitannins from Phyllanthus emblica. J Nat Prod 2001; 64(12): 1527–32. doi: 10.1021/np010370g


7.
Kumaran A, Karunakaran RJ. Nitric oxide radical scavenging active components from Phyllanthus emblica L. Plant Foods Hum Nutr 2006; 61(1): 1–5. doi: 10.1007/s11130-006-0001-0


8.
Poltanov EA, Shikov AN, Dorman H, Pozharistskaya ON, Makarov VG, Tikhonov VP, et al. Chemical and antioxidant evaluation of Indian gooseberry (Emblica officinalis Gaertn., syn. Phyllanthus emblica L.) supplements. Phytother Res 2009; 23(9): 1309–15. doi: 10.1002/ptr.2775


9.
Babu PS, Prince PSM. Antihyperglycaemic and antioxidant effect of hyponidd, an ayurvedic herbomineral formulation in streptozotocin-induced diabetic rats. J Pharm Pharmacol 2004; 56(11): 1435–42. doi: 10.1211/0022357044607


10.
Naik GH, Priyadarsini KI, Bhagirathi RG, Mishra B, Mishra KP, Banavalikar MM, et al. In vitro antioxidant studies and free radical reactions of triphala, an ayurvedic formulation and its constituents. Phytother Res 2005; 19(7): 582–6. doi: 10.1002/ptr.1515


11.
Rao TP, Sakaguchi N, Juneja LR, Wada E, Yokozawa T. Amla (Emblica officinalis Gaertn.) extracts reduce oxidative stress in streptozotocin-induced diabetic rats. J Med Food 2005; 8(3): 362–8. doi: 10.1089/jmf.2005.8.362


12.
Liu X, Zhao M, Wang J, Yang B, Jiang Y. Antioxidant activity of methanolic extract of emblica fruit (Phyllanthus emblica L.) from six regions in China. J Food Compos Anal 2008; 21(3): 219–28. doi: 10.1016/j.jfca.2007.10.001


13.
Al-Rehaily AJ, Al-Howiriny TS, Al-Sohaibani MO, Rafatullah S. Gastroprotective effects of ‘Amla’ Emblica officinalis on in vivo test models in rats. Phytomedicine 2002; 9(6): 515–22. doi: 10.1078/09447110260573146


14.
Nosalova G, Mokry J, Hassan KMT. Antitussive activity of the fruit extract of Emblica offinalis Gaertn. (Euphorbiaceae). Phytomedicine 2003; 10(6–7): 583–9. doi: 10.1078/094471103322331872


15.
Hazra B, Sarkar R, Biswas S, Mandal N. Comparative study of the antioxidant and reactive oxygen species scavenging properties in the extracts of the fruits of Terminalia chebula, Terminalia belerica and Emblica officinalis. BMC Complement Altern Med 2010; 10(1): 20. doi: 10.1186/1472-6882-10-20


16.
Anila L, Vijayalakshmi NR. Beneficial effects of flavonoids from Sesamum indicum, Emblica officinalis and Momordica charantia. Phytother Res 2000; 14(8): 592–5. doi: 10.1002/1099-1573(200012)14:8<592::aid-ptr772>3.0.co;2-#


17.
Tahir I, Khan MR, Shah NA, Aftab M. Evaluation of phytochemicals, antioxidant activity and amelioration of pulmonary fibrosis with Phyllanthus emblica leaves. BMC Complement Altern Med 2016; 16(1): 406. doi: 10.1186/s12906-016-1387-3


18.
Lund S, Holman GD, Schmitz O, Pedersen O. Contraction stimulates translocation of glucose transporter GLUT4 in skeletal muscle through a mechanism distinct from that of insulin. Proc Natl Acad Sci the U S A 1995; 92: 5817–21. doi: 101073/pnas.92.13.5817


19.
Joost HG, Bell GI, Best JD, Birnbaum MJ, Charron MJ, Chen YT, et al. Nomenclature of the GLUT4/SLC2A family of sugar/polyol transport facilitators. Am J Physiol Endocrinol Metab 2002; 282(4): E974–6. doi: 10.1152/ajpendo.00407.2001


20.
Bogan JS, McKee AE, Lodish HF. Insulin-responsive compartments containing GLUT4 in 3T3-L1 and CHO cells: regulation by amino acid concentrations. Mol Cell Biol 2001; 21(14): 4785–806. doi: 10.1128/MCB.21.14.4785-4806.2001


21.
Zang M, Xu S, Maitland-Toolan K, Zuccollo A, Hou X, Jiang B, et al. Polyphenols stimulate AMP-activated protein kinase, lower lipids, and inhibit accelerated atherosclerosis in diabetic LDL receptor-deficient mice. Diabetes 2006; 55: 2180–91. doi: 10.2337/db05-1188


22.
Berg JM, Tymoczko JL, Stryer L. Glycolysis and glyconeogenesis. In: Berg JM, Tymoczko JL, eds. Stryer biochemistry. New York, NY: Freeman; 2001, pp. 425–64.


23.
Hayashi K, Kojima R, Ilo M. Strain differences in the diabetogenic activity of streptozotocin in mice. Biol Pharm Bull 2006; 29(6): 1110–19. doi: 10.1248/bpb.29.1110


24.
Tian HL, Wei LS, Xu ZX. Correlations between blood glucose level and diabetes signs in streptozotocin-induced diabetic mice. Global J Pharmacol 2010; 4(3): 111–16.


25.
Yin H, Miao J, Zhang Y. Protective effect of β-casomorphin-7 on type 1 diabetes rats induced with streptozotocin. Peptides 2010; 31(9): 1725–9. doi: 10.1016/j.peptides.2010.05.016


26.
Tomlison KC, Cardiner SM, Hebden RA. Functional consequences of streptozotocin induced diabetes mellitus, with particular reference to the cardiovascular system. Pharmacol Rev 1992; 44(1): 103–50.


27.
Al Nahdi AMT, John A, Raza H. Elucidation of molecular mechanisms of streptozotocin-induced oxidative stress, apoptosis, and mitochondrial dysfunction in Rin-5F pancreatic β-cells. Oxid Med Cell Longev 2017; 2017: 7054272. doi: 10.1155/2017/7054272


28.
Li Z, Karlsson FA, Sandler S. Islet loss and alpha cell expansion in type 1 diabetes induced by multiple low-dose streptozotocin administration in mice. J Endocrinol 2000; 165(1): 93–9. doi: 10.1677/joe.0.1650093


29.
Lin CH, Kuo YH, Shih CC. Antidiabetic and antihyperlipidemic effects of sulphurenic acid, a triterpenoid compound from Antrodia camphorata, in streptozotocin-induced diabetic mice. Int J Mol Sci 2019; 20(19): 4897. doi: 10.3390/ijms20194897


30.
Aguilar-Bryan L, Nichols CG, Wechsler SW, Clement JP, Boyd AE, Gonzalez G, et al. Cloning the β cell high-affinity sulfonylurea receptor: a regulator of insulin secretion. Science 1995; 268(5209): 423–6. doi: 10.1126/science.7716547


31.
Harano Y, Yasui K, Toyama T, Nakajima T, Mitsuyoshi H, Mimani M, et al. Fenofibrate, a peroxisome proliferator-activated receptor alpha agonist, reduces hepatic steatosis and lipid peroxidation in fatty liver Shionogi mice with hereditary fatty liver. Liver Int 2006; 26(5): 613–20. doi: 10.1111/j.1478-3231.2006.01265.x


32.
Gry giel-Gόrniak B. Peroxisome proliferator activated-receptors and their ligands: nutritional and clinical implications – a review. Nutr J 2014; 13: 17. doi: 10.1186/1475-2891-13-17


33.
Lin CH, Kuo YH, Shih CC. Antidiabetic and immunoregulatory activities of extract of Phyllanthus emblica L. in NOD with spontaneous and cyclophosphamide-accelerated diabetic mice. Int J Mol Sci 2023; 24: 9922. doi: 10.3390/ijms24129922


34.
Lin CH, Wu JB, Jian JY, Shih CC. (–)-Epicatechin-3-O-β-D-allopyranoside from Davallia formosana prevents diabetes and dyslipidemia in streptozotocin-induced diabetic mice. PLoS One 2017; 12(3): e0173984. doi: 10.1371/journal.pone.0173984


35.
Lin CH, Kuo YH, Shih CC. Antidiabetic and hypolipidemic activities of eburicoic acid, a triterpenoid compound from Antrodia camphorata by regulation of Akt phosphorylation, gluconeogenesis, and PPARα in streptozotocin-induced diabetic mice. RSC Adv 2018; 8: 20462–7. doi: 10.1039/C8RA01841C


36.
Elsner M, Guldbakke B, Tiedge M, Munday R, Lenzen S. Relative importance of transport and alkylation for pancreatic beta-cell toxicity of streptozotocin. Diabetologia 2004; 43: 1528–33. doi: 10.1007/s001250051564


37.
Szkudelski T. The mechanism of alloxan and streptozotocin action in β cells of the rat pancreas. Physiol Res 2001; 50: 537–46. doi: 10.1007/s00125-007-0886-7


38.
Coskun O, Kanter M, Korkmaz A, Oter S. Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and beta-cell damage in rat pancreas. Pharmacol Res 2005; 51(2): 117–23. doi: 10.1016/j.phrs.2004.06.002


39.
Huebschmann AG, Regensteiner JG, Vlassara H, Reusch JE. Diabetes and advanced glycoxidation end products. Diabetes Care 2006; 29(6): 1420–32. doi: 10.2337/dc05-2096


40.
Kaneto H, Kajimoto Y, Miyagawa J, Matsuoka T, Fujitani Y, Umayahara Y, et al. Beneficial effects of antioxidants in diabetes: possible protection of pancreatic β-cells against glucose toxicity. Diabetes 1999; 48(12): 2398–406. doi: 10.2337/diabetes.48.12.2398


41.
Scalbert A, Manach C, Morand C, Rémésy C, Jiménez L. Dietary polyphenols and the prevention of diseases. Crit Rev Food Sci Nutr 2005; 45: 287–300. doi: 10.1080/1040869059096


42.
Orhan OO, Orhan N, Ergun E, Ergun F. Hepatoprotective effect of Vitis vinifera L. leaves on carbon tetrachloride-induced acute liver damage in rats. J Ethnopharmacol 2007; 112(1): 145–51. doi: 10.1016/j.jep.2007.02.013


43.
Wang Y, Xiang L, Wang C, Tang C, He X. Antidiabetic and antioxidant effects and phytochemicals of mulberry fruit (Morus alba L.) polyphenol enhanced extract. PLoS One 2013; 8(7): e71144. doi: 10.1371/journal.pone.0071144


44.
Sanchez-Valle V, Chavez-Tapia NC, Uribe M, Mendez-Sanchez N. Role of oxidative stress and molecular changes in liver fibrosis: a review. Curr Med Chem 2012; 19: 4850–60. doi: 10.2174/092986712803341520


45.
Kang C, Jin YB, Lee H, Cha M, Sohn E, Moon J, et al. Brown alga Ecklonia cava attenuates type 1 diabetes by activating AMPK and Akt signaling pathways. Food Chem Toxicol 2010; 48: 509–16. doi: 10.101016/j.fct.2009.11.004


46.
Law M, Wang XL, Law B, Hall RK, Nawano M, Granner D. Epigallocatechin gallate, a constituent of green tea, represses hepatic glucose production. J Biol Chem 2002; 277: 34933–40. doi: 10.1074/JBC.m204672200


47.
Cheng JT, Liu IM. Stimulatory effect of caffeic acid on a 1A-adrenoceptors to increase glucose uptake into cultured C2C12 cells. Naunyn Schmieebergs Arch Pharmacol 2000; 362: 122–7. doi: 10.1007/s002100000274


48.
Ohno T, Kato N, Ishii C, Shimizu M, Ito Y, Tomono S, et al. Genistein augments cyclic adenosine 3’5’-monophosphate (cAMP) accumulation and insulin release in MIN6 cells. Endocr Res 1993; 19(4): 273–85. doi: 10.1080/07435809309026682


49.
Minokoshi Y, Kahn CR, Kahn BB. Tissue-specific ablation of the GLUT4 glucose transporter or the insulin receptor challenges assumptions about insulin and glucose homeostasis. J Biol Chem 2003; 278(36): 33609–12. doi: 10.1074/jbc.R300019200


50.
Long YC, Zierath ZR. AMP-activated protein kinase signaling in metabolic regulation. J Clin Invest 2006; 116(7): 1176–83. doi: 10.1172/JCI29044


51.
Oh KJ, Han HS, Kim MJ, Koo SH. CREBP and Fox O1: two transcription factors for the regulation of hepatic gluconeogenesis. BMB Reports Online 2013; 46(12): 567–74. doi: 10.5483/BMBRep.2013.46.12.248


52.
Choi JS, Yokozawa T, Oura H. Improvement of hyperglycemia and hyperlipidemia in streptozotocin-diabetic rats by a methanolic extract of Prunus davidiana stems and its main component, pruning. Planta Med 1991; 57(3): 208–11. doi: 10.1055/s-2006-960075


53.
Sharma SR, Dwivedi SK, Swaruo D. Hypoglycaemic and hypolipidemic effects of Cinnmomum tamala Nees leaves. Indian J Exp Biol 1996; 34: 372–4.


54.
Shimano H, Shimomura I, Hammer RE, Herz J, Goldstein JL, Brown MS, et al. Elevated levels of SREBP-2 and cholesterol synthesis in livers of mice homozygous for a targeted disruption of the SREBP-1 gene. J Clin Invest 1997; 100(8): 2115–24. doi: 10.1172/JCI119746


55.
Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 2002; 8(11): 1288–95. doi: 10.1038/nm788


56.
Minokoshi Y, Kim YB, Peroni OD, Fryer LG, Muller C, Carling D, et al. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein. Nature 2002; 415(6869): 339–43. doi: 10.1038/415339a


57.
Wang M-Y, Chen L, Clark GO, Lee Y, Stevens RD, Ilkayeva OR, et al. Leptin therapy in insulin-deficient type 1 diabetes. Proc Natl Acad Sci U S A 2010; 107(11): 4813–19. doi: 10.1073/pnas.0909422107


58.
Wakil S. Fatty acid synthase, a proficient multifunctional enzyme. Biochemistry 1989; 28(11): 4523–30. doi: 10.1021/bi00437a001


59.
Staels B, Fruchart JC. Therapeutic roles of peroxisome proliferator-activated receptor agonists. Diabetes 2005; 54(8): 2460–70. doi: 10.2337/diabetes.54.8.2460


60.
Ferré P, Foufelle F. Hepatic steatosis: a role for de novo lipogenesis and the transcription factor SREBP-1c. Diabetes Obes Metab 2010; 12(Suppl 2): 83–92. doi: 10.1111/j.1463-1326.2010.01275.x


61.
Jin Y, McFie PJ, Banman SL, Brandt C, Stone SJ. Diacylglycerol acyltransferase-2 (DGAT2) and monoacyltransferase-2 (MGAT2) interact to promote triacylglycerol synthesis. J Biol Chem 2014; 289(41): 28237–48. doi: 10.1074/jbc.M114.571190


62.
Lefterova MI, Haakonsson AK, Lazar MA, Mandrup S. PPARγ and the global map of adipogenesis and the beyond. Trends Endocrinol Metab 2014; 25(6): 293–302. doi: 10.1016/j.tem.2014.04.001


63.
Zhang J, Miao D, Zhu WF, Xu J, Liu WY, Kitdamrongtham W, et al. Biological activities of phenolic from the fruits of Phyllanthus emblica L. (Euphorbiaceae). Chem Biodivers 2017; 14(12): e1700404. doi: 10.1002/cbdv.201700404


64.
Huang YN, Zhao DD, Gao B, Zhong K, Zhu RX, Zhang Y, et al. Anti-hyperglycemic effects of chebulagic acid from the fruits of Terminalia chebula Retz. Int J Mol Sci 2012; 13(5): 6320–33. doi: 10.3390/ijms13056320


65.
Usharani P, Fatima N, Muralidhar N. Effects of Emblica emblica extract on endothelial dysfunction and biomarkers of oxidative stress inpatients with type 2 diabetes mellitus: randomized, double-blind, controlled study. Diabetes Metab Syndr Obes 2013; 6: 275–84. doi: 10.2147/DMSO.S46341


66.
Perianayagam JB, Sharma SK, Joseph A, Christina AJM. Evaluation of anti-pyretic and analgesic activity of Emblica officinalis Gaertn. J Ethnopharmacol 2004; 95: 83–5. doi: 10.1016/jep.2004.06.020


67.
Nosáľová G, Mokrȳ J, Hassan KMT. Antitussive activity of the fruit extract of Emblica emblica Gaertn, (Euphorbiaceae). Phytomedicine 2003; 10: 583–9. doi: 10.1078/094471103322331872


68.
Santoshkrunar J, Manjunath S, Sakhare PM. A study of anti-hyperlipidemia, hypolipidemic and anti-atherogenic activity of fruit of Emblica emblica (amla) in high fat fed albino rats. Int J Med Res Health Sci 2013; 2(1): 70–7.


69.
Vasudevan M, Parle M. Memory enhancing activity of Anwala churna (Emblica emblica Gaertn.): an ayurvedic preparation. Physiol Behav 2007; 91(1): 46–54. doi: 10.1016/j.physbeh.2007.01.016


70.
Malve HO, Raut SB, Marathe PA, Rege NN. Effect of combination of Emblica emblica, Tinospora cordifolia, and Ocimum sanctum on spatial learning and memory in rats. J Ayurveda Integr Med 2014; 5(40): 209–15. doi: 10.4103/0975-9476.146564


71.
Krishnaveni M, Mirunalini S. Chemopreventive efficacy of Emblica emblica L. (amla) fruit extract on 7,12-dimethylbenz(a)anthracene induced oral carcinogenesis- a dose-response study. Environ Toxicol Pharmacol 2012; 34(3): 801–10. doi: 10.1016/j.etap.2012.09.006


72.
Reddy VP, Padmavathi P, Paramahamsa M, Varadacharyulu N. Modulatory role of Emblica officinalis against alcohol induced biochemical and biophysical changes in rat erythrocyte membranes. Food Chem Toxicol 2009: 47: 1958–63. doi: 10.1016/j.fct.2009.05.014


73.
De A, De A, Papasian C, Hentges S, Banerjee S, Haque I, et al. Emblica officinalis extract induces autophagy and inhibits human ovarian cell proliferation, angiogenesis, growth of mouse xenograft tumors. PLoS One 2013; 8(8): e72748. doi: 10.1371/journal.pone.0072748


74.
Jabczyk M, Nowak J, Hudzik B, Zubelewicz-SzkodziDska B. Curcumin and its potential impact on microbiota. Nutrients 2021; 13(6): 2004. doi: 10.3390/nu13062004


75.
Bobin-Dubigeon C, Luu HT, Leuillet S, Lavergne SN, Carton T, Vacon FL, et al. Faecal microbiota composition varies between patients with breast cancer and healthy women: a comparative case-control study. Nutrients 2021; 13(8): 2705. doi: 10.3390/nu13082705
Published
2023-10-13
How to Cite
Huang S.-M., Lin C.-H., Chang W.-F., & Shih C.-C. (2023). Antidiabetic and antihyperlipidemic activities of Phyllanthus emblica L. extract <em>in vitro</em&gt; and the regulation of Akt phosphorylation, gluconeogenesis, and peroxisome proliferator-activated receptor α in streptozotocin-induced diabetic mice. Food & Nutrition Research, 67. https://doi.org/10.29219/fnr.v67.9854
Section
Original Articles