A Swedish dietary guideline index, gut microbial α-diversity and prevalence of metabolic syndrome – observations in the Swedish CArdioPulmonary bioImage Study (SCAPIS)

  • Ulrika Ericson Department of Clinical Sciences in Malmö, Diabetes and Cardiovascular Disease, Lund University, Malmö, Sweden https://orcid.org/0000-0003-4629-4318
  • Sophie Hellstrand Department of Clinical Sciences in Malmö, Diabetes and Cardiovascular Disease, Lund University, Malmö, Sweden
  • Anna Larsson Department of Clinical Sciences in Malmö, Diabetes and Cardiovascular Disease, Lund University, Malmö, Sweden
  • Mariam Miari Department of Clinical Sciences in Malmö, Diabetes and Cardiovascular Disease, Lund University, Malmö, Sweden
  • Sergi Sayols-Baixeras Molecular Epidemiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden; SciLifeLab, Uppsala University, Uppsala, SwedenCIBER Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
  • Koen F. Dekkers Molecular Epidemiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden; SciLifeLab, Uppsala University, Uppsala, Sweden
  • Göran Bergström Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Clinical Physiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
  • Andrei Malinovschi Department of Medical Sciences, Clinical Physiology, Uppsala University, Uppsala, Sweden
  • Gunnar Engström Department of Clinical Sciences in Malmö, Cardiovascular Research-Epidemiology, Lund University, Malmö, Sweden
  • Johan Ärnlöv Division of Family Medicine and Primary Care, Department of Neurobiology, Care Science and Society, Karolinska Institutet, Huddinge, Sweden; School of Health and Social Studies, Dalarna University, Falun, Sweden
  • Tove Fall Molecular Epidemiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden; SciLifeLab, Uppsala University, Uppsala, Sweden
  • Marju Orho-Melander Department of Clinical Sciences in Malmö, Diabetes and Cardiovascular Disease, Lund University, Malmö, Sweden
Keywords: Gut microbiota, Metabolic syndrome, Epidemiology, food pattern

Abstract

Background: Metabolic syndrome (MetS) is characterized by coexisting risk factors for type 2 diabetes and cardiovascular disease. Diet is of importance in their aetiology, and gut microbiota (GM) may constitute a link between diet and metabolic health. Understanding the interplay between diet and GM could contribute novel insights for future dietary guidelines, and aid in preventive actions to motivate adherence to dietary guidelines.

Objective: We intended to create a Swedish dietary guideline index (SweDGI) measuring adherence to 12 Swedish dietary guidelines and examine whether SweDGI and its components are associated with GM α-diversity (Shannon index) and prevalent MetS, and if the association between the Shannon index and MetS differs depending on SweDGI.

Design: SweDGI was based on food-frequency data assessed 2014–2018 in 10,396 diabetes-free participants from the Malmö and Uppsala-sites of the Swedish CArdioPulmonary bioImage Study (SCAPIS) (50–64 y, 53% women). We estimated the Shannon index from shotgun metagenomic sequencing-data to assess microbial richness and evenness. We used a general linear model to examine cross-sectional SweDGI-Shannon associations and logistic regression for associations with MetS.

Results: Most guidelines were followed by less than half of the participants. Men showed poorer adherence. Higher SweDGI was linked to higher Shannon index (P-trend across five SweDGI-groups = 1.7 × 10-12). Most guidelines contributed to this observation. Higher SweDGI and Shannon index were associated with lower MetS-prevalence, where the lowest prevalence was observed among those with both high SweDGI and high Shannon index (odds ratio:0.43; 95% confidence interval:0.35, 0.52). Both the Shannon index and SweDGI were associated with MetS, independently of the level of the other factor (P-interaction = 0.82).

Conclusions: We created a new index to comprehensively reflect adherence to the Swedish dietary guidelines in sub-cohorts within the large multicentre SCAPIS study. Better adherence was associated with a richer and more even GM and lower prevalence of MetS. The inverse association between the Shannon index and MetS was consistent at different levels of adherence to dietary guidelines

Downloads

Download data is not yet available.

References

tr>
1.
Forray AI, Coman MA, Simonescu-Colan R, Mazga AI, Chereches RM, Borzan CM. The global burden of type 2 diabetes attributable to dietary risks: insights from the global burden of disease study 2019. Nutrients 2023; 15(21): 4613. doi: 10.3390/nu15214613


2.
Dong C, Bu X, Liu J, Wei L, Ma A, Wang T. Cardiovascular disease burden attributable to dietary risk factors from 1990 to 2019: a systematic analysis of the global burden of disease study. Nutr Metab Cardiovasc Dis 2022; 32(4): 897–907. doi: 10.1016/j.numecd.2021.11.012


3.
Noubiap JJ, Nansseu JR, Lontchi-Yimagou E, Nkeck JR, Nyaga UF, Ngouo AT, et al. Geographic distribution of metabolic syndrome and its components in the general adult population: a meta-analysis of global data from 28 million individuals. Diabetes Res Clin Pract 2022; 188: 109924. doi: 10.1016/j.diabres.2022.109924


4.
Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009; 120(16): 1640–5. doi: 10.1161/CIRCULATIONAHA.109.192644


5.
Atkinson FS, Foster-Powell K, Brand-Miller JC. International tables of glycemic index and glycemic load values: 2008. Diabetes Care 2008; 31(12): 2281–3. doi: 10.2337/dc08-1239


6.
Balakrishna R, Bjornerud T, Bemanian M, Aune D, Fadnes LT. Consumption of nuts and seeds and health outcomes including cardiovascular disease, diabetes and metabolic disease, cancer, and mortality: an umbrella review. Adv Nutr 2022; 13(6): 2136–48. doi: 10.1093/advances/nmac077


7.
Ericson U, Hellstrand S, Brunkwall L, Schulz CA, Sonestedt E, Wallstrom P, et al. Food sources of fat may clarify the inconsistent role of dietary fat intake for incidence of type 2 diabetes. Am J Clin Nutr 2015; 101(5): 1065–80. doi: 10.3945/ajcn.114.103010


8.
Kim Y, Keogh J, Clifton P. A review of potential metabolic etiologies of the observed association between red meat consumption and development of type 2 diabetes mellitus. Metabolism 2015; 64(7): 768–79. doi: 10.1016/j.metabol.2015.03.008


9.
Li M, Fan Y, Zhang X, Hou W, Tang Z. Fruit and vegetable intake and risk of type 2 diabetes mellitus: meta-analysis of prospective cohort studies. BMJ Open 2014; 4(11): e005497. doi: 10.1136/bmjopen-2014-005497


10.
Falony G, Joossens M, Vieira-Silva S, Wang J, Darzi Y, Faust K, et al. Population-level analysis of gut microbiome variation. Science 2016; 352(6285): 560–4. doi: 10.1126/science.aad3503


11.
Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature 2006; 444(7122): 1022–3. doi: 10.1126/science.aad3503


12.
Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012; 490(7418): 55–60. doi: 10.1038/nature11450


13.
Ottosson F, Brunkwall L, Ericson U, Nilsson PM, Almgren P, Fernandez C, et al. Connection between BMI-related plasma metabolite profile and gut microbiota. J Clin Endocrinol Metab 2018; 103(4): 1491–501. doi: 10.1210/jc.2017-02114


14.
Roessler J, Leistner DM, Landmesser U, Haghikia A. Modulatory role of gut microbiota in cholesterol and glucose metabolism: potential implications for atherosclerotic cardiovascular disease. Atherosclerosis 2022; 359: 1–12. doi: 10.1016/j.atherosclerosis.2022.08.018


15.
Sanna S, van Zuydam NR, Mahajan A, Kurilshikov A, Vich Vila A, Vosa U, et al. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat Genet 2019; 51(4): 600–5. doi: 10.1038/s41588-019-0350-x


16.
Armet AM, Deehan EC, O’Sullivan AF, Mota JF, Field CJ, Prado CM, et al. Rethinking healthy eating in light of the gut microbiome. Cell Host Microbe 2022; 30(6): 764–85. doi: 10.1016/j.chom.2022.04.016


17.
Lemaitre RN, Jensen PN, Wang Z, Fretts AM, McKnight B, Nemet I, et al. Association of trimethylamine N-oxide and related metabolites in plasma and incident type 2 diabetes: the cardiovascular health study. JAMA Netw Open 2021; 4(8): e2122844. doi: 10.1001/jamanetworkopen.2021.22844


18.
Lin H, An Y, Tang H, Wang Y. Alterations of bile acids and gut microbiota in obesity induced by high fat diet in rat model. J Agric Food Chem 2019; 67(13): 3624–32. doi: 10.1021/acs.jafc.9b00249


19.
Nordic Counsil of Ministers. Nordic nutrition recommendations 2012: integrating nutrition and physical activity. 5th ed. Copenhagen: Nordisk ministerråd; 2014.


20.
Brugård Konde Å, Bjerselius R, Haglund L, Jansson A, Pearson M, Färnstrand JS, et al. Swedish dietary guidelines – risk and benefit management report. 2015. Available from: https://www.fao.org/3/az907e/az907e.pdf [cited 24 August 2015].


21.
Bergstrom G, Berglund G, Blomberg A, Brandberg J, Engstrom G, Engvall J, et al. The Swedish CArdioPulmonary BioImage study: objectives and design. J Intern Med 2015; 278(6) :645–59. doi: 10.1111/joim.12384


22.
Rhee JJ, Sampson L, Cho E, Hughes MD, Hu FB, Willett WC. Comparison of methods to account for implausible reporting of energy intake in epidemiologic studies. Am J Epidemiol 2015; 181(4): 225–33. doi: 10.1093/aje/kwu308


23.
Christensen SE, Moller E, Bonn SE, Ploner A, Wright A, Sjolander A, et al. Two new meal- and web-based interactive food frequency questionnaires: validation of energy and macronutrient intake. J Med Internet Res 2013; 15(6): e109. doi: 10.2196/jmir.2458


24.
Sverige. Statens livsmedelsverk. Vikttabeller för livsmedel och maträtter. 2. uppl., Uppsala: Statens livsmedelsverk; 1989.


25.
Wirfalt E, Mattisson I, Johansson U, Gullberg B, Wallstrom P, Berglund G. A methodological report from the Malmo Diet and Cancer study: development and evaluation of altered routines in dietary data processing. Nutr J 2002; 1: 3. doi: 10.1186/1475-2891-1-3


26.
Nybacka S, Berteus Forslund H, Wirfalt E, Larsson I, Ericson U, Warensjo Lemming E, et al. Comparison of a web-based food record tool and a food-frequency questionnaire and objective validation using the doubly labelled water technique in a Swedish middle-aged population. J Nutr Sci 2016; 5: e39. doi: 10.1017/jns.2016.29


27.
Christensen SE, Moller E, Bonn SE, Ploner A, Balter O, Lissner L, et al. Relative validity of micronutrient and fiber intake assessed with two new interactive meal- and web-based food frequency questionnaires. J Med Internet Res 2014; 16(2): e59. doi: 10.2196/jmir.2965


28.
Nybacka S, Lindroos AK, Wirfal E, Leanderson P, Landberg R, Ericson U, et al. Carotenoids and alkylresorcinols as objective biomarkers of diet quality when assessing the validity of a web-based food record tool and a food frequency questionnaire in a middle-aged population. BMC Nutr 2016; 2: 53. doi: 10.1186/s40795-016-0094-2


29.
Bowyer RCE, Jackson MA, Pallister T, Skinner J, Spector TD, Welch AA, et al. Use of dietary indices to control for diet in human gut microbiota studies. Microbiome 2018; 6(1): 77. doi: 10.1186/s40168-018-0455-y


30.
WHO. Waist circumference and waist–hip ratio: report of a WHO expert consultation; 2008 December 8–11; Geneva.


31.
Dekkers KF, Sayols-Baixeras S, Baldanzi G, Nowak C, Hammar U, Nguyen D, et al. An online atlas of human plasma metabolite signatures of gut microbiome composition. Nat Commun 2022; 13(1): 5370. doi: 10.1038/s41467-022-33050-0


32.
Nielsen HB, Almeida M, Juncker AS, Rasmussen S, Li J, Sunagawa S, et al. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nat Biotechnol 2014; 32(8): 822–8. doi: 10.1038/nbt.2939


33.
Oksanen J, Blanchet F, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: community ecology package. R package version 2.5–7. 2020. Available from: https://CRAN.R-project.org/package=vegan [cited 28 November 2020].


34.
Blomhoff R, Andersen R, Arnesen EK, Christensen JJ, Eneroth H, Erkkola M, et al. Nordic nutrition recommendations 2023. Copenhagen: Nordic Council of Ministers; 2023, pp. 88–90. doi: 10.6027/nord2023-003


35.
Gonzalez-Padilla E, Tao Z, Sanchez-Villegas A, Alvarez-Perez J, Borne Y, Sonestedt E. Association between adherence to Swedish dietary guidelines and Mediterranean diet and risk of stroke in a Swedish population. Nutrients 2022; 14(6): 1253. doi: 10.3390/nu14061253


36.
Leme ACB, Hou S, Fisberg RM, Fisberg M, Haines J. Adherence to food-based dietary guidelines: a systemic review of high-income and low- and middle-income countries. Nutrients 2021; 13(3): 1038. doi: 10.3390/nu13031038


37.
Miao Z, Du W, Xiao C, Su C, Gou W, Shen L, et al. Gut microbiota signatures of long-term and short-term plant-based dietary pattern and cardiometabolic health: a prospective cohort study. BMC Med 2022; 20(1): 204. doi: 10.1186/s12916-022-02402-4


38.
Xiao C, Wang JT, Su C, Miao Z, Tang J, Ouyang Y, et al. Associations of dietary diversity with the gut microbiome, fecal metabolites, and host metabolism: results from 2 prospective Chinese cohorts. Am J Clin Nutr 2022; 116(4): 1049–58. doi: 10.1093/ajcn/nqac178


39.
Yamauchi T, Koyama N, Hirai A, Suganuma H, Suzuki S, Murashita K, et al. Definition of a dietary pattern expressing the intake of vegetables and fruits and its association with intestinal microbiota. Nutrients 2023; 15(9): 2104. doi: 10.3390/nu15092104


40.
Maskarinec G, Hullar MAJ, Monroe KR, Shepherd JA, Hunt J, Randolph TW, et al. Fecal microbial diversity and structure are associated with diet quality in the multiethnic cohort adiposity phenotype study. J Nutr 2019; 149(9): 1575–84. doi: 10.1093/jn/nxz065


41.
Vangay P, Johnson AJ, Ward TL, Al-Ghalith GA, Shields-Cutler RR, Hillmann BM, et al. US immigration westernizes the human gut microbiome. Cell 2018; 175(4): 962–72.e10. doi: 10.1016/j.cell.2018.10.029


42.
Asnicar F, Berry SE, Valdes AM, Nguyen LH, Piccinno G, Drew DA, et al. Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals. Nat Med 2021; 27(2): 321–32. doi: 10.1038/s41591-020-01183-8


43.
Costantini L, Molinari R, Farinon B, Merendino N. Impact of omega-3 fatty acids on the gut microbiota. Int J Mol Sci 2017; 18(12): 2645. doi: 10.3390/ijms18122645


44.
Jang HH, Noh H, Kim G, Cho SY, Kim HJ, Choe JS, et al. Differences in dietary patterns related to metabolic health by gut microbial enterotypes of Korean adults. Front Nutr 2022; 9: 1045397. doi: 10.3389/fnut.2022.1045397


45.
Rothschild D, Leviatan S, Hanemann A, Cohen Y, Weissbrod O, Segal E. An atlas of robust microbiome associations with phenotypic traits based on large-scale cohorts from two continents. PLoS One 2022; 17(3): e0265756. doi: 10.1371/journal.pone.0265756


46.
Sanchez-Tapia M, Tovar AR, Torres N. Diet as regulator of gut microbiota and its role in health and disease. Arch Med Res 2019; 50(5): 259–68. doi: 10.1016/j.arcmed.2019.09.004


47.
Kovatcheva-Datchary P, Nilsson A, Akrami R, Lee YS, De Vadder F, Arora T, et al. Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of prevotella. Cell Metab 2015; 22(6): 971–82. doi: 10.1016/j.cmet.2015.10.001


48.
Brunkwall L, Orho-Melander M. The gut microbiome as a target for prevention and treatment of hyperglycaemia in type 2 diabetes: from current human evidence to future possibilities. Diabetologia 2017; 60(6): 943–51. doi: 10.1007/s00125-017-4278-3


49.
Wang DD, Qi Q, Wang Z, Usyk M, Sotres-Alvarez D, Mattei J, et al. The gut microbiome modifies the association between a Mediterranean diet and diabetes in USA Hispanic/ Latino population. J Clin Endocrinol Metab 2022; 107(3): e924–34. doi: 10.1210/clinem/dgab815


50.
Guo H, Ding J, Liang J, Zhang Y. Associations of whole grain and refined grain consumption with metabolic syndrome. A meta-analysis of observational studies. Front Nutr 2021; 8: 695620. doi: 10.3389/fnut.2021.695620


51.
Zhang Y, Zhang DZ. Relationship between nut consumption and metabolic syndrome: a meta-analysis of observational studies. J Am Coll Nutr 2019; 38(6): 499–505. doi: 10.1080/07315724.2018.1561341


52.
Lee M, Lim M, Kim J. Fruit and vegetable consumption and the metabolic syndrome: a systematic review and dose-response meta-analysis. Br J Nutr 2019; 122(7): 723–33. doi: 10.1017/S000711451900165X


53.
Zhang Y, Zhang DZ. Associations of vegetable and fruit consumption with metabolic syndrome. A meta-analysis of observational studies. Public Health Nutr 2018; 21(9): 1693–703. doi: 10.1017/S1368980018000381


54.
Hidayat K, Zhu WZ, Peng SM, Ren JJ, Lu ML, Wang HP, et al. The association between meat consumption and the metabolic syndrome: a cross-sectional study and meta-analysis. Br J Nutr 2022; 127(10): 1467–81. doi: 10.1017/S0007114521002452


55.
Munoz-Cabrejas A, Guallar-Castillon P, Laclaustra M, Sandoval-Insausti H, Moreno-Franco B. Association between sugar-sweetened beverage consumption and the risk of the metabolic syndrome: a systematic review and meta-analysis. Nutrients 2023; 15(2): 430. doi: 10.3390/nu15020430


56.
Rodriguez LA, Madsen KA, Cotterman C, Lustig RH. Added sugar intake and metabolic syndrome in US adolescents: cross-sectional analysis of the National Health and Nutrition Examination Survey 2005–2012. Public Health Nutr 2016; 19(13): 2424–34. doi: 10.1017/S1368980016000057


57.
Takase H, Hayashi K, Kin F, Nakano S, Machii M, Takayama S, et al. Dietary salt intake predicts future development of metabolic syndrome in the general population. Hypertens Res 2023; 46(1): 236–43. doi: 10.1038/s41440-022-01035-7


58.
Schwab U, Lauritzen L, Tholstrup T, Haldorssoni T, Riserus U, Uusitupa M, et al. Effect of the amount and type of dietary fat on cardiometabolic risk factors and risk of developing type 2 diabetes, cardiovascular diseases, and cancer: a systematic review. Food Nutr Res 2014; 58: 25145. doi: 10.3402/fnr.v58.25145


59.
Mena-Sanchez G, Becerra-Tomas N, Babio N, Salas-Salvado J. Dairy product consumption in the prevention of metabolic syndrome: a systematic review and meta-analysis of prospective cohort studies. Adv Nutr 2019; 10(Suppl_2): S144–53. doi: 10.1093/advances/nmy083


60.
Forouhi NG, Koulman A, Sharp SJ, Imamura F, Kroger J, Schulze MB, et al. Differences in the prospective association between individual plasma phospholipid saturated fatty acids and incident type 2 diabetes: the EPIC-InterAct case-cohort study. Lancet Diabetes Endocrinol 2014; 2(10): 810–18. doi: 10.1016/S2213-8587(14)70146-9


61.
Nogal A, Valdes AM, Menni C. The role of short-chain fatty acids in the interplay between gut microbiota and diet in cardio-metabolic health. Gut Microbes 2021; 13(1): 1–24. doi: 10.1080/19490976.2021.1897212


62.
Murota K, Nakamura Y, Uehara M. Flavonoid metabolism: the interaction of metabolites and gut microbiota. Biosci Biotechnol Biochem 2018; 82(4): 600–10. doi: 10.1080/09168451.2018.1444467


63.
Jennings A, Koch M, Bang C, Franke A, Lieb W, Cassidy A. Microbial diversity and abundance of parabacteroides mediate the associations between higher intake of flavonoid-rich foods and lower blood pressure. Hypertension 2021; 78(4): 1016–26. doi: 10.1161/HYPERTENSIONAHA.121.17441


64.
Wang C, Huang Z, Yu K, Ding R, Ye K, Dai C, et al. High-salt diet has a certain impact on protein digestion and gut microbiota: a sequencing and proteome combined study. Front Microbiol 2017; 8: 1838. doi: 10.3389/fmicb.2017.01838


65.
Naqvi S, Asar TO, Kumar V, Al-Abbasi FA, Alhayyani S, Kamal MA, et al. A cross-talk between gut microbiome, salt and hypertension. Biomed Pharmacother 2021; 134: 111156. doi: 10.1016/j.biopha.2020.111156


66.
Chen L, He FJ, Dong Y, Huang Y, Wang C, Harshfield GA, et al. Modest sodium reduction increases circulating short-chain fatty acids in untreated hypertensives: a randomized, double-blind, placebo-controlled trial. Hypertension 2020; 76(1): 73–9. doi: 10.1161/HYPERTENSIONAHA.120.14800


67.
Druart C, Neyrinck AM, Vlaeminck B, Fievez V, Cani PD, Delzenne NM. Role of the lower and upper intestine in the production and absorption of gut microbiota-derived PUFA metabolites. PLoS One 2014; 9(1): e87560. doi: 10.1371/journal.pone.0087560


68.
Zhu X, Bi Z, Yang C, Guo Y, Yuan J, Li L, et al. Effects of different doses of omega-3 polyunsaturated fatty acids on gut microbiota and immunity. Food Nutr Res 2021; 65: 6263. doi: 10.29219/fnr.v65.6263


69.
Li Y, Yu Z, Liu Y, Wang T, Liu Y, Bai Z, et al. Dietary alpha-linolenic acid-rich flaxseed oil ameliorates high-fat diet-induced atherosclerosis via gut microbiota-inflammation-artery axis in ApoE (-/-) mice. Front Cardiovasc Med 2022; 9: 830781. doi: 10.3389/fcvm.2022.830781


70.
Strid A, Hallstrom E, Lindroos AK, Lindahl B, Johansson I, Winkvist A. Adherence to the Swedish dietary guidelines and the impact on mortality and climate in a population-based cohort study. Public Health Nutr 2023; 26(11): 2333–42. doi: 10.1017/S1368980023001295
Published
2024-11-28
How to Cite
Ericson U., Hellstrand S., Larsson A., Miari M., Sayols-Baixeras S., Dekkers K. F., Bergström G., Malinovschi A., Engström G., Ärnlöv J., Fall T., & Orho-Melander M. (2024). A Swedish dietary guideline index, gut microbial α-diversity and prevalence of metabolic syndrome – observations in the Swedish CArdioPulmonary bioImage Study (SCAPIS). Food & Nutrition Research, 68. https://doi.org/10.29219/fnr.v68.10547
Section
Original Articles