Dietary fiber – a scoping review for Nordic Nutrition Recommendations 2023

  • Harald Carlsen Norwegian University of Life Sciences, Ås, Norway
  • Anne-Maria Pajari University of Helsinki, Helsinki, Finland
Keywords: dietary fibre, carbohydrates, non-communicable diseases, recommendations, polysaccharides, resistant starch, nonstarch oligosaccharides, lignin, gut microbiome

Abstract

Dietary fiber is a term crudely defined as carbohydrates (CHOs) that escape digestion and uptake in the small intestine. Lignin, which is not a CHO, is also a part of the dietary fiber definition. Dietary fibers come in different sizes and forms, with a variety of combinations of monomeric units. Health authorities worldwide have for many years recommended a diet rich in dietary fibers based on consistent findings that dietary fibers are associated with reduced incidences of major non-communicable diseases, including obesity, type 2 diabetes, cardiovascular disease, and colorectal cancer. Most fibers come from common edible foods from the plant kingdom, but fibers are also found in food additives, supplements, and breast milk. The recommended intake in Nordic Nutrition Recommendations 2012 (NNR2012) is 25 g/d for women and 35 g/d for men, whereas the actual intake is significantly lower, ranging from 16 g/d to 22 g/d in women and 18 g/d to 26 g/d in men. New studies since NNR2012 confirm the current view that dietary fiber is beneficial for health, advocating intakes of at least 25 g/day.

Downloads

Download data is not yet available.

References


1.
Hipsley EH. Dietary ‘fibre’ and pregnancy toxaemia. Br Med J 1953; 2(4833): 420–2. doi: 10.1136/bmj.2.4833.420


2.
Cummings JH, Engineer A. Denis Burkitt and the origins of the dietary fibre hypothesis. Nutr Res Rev 2018; 31(1): 1–15. doi: 10.1017/s0954422417000117


3.
Westenbrink S, Brunt K, van der Kamp JW. Dietary fibre: challenges in production and use of food composition data. Food Chem 2013; 140(3): 562–7. doi: 10.1016/j.foodchem.2012.09.029


4.
Trowell H, Southgate DA, Wolever TM, Leeds AR, Gassull MA, Jenkins DJ. Letter: dietary fibre redefined. Lancet 1976; 1(7966): 967. doi: 10.1016/s0140-6736(76)92750-1


5.
Jones JM. CODEX-aligned dietary fiber definitions help to bridge the ‘fiber gap’. Nutr J 2014; 13: 34. doi: 10.1186/1475-2891-13-34


6.
McCleary BV, Sloane N, Draga A. Determination of total dietary fibre and available carbohydrates: a rapid integrated procedure that simulates in-vivo digestion. Starch 2015; 67: 860–83. doi: 10.1002/star.201500017


7.
Gill SK, Rossi M, Bajka B, Whelan K. Dietary fibre in gastrointestinal health and disease. Nat Rev Gastroenterol Hepatol 2021; 18: 101–16. doi: 10.1038/s41575-020-00375-4


8.
Weickert MO, Pfeiffer AFH. Impact of dietary fiber consumption on insulin resistance and the prevention of type 2 diabetes. J Nutr 2018; 148(1): 7–12. doi: 10.1093/jn/nxx008


9.
Latimer GWJ. Official methods of analysis of AOAC international. 20th ed. Rockville, MD: AOAC International; 2016.


10.
Blomhoff R, Andersen R, Arnesen EK, Christensen JJ, Eneroth H, Erkkola M, et al. Nordic Nutrition Recommendations 2023. Copenhagen: Nordic Council of Ministers; 2023.


11.
Christensen JJ, Arnesen EK, Andersen R, Eneroth H, Erkkola M, Høyer A, et al. The Nordic Nutrition Recommendations 2022 – principles and methodologies. Food Nutr Res 2020; 64. doi: 10.29219/fnr.v64.4402


12.
Müller M, Canfora EE, Blaak EE. Gastrointestinal transit time, glucose homeostasis and metabolic health: Modulation by dietary fibers. Nutrients 2018; 10(3). doi: 10.3390/nu10030275


13.
Ratanpaul V, Williams BA, Black JL, Gidley MJ. Review: effects of fibre, grain starch digestion rate and the ileal brake on voluntary feed intake in pigs. Animal 2019; 13(11): 2745–54. doi: 10.1017/s1751731119001459


14.
Chutkan R, Fahey G, Wright WL, McRorie J. Viscous versus nonviscous soluble fiber supplements: mechanisms and evidence for fiber-specific health benefits. J Am Acad Nurse Pract 2012; 24(8): 476–87. doi: 10.1111/j.1745-7599.2012.00758.x


15.
Vuksan V, Jenkins AL, Rogovik AL, Fairgrieve CD, Jovanovski E, Leiter LA. Viscosity rather than quantity of dietary fibre predicts cholesterol-lowering effect in healthy individuals. Br J Nutr 2011; 106(9): 1349–52. doi: 10.1017/s0007114511001711


16.
Anderson JW, Allgood LD, Lawrence A, Altringer LA, Jerdack GR, Hengehold DA, et al. Cholesterol-lowering effects of psyllium intake adjunctive to diet therapy in men and women with hypercholesterolemia: meta-analysis of 8 controlled trials. Am J Clin Nutr 2000; 71(2): 472–9. doi: 10.1093/ajcn/71.2.472


17.
Topping DL, Oakenfull D, Trimble RP, Illman RJ. A viscous fibre (methylcellulose) lowers blood glucose and plasma triacylglycerols and increases liver glycogen independently of volatile fatty acid production in the rat. Br J Nutr 1988; 59(1): 21–30. doi: 10.1079/bjn19880006


18.
Baer DJ, Rumpler WV, Miles CW, Fahey GC, Jr. Dietary fiber decreases the metabolizable energy content and nutrient digestibility of mixed diets fed to humans. J Nutr 1997; 127(4): 579–86. doi: 10.1093/jn/127.4.579


19.
Hervik AK, Svihus B. The role of fiber in energy balance. J Nutr Metab 2019; 2019: 4983657. doi: 10.1155/2019/4983657


20.
Agostini C, Bresson J-L, Fairweather-Tait S, Flynn A, Golly I, Korhonen H, et al. Scientific opinion on the substantiation of a health claim related to barley beta-glucans and lowering of blood cholesterol and reduced risk of (coronary) heart disease pursuant to Article 14 of Regulation (EC) No 1924/2006. EFSA J 2011; 9: 2470.


21.
Harland BF. Dietary fibre and mineral bioavailability. Nutr Res Rev 1989; 2(1): 133–47. doi: 10.1079/nrr19890011


22.
Abrams SA, Hawthorne KM, Aliu O, Hicks PD, Chen Z, Griffin IJ. An inulin-type fructan enhances calcium absorption primarily via an effect on colonic absorption in humans. J Nutr 2007; 137(10): 2208–12. doi: 10.1093/jn/137.10.2208


23.
Abrams SA, Griffin IJ, Hawthorne KM. Young adolescents who respond to an inulin-type fructan substantially increase total absorbed calcium and daily calcium accretion to the skeleton. J Nutr 2007; 137(11 Suppl): 2524s–6s. doi: 10.1093/jn/137.11.2524S


24.
Whisner CM, Martin BR, Schoterman MH, Nakatsu CH, McCabe LD, McCabe GP, et al. Galacto-oligosaccharides increase calcium absorption and gut bifidobacteria in young girls: a double-blind cross-over trial. Br J Nutr 2013; 110(7): 1292–303. doi: 10.1017/s000711451300055x


25.
Williams CL, Bollella M. Is a high-fiber diet safe for children? Pediatrics 1995; 96(5 Pt 2): 1014–19. doi: 10.1542/peds.96.5.1014


26.
Dierkes J, Nwaru BI, Ramel A, Arnesen EK, Thorisdottir B, Lamberg-Allardt C, et al. Dietary fiber and growth, iron status and bowel function in children 0–5 years old: a systematic review. Food Nutr Res. 2022; 67.


27.
Edwards CA, Xie C, Garcia AL. Dietary fibre and health in children and adolescents. Proc Nutr Soc 2015; 74(3): 292–302. doi: 10.1017/s0029665115002335


28.
Reynolds AN, Diep Pham HT, Montez J, Mann J. Dietary fibre intake in childhood or adolescence and subsequent health outcomes: a systematic review of prospective observational studies. Diabetes Obes Metab 2020; 22(12): 2460–7. doi: 10.1111/dom.14176


29.
de Vries J, Miller PE, Verbeke K. Effects of cereal fiber on bowel function: a systematic review of intervention trials. World J Gastroenterol 2015; 21(29): 8952–63. doi: 10.3748/wjg.v21.i29.8952


30.
Rossen NG, MacDonald JK, de Vries EM, D’Haens GR, de Vos WM, Zoetendal EG, et al. Fecal microbiota transplantation as novel therapy in gastroenterology: a systematic review. World J Gastroenterol 2015; 21(17): 5359–71. doi: 10.3748/wjg.v21.i17.5359


31.
Müller-Lissner SA. Effect of wheat bran on weight of stool and gastrointestinal transit time: a meta analysis. Br Med J (Clin Res Ed) 1988; 296(6622): 615–17. doi: 10.1136/bmj.296.6622.615


32.
Makharia G, Gibson PR, Bai JC, Karakan T, Lee YY, Collins L, et al. World gastroenterology organisation global guidelines: diet and the gut. J Clin Gastroenterol 2022; 56(1): 1–15. doi: 10.1097/mcg.0000000000001588


33.
Bultman SJ. The microbiome and its potential as a cancer preventive intervention. Semin Oncol 2016; 43(1): 97–106. doi: 10.1053/j.seminoncol.2015.09.001


34.
Castiglia-Delavaud C, Verdier E, Besle JM, Vernet J, Boirie Y, Beaufrere B, et al. Net energy value of non-starch polysaccharide isolates (sugarbeet fibre and commercial inulin) and their impact on nutrient digestive utilization in healthy human subjects. Br J Nutr 1998; 80(4): 343–52. doi: 10.1079/096582198388292


35.
Livesey G. Energy values of unavailable carbohydrate and diets: an inquiry and analysis. Am J Clin Nutr 1990; 51(4): 617–37. doi: 10.1093/ajcn/51.4.617


36.
Wisker E, Bach Knudsen KE, Daniel M, Eggum BO, Feldheim W. Energy values of non-starch polysaccharides: comparative studies in humans and rats. J Nutr 1997; 127(1): 108–16. doi: 10.1093/jn/127.1.108


37.
Maclean WC, Harnly JM, Chen J, Chevassus-Agnes S, Gilani G, Livesey G, et al. Food energy–methods of analysis and conversion factors. Rome: Food and Agriculture Organization of the United Nations Technical Workshop Report; 2003.


38.
Cummings JH. Short chain fatty acids in the human colon. Gut 1981; 22(9): 763–79. doi: 10.1136/gut.22.9.763


39.
Høverstad T. Studies of short-chain fatty acid absorption in man. Scand J Gastroenterol 1986; 21(3): 257–60. doi: 10.3109/00365528609003073


40.
McNeil NI, Cummings JH, James WP. Short chain fatty acid absorption by the human large intestine. Gut 1978; 19(9): 819–22. doi: 10.1136/gut.19.9.819


41.
Cummings JH, Pomare EW, Branch WJ, Naylor CP, Macfarlane GT. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 1987; 28(10): 1221–7. doi: 10.1136/gut.28.10.1221


42.
Reichardt N, Vollmer M, Holtrop G, Farquharson FM, Wefers D, Bunzel M, et al. Specific substrate-driven changes in human faecal microbiota composition contrast with functional redundancy in short-chain fatty acid production. ISME J 2018; 12(2): 610–22. doi: 10.1038/ismej.2017.196


43.
Roediger WE. Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man. Gut 1980; 21(9): 793–8. doi: 10.1136/gut.21.9.793


44.
Parada Venegas D, De la Fuente MK, Landskron G, González MJ, Quera R, Dijkstra G, et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol 2019; 10: 277. doi: 10.3389/fimmu.2019.00277


45.
Blaak EE, Canfora EE, Theis S, Frost G, Groen AK, Mithieux G, et al. Short chain fatty acids in human gut and metabolic health. Benef Microbes 2020; 11(5): 411–55. doi: 10.3920/bm2020.0057


46.
Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013; 504(7480): 446–50. doi: 10.1038/nature12721


47.
Cummings JH, Macfarlane GT. Role of intestinal bacteria in nutrient metabolism. JPEN J Parenter Enteral Nutr 1997; 21(6): 357–65. doi: 10.1177/0148607197021006357


48.
Frost G, Sleeth ML, Sahuri-Arisoylu M, Lizarbe B, Cerdan S, Brody L, et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun 2014; 5: 3611. doi: 10.1038/ncomms4611


49.
Soty M, Gautier-Stein A, Rajas F, Mithieux G. Gut-brain glucose signaling in energy homeostasis. Cell Metab 2017; 25(6): 1231–42. doi: 10.1016/j.cmet.2017.04.032


50.
De Vadder F, Kovatcheva-Datchary P, Goncalves D, Vinera J, Zitoun C, Duchampt A, et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 2014; 156(1–2): 84–96. doi: 10.1016/j.cell.2013.12.016


51.
Mithieux G, Gautier-Stein A. Intestinal glucose metabolism revisited. Diabetes Res Clin Pract 2014; 105(3): 295–301. doi: 10.1016/j.diabres.2014.04.008


52.
Vily-Petit J, Soty-Roca M, Silva M, Raffin M, Gautier-Stein A, Rajas F, et al. Intestinal gluconeogenesis prevents obesity-linked liver steatosis and non-alcoholic fatty liver disease. Gut 2020; 69(12): 2193–202. doi: 10.1136/gutjnl-2019-319745


53.
Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, et al. Richness of human gut microbiome correlates with metabolic markers. Nature 2013; 500(7464): 541–6. doi: 10.1038/nature12506


54.
Desai MS, Seekatz AM, Koropatkin NM, Kamada N, Hickey CA, Wolter M, et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 2016; 167(5): 1339–53.e21. doi: 10.1016/j.cell.2016.10.043


55.
Chambers ES, Viardot A, Psichas A, Morrison DJ, Murphy KG, Zac-Varghese SE, et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut 2015; 64(11): 1744–54. doi: 10.1136/gutjnl-2014-307913


56.
Venter CS, Vorster HH, Cummings JH. Effects of dietary propionate on carbohydrate and lipid metabolism in healthy volunteers. Am J Gastroenterol 1990; 85(5): 549–53.


57.
Chambers ES, Byrne CS, Morrison DJ, Murphy KG, Preston T, Tedford C, et al. Dietary supplementation with inulin-propionate ester or inulin improves insulin sensitivity in adults with overweight and obesity with distinct effects on the gut microbiota, plasma metabolome and systemic inflammatory responses: a randomised cross-over trial. Gut 2019; 68(8): 1430–8. doi: 10.1136/gutjnl-2019-318424


58.
Wolever TM, Spadafora P, Eshuis H. Interaction between colonic acetate and propionate in humans. Am J Clin Nutr 1991; 53(3): 681–7. doi: 10.1093/ajcn/53.3.681


59.
McOrist AL, Miller RB, Bird AR, Keogh JB, Noakes M, Topping DL, et al. Fecal butyrate levels vary widely among individuals but are usually increased by a diet high in resistant starch. J Nutr 2011; 141(5): 883–9. doi: 10.3945/jn.110.128504


60.
Deroover L, Verspreet J, Luypaerts A, Vandermeulen G, Courtin CM, Verbeke K. Wheat bran does not affect postprandial plasma short-chain fatty acids from (13)C-inulin fermentation in healthy subjects. Nutrients 2017; 9(1). doi: 10.3390/nu9010083


61.
Verbeke K, Ferchaud-Roucher V, Preston T, Small AC, Henckaerts L, Krempf M, et al. Influence of the type of indigestible carbohydrate on plasma and urine short-chain fatty acid profiles in healthy human volunteers. Eur J Clin Nutr 2010; 64(7): 678–84. doi: 10.1038/ejcn.2010.92


62.
van der Beek CM, Bloemen JG, van den Broek MA, Lenaerts K, Venema K, Buurman WA, et al. Hepatic uptake of rectally administered butyrate prevents an increase in systemic butyrate concentrations in humans. J Nutr 2015; 145(9): 2019–24. doi: 10.3945/jn.115.211193


63.
Neis EP, van Eijk HM, Lenaerts K, Olde Damink SW, Blaak EE, Dejong CH, et al. Distal versus proximal intestinal short-chain fatty acid release in man. Gut 2019; 68(4): 764–5. doi: 10.1136/gutjnl-2018-316161


64.
Kootte RS, Levin E, Salojärvi J, Smits LP, Hartstra AV, Udayappan SD, et al. Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. Cell Metab 2017; 26(4): 611–19.e6. doi: 10.1016/j.cmet.2017.09.008


65.
Bouter K, Bakker GJ, Levin E, Hartstra AV, Kootte RS, Udayappan SD, et al. Differential metabolic effects of oral butyrate treatment in lean versus metabolic syndrome subjects. Clin Transl Gastroenterol 2018; 9(5): 155. doi: 10.1038/s41424-018-0025-4


66.
Ueyama J, Oda M, Hirayama M, Sugitate K, Sakui N, Hamada R, et al. Freeze-drying enables homogeneous and stable sample preparation for determination of fecal short-chain fatty acids. Anal Biochem 2020; 589: 113508. doi: 10.1016/j.ab.2019.113508


67.
Landberg R, Hanhineva K, Tuohy K, Garcia-Aloy M, Biskup I, Llorach R, et al. Biomarkers of cereal food intake. Genes Nutr 2019; 14: 28. doi: 10.1186/s12263-019-0651-9


68.
Wanders AJ, van den Borne JJ, de Graaf C, Hulshof T, Jonathan MC, Kristensen M, et al. Effects of dietary fibre on subjective appetite, energy intake and body weight: a systematic review of randomized controlled trials. Obes Rev 2011; 12(9): 724–39. doi: 10.1111/j.1467-789X.2011.00895.x


69.
Cho SS, Qi L, Fahey GC, Jr, Klurfeld DM. Consumption of cereal fiber, mixtures of whole grains and bran, and whole grains and risk reduction in type 2 diabetes, obesity, and cardiovascular disease. Am J Clin Nutr 2013; 98(2): 594–619. doi: 10.3945/ajcn.113.067629


70.
Reynolds A, Mann J, Cummings J, Winter N, Mete E, Te Morenga L. Carbohydrate quality and human health: a series of systematic reviews and meta-analyses. Lancet 2019; 393(10170): 434–45. doi: 10.1016/S0140-6736(18)31809-9


71.
Veronese N, Solmi M, Caruso MG, Giannelli G, Osella AR, Evangelou E, et al. Dietary fiber and health outcomes: an umbrella review of systematic reviews and meta-analyses. Am J Clin Nutr 2018; 107(3): 436–44. doi: 10.1093/ajcn/nqx082


72.
Davison KM, Temple NJ. Cereal fiber, fruit fiber, and type 2 diabetes: explaining the paradox. J Diabetes Compl 2018; 32(2): 240–5. doi: 10.1016/j.jdiacomp.2017.11.002


73.
Threapleton DE, Greenwood DC, Evans CE, Cleghorn CL, Nykjaer C, Woodhead C, et al. Dietary fiber intake and risk of first stroke: a systematic review and meta-analysis. Stroke 2013; 44(5): 1360–8. doi: 10.1161/strokeaha.111.000151


74.
Evans CE, Greenwood DC, Threapleton DE, Cleghorn CL, Nykjaer C, Woodhead CE, et al. Effects of dietary fibre type on blood pressure: a systematic review and meta-analysis of randomized controlled trials of healthy individuals. J Hypertens 2015; 33(5): 897–911. doi: 10.1097/hjh.0000000000000515


75.
World Cancer Research Fund/American Institute for Cancer Research. Continuous Update Project Expert Report. London: Diet, nutrition, physical activity and colorectal cancer; 2018. Available from: dietandcancerreport.org [cited 15 Oct 2022].


76.
Liu X, Wu Y, Li F, Zhang D. Dietary fiber intake reduces risk of inflammatory bowel disease: result from a meta-analysis. Nutr Res 2015; 35(9): 753–8. doi: 10.1016/j.nutres.2015.05.021


77.
Hajishafiee M, Saneei P, Benisi-Kohansal S, Esmaillzadeh A. Cereal fibre intake and risk of mortality from all causes, CVD, cancer and inflammatory diseases: a systematic review and meta-analysis of prospective cohort studies. Br J Nutr 2016; 116(2): 343–52. doi: 10.1017/S0007114516001938


78.
Kim Y, Je Y. Dietary fiber intake and total mortality: a meta-analysis of prospective cohort studies. Am J Epidemiol. 2014; 180(6): 565–73. doi: 10.1093/aje/kwu174


79.
Lemming EW, Pitsi T. The Nordic Nutrition Recommendations 2022 – food consumption and nutrient intake in the adult population of the Nordic and Baltic countries. Food Nutr Res 2022; 66. doi: 10.29219/fnr.v66.8572


80.
Koh-Banerjee P, Franz M, Sampson L, Liu S, Jacobs DR, Jr., Spiegelman D, et al. Changes in whole-grain, bran, and cereal fiber consumption in relation to 8-y weight gain among men. Am J Clin Nutr 2004; 80(5): 1237–45. doi: 10.1093/ajcn/80.5.1237


81.
Du H, van der AD, Boshuizen HC, Forouhi NG, Wareham NJ, Halkjaer J, et al. Dietary fiber and subsequent changes in body weight and waist circumference in European men and women. Am J Clin Nutr 2010; 91(2): 329–36. doi: 10.3945/ajcn.2009.28191


82.
Bassolino L, Petroni K, Polito A, Marinelli A, Azzini E, Ferrari M, et al. Does plant breeding for antioxidant-rich foods have an impact on human health? Antioxidants (Basel, Switzerland) 2022; 11(4). doi: 10.3390/antiox11040794
Published
2023-10-18
How to Cite
Carlsen H., & Pajari A.-M. (2023). Dietary fiber – a scoping review for Nordic Nutrition Recommendations 2023. Food & Nutrition Research, 67. https://doi.org/10.29219/fnr.v67.9979
Section
Nordic Nutrition Recommendations