Integrating environmental sustainability into food-based dietary guidelines in the Nordic countries

  • Ellen Trolle National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
  • Jelena Meinilä Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
  • Hanna Eneroth Department of Risk Benefit Assessment, Swedish Food Agency, Uppsala, Sweden and Department of Energy and Technology, Swedish University of Agricultural Sciences, Uppsala, Sweden
  • Helle Margrete Meltzer Norwegian Institute of Public Health, Oslo, Norway
  • Inga Þórsdóttir Faculty of Food Science and Nutrition and Unit for Nutrition Research at the Health Science Institute, School of Health Sciences, University of Iceland
  • Thorhallur Halldorsson Faculty of Food Science and Nutrition and Unit for Nutrition Research at the Health Science Institute, School of Health Sciences, University of Iceland
  • Maijaliisa Erkkola Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
Keywords: diet, plant-based, animal-based, environmental impact, dietary pattern recommendation, nutrition, scoping review, scenario

Abstract

The overall aim of this paper was to provide background knowledge to the Nordic Nutrition Recommendations 2023 Committee for integrating environmental sustainability in a framework for national Food-Based Dietary Guidelines (FBDG) within the Nordics and Baltics. Additionally, this paper aims to give an overview of recent Nordic scientific literature on environmental impact of foods and dietary patterns and of the FBDG of the Nordics. Finally, we suggest methods for developing national sustainable FBDG. Nordic and Baltic studies on sustainability of diets were searched in August 2022 and complemented with additional relevant literature. The studies show that current diets are far from environmentally sustainable, exceeding planetary boundaries for most impact categories; meat and dairy products being the largest contributors to dietary greenhouse gas emissions (GHGEs) and land use. Scenario, modelling, optimisation and intervention studies confirm the potential of shifting towards more plant-based diets to improve overall diet quality in terms of both health and environmental sustainability. Such diets comprised of vegetables, fruits, legumes, potatoes, whole grain and refined cereal products, nuts, seeds and vegetable oils, with animal foods in moderate or limited amounts. The FBDG in the Nordics promotes more plant-based diets than the current average diet but could improve from further integration of environmental sustainability. To form basis for sustainable FBDG dietary modelling at the national level, prioritising health outcomes and nutritional adequacy is essential. Second, integrating environmental sustainability involves estimating the impact of food choices and amounts on GHGE, land and water use, eutrophication and biodiversity loss. Exploring positive and negative implications of fortified foods and supplementation in relation to nutrient intake, health and environmental sustainability may be needed. Implementing dietary transition requires solutions beyond FBDG to ensure affordability, acceptability and ease of adaption.

Downloads

Download data is not yet available.

References

tr>
1.
Halpern BS, Frazier M, Verstaen J, Rayner PE, Clawson G, Blanchard JL, et al. The environmental footprint of global food production. Nat Sustain 2022; 5: 1027–39. doi: 10.1038/s41893-022-00965-x


2.
Ivanovich CC, Sun T, Gordon DR, Ocko IB. Future warming from global food consumption. Nat Clim Chang 2023; 13: 297–302. doi: 10.1038/s41558-023-01605-8


3.
Overgaard S, Suhrs Seminarium. Fra mangel til overflod. Ernæring og Sundhed 1905–2005. Viborg: Nørhaven Book; 2005.


4.
Fogelberg CL. På väg mot miljöanpassade kostråd Vetenskapligt underlag inför miljökonsekvens. Uppsala: Swedish Food Agency, Rapport 9; 2008.


5.
Food and Agriculture Organization (FAO). International scientific symposium: Biodiversity and sustainable diets - United against Hunger. Final Document. Rome: FAO Headquaters; 2010.


6.
Nordic Council of Ministers. Nordic Nutrition Recommendations 2012. Copenhagen: Nordic Council of Ministers; 2014.


7.
Food and Agriculture Organization (FAO), World Health Organization (WHO). Sustainable healthy diets – guiding principles. Rome: FAO, WHO; 2019.


8.
Benton T, Harwatt H, Høyer-Lund A, Meltzer H, Trolle E, Blomhoff R. An overview of approaches for assessing the environmental sustainability of diets – a scoping review for Nordic Nutrition Recommendations 2023. Food Nutr Res 2024; 68: 1–15. 10453. doi: 10.29219/fnr.v68.10453


9.
Harwatt H, Benton T, Bengtsson J, Birgisdóttir B, Brown K, van Dooren C, et al. Environmental sustainability of food production and consumption in the Nordic and Baltic region – a scoping review for Nordic Nutrition Recommendations 2023. Food Nutr Res 2024; 68. doi: 10.29219/fnr.v68.10539


10.
Meltzer H, Eneroth H, Erkkola M, Trolle E, Fantke P, Helenius J, et al. Challenges and opportunities when moving food production and consumption toward sustainable diets in the Nordics: a scoping review for Nordic Nutrition Recommendations 2023. Food Nutr Res 2024; 68: 10489. doi: 10.29219/fnr.v68.10489


11.
Jackson P, Holm L. Social and economic dimensions of food sustainability – a background paper for the Nordic Nutrition Recommendations. Food Nutr Res 2024; 68: 10450. doi: 10.29219/fnr.v68.10450


12.
Blomhoff R, Andersen R, Arnesen EK, Christensen JJ, Eneroth H, Erkkola M, et al. Nordic Nutrition Recommendations 2023. Copenhagen: Nordic Council of Ministers; 2023.


13.
Lemming EW, Pitsi T. The Nordic Nutrition Recommendations 2022 – food consumption and nutrient intake in the adult population of the Nordic and Baltic countries. Food Nutr Res 2022; 66: 1–11. doi: 10.29219/fnr.v66.8572


14.
Darmon N, Drewnowski A. Does social class predict diet quality? Am J Clin Nutr 2008; 87: 1107–17. doi: 10.1093/ajcn/87.5.1107


15.
Giskes K, Avendaňo M, Brug J, Kunst AE. A systematic review of studies on socioeconomic inequalities in dietary intakes associated with weight gain and overweight/obesity conducted among European adults. Obes Rev 2010; 11: 413–29. doi: 10.1111/j.1467-789X.2009.00658.x


16.
Groth MV, Sørensen MR, Matthiessen J, Fagt S, Knudsen VK, Landvad N. Disparities in dietary habits and physical activity in Denmark and trends from 1995 to 2008. Scand J Public Health 2014; 42: 611–20. doi: 10.1177/1403494814547668


17.
Rasmussen M, Pedersen TP, Johnsen NF, Krølner RF, Holstein BE. Persistent social inequality in low intake of vegetables among adolescents, 2002-2014. Public Health Nutr 2018; 21: 1649–53. doi: 10.1017/S136898001800040X


18.
Fismen AS, Smith ORF, Torsheim T, Rasmussen M, Pagh TP, Augustine L, et al. Trends in food habits and their relation to socioeconomic status among Nordic adolescents 2001/2002-2009/2010. PLoS One 2016; 11(2): 1–15. doi: 10.1371/journal.pone.0148541


19.
Matthiessen J, Andersen L, Barbieri H, Borodulin K, Knudsen V, Kørup K, et al. The Nordic monitoring of diet, physical activity, smoking, alcohol and overweight: 2011–2014. Eur J Nutr Food Saf 2017; 7: 128–30. doi: 10.9734/ejnfs/2017/35072


20.
Rippin HL, Hutchinson J, Greenwood DC, Jewell J, Breda JJ, Martin A, et al. Inequalities in education and national income are associated with poorer diet: pooled analysis of individual participant data across 12 European countries. PLoS One 2020; 15(5): 1–17. doi: 10.1371/journal.pone.0232447


21.
Erkkola M, Kinnunen SM, Vepsäläinen HR, Meinilä JM, Uusitalo L, Konttinen H, et al. A slow road from meat dominance to more sustainable diets: an analysis of purchase preferences among Finnish loyalty-card holders. PLoS Sustain Transform 2022; 1: e0000015. doi: 10.1371/journal.pstr.0000015


22.
Valsta LM, Tapanainen H, Kortetmäki T, Sares-Jäske L, Paalanen L, Kaartinen NE, et al. Disparities in nutritional adequacy of diets between different socioeconomic groups of finnish adults. Nutrients 2022; 14: 1–22. doi: 10.3390/nu14071347


23.
Mattisson I. Association between socioeconomic status and food habits in Sweden. Report 9. Uppsala: Swedish Food Agency; 2016.


24.
Hallström E, Bajzelj B, Håkansson N, Sjons J, Åkesson A, Wolk A, et al. Dietary climate impact: contribution of foods and dietary patterns by gender and age in a Swedish population. J Clean Prod 2021; 306: 127189. doi: 10.1016/j.jclepro.2021.127189


25.
Saarinen M, Heikkinen J, Ketoja E, Kyttä V, Hartikainen H, Silvennoinen K, et al. Soil carbon plays a role in the climate impact of diet and its mitigation: the Finnish case. Front Sustain Food Syst 2023; 7: 1–14. doi: 10.3389/fsufs.2023.904570


26.
Guðmannsdóttir R, Gunnarsdóttir S, Geirsdóttir ÓG, Gudjónsdóttir M, Gunnarsdóttir I, þorgeirsdóttir H, et al. Greenhouse Gas Emissions of Environmentally Sustainable Diets: Insights from the Icelandic National Dietary Survey 2019-2021. J Clean Prod 2024: 142906. doi: 10.1016/j.jclepro.2024.142906


27.
Abadie LM, Galarraga I, Milford AB, Gustavsen GW. Using food taxes and subsidies to achieve emission reduction targets in Norway. J Clean Prod 2016; 134: 280–97. doi: 10.1016/j.jclepro.2015.09.054


28.
Trolle E, Nordman M, Lassen AD, Colley TA, Mogensen L. Carbon footprint reduction by transitioning to a diet consistent with the danish climate-friendly dietary guidelines: a comparison of different carbon footprint databases. Foods 2022; 11: 1–25. doi: 10.3390/foods11081119


29.
Bruno M, Thomsen M, Pulselli FM, Patrizi N, Marini M, Caro D. The carbon footprint of Danish diets. Clim Change 2019; 156: 489–507. doi: 10.1007/s10584-019-02508-4


30.
Moberg E, Potter HK, Wood A, Hansson P-AA, Röös E. Benchmarking the Swedish diet relative to global and national environmental targets-Identification of indicator limitations and data gaps. Sustainability (Switzerland) 2020; 12: 1407. doi: 10.3390/su12041407


31.
Hallström E, Davis J, Håkansson N, Ahlgren S, Åkesson A, Wolk A, et al. Dietary environmental impacts relative to planetary boundaries for six environmental indicators – a population-based study. J Clean Prod 2022; 373: 1–9. doi: 10.1016/j.jclepro.2022.133949


32.
Willett W, Rockström J, Loken B, Springmann M, Lang T, Vermeulen S, et al. Food in the anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 2019; 393(10170): 447–92.


33.
Springmann M, Spajic L, Clark MA, Poore J, Herforth A, Webb P, et al. The healthiness and sustainability of national and global food based dietary guidelines: modelling study. BMJ 2020; 370: 1–16. doi: 10.1136/bmj.m2322


34.
Mogensen L, Hermansen JE, Trolle E. The climate and nutritional impact of beef in different dietary patterns in Denmark. Foods 2020; 9: 1–25. doi: 10.3390/foods9091176


35.
Meinilä J, Hartikainen H, Tuomisto HL, Uusitalo L, Vepsäläinen H, Saarinen M, et al. Food purchase behaviour in a Finnish population: patterns, carbon footprints and expenditures. Public Health Nutr 2022; 25: 3265–77. doi: 10.1017/S1368980022001707


36.
Vieux F, Privet L, Soler LG, Irz X, Ferrari M, Sette S, et al. More sustainable European diets based on self-selection do not require exclusion of entire categories of food. J Clean Prod 2020; 248: 119298. doi: 10.1016/j.jclepro.2019.119298


37.
Mertens E, Kuijsten A, van Zanten HH, Kaptijn G, Dofková M, Mistura L, et al. Dietary choices and environmental impact in four European countries. J Clean Prod 2019; 237: 1–16. doi: 10.1016/j.jclepro.2019.117827


38.
Saxe H, Larsen TM, Mogensen L. The global warming potential of two healthy Nordic diets compared with the average Danish diet. Clim Change 2013; 116: 249–62. doi: 10.1007/s10584-012-0495-4


39.
Hjorth T, Huseinovic E, Hallström E, Strid A, Johansson I, Lindahl B, et al. Changes in dietary carbon footprint over ten years relative to individual characteristics and food intake in the Västerbotten Intervention Programme. Sci Rep 2020; 10: 1–14. doi: 10.1038/s41598-019-56924-8


40.
Valsta L, Irz X, Tapanainen H, Kortetmäki T, Salminen J, Saarinen M, et al. Effects of dietary changes on nutrition. In: Kaljonen M, Karttunen K, Kortetmäki T (eds). Fair Food Transformation. Paths to a Sustainable and Just Food System (in Finnish with an English abstract). Reports of the Finnish Environment Institute 38/2022.


41.
Lindroos AK, Hallström E, Moraeus L, Strid A, Winkvist A. Dietary greenhouse gas emissions and diet quality in a cross-sectional study of Swedish adolescents. Am J Clin Nutr 2023; 118(5): 1–10. doi: 10.1016/j.ajcnut.2023.09.001


42.
Strid A, Hallström E, Hjorth T, Johansson I, Lindahl B, Sonesson U, et al. Climate impact from diet in relation to background and sociodemographic characteristics in the Västerbotten Intervention Programme. Public Health Nutr 2019; 22: 3288–97. doi: 10.1017/S1368980019002131


43.
Kyttä V, Hyvönen T, Saarinen M. Land-use-driven biodiversity impacts of diets – a comparison of two assessment methods in a Finnish case study. Int J Life Cycle Assess 2023; 28: 1104–16. doi: 10.1007/s11367-023-02201-w


44.
Zucchinelli M, Sporchia F, Piva M, Thomsen M, Lamastra L, Caro D. Effects of different Danish food consumption patterns on Water ScarcityFootprint. J Environ Manage 2021; 300: 113713. doi: 10.1016/j.jenvman.2021.113713


45.
Sandström V, Kauppi PE, Scherer L, Kastner T. Linking country level food supply to global land and water use and biodiversity impacts: the case of Finland. Sci Tot Environ 2017; 575: 33–40. doi: 10.1016/j.scitotenv.2016.10.002


46.
Wood A, Gordon LJ, Röös E, Karlsson JO, Häyhä T, Bignet V, et al. Nordic food systems for improved health and sustainability. Baseline assessment to inform transformation. Stockholm: Stockholm Resilience Centre, Stockholm University; 2019.


47.
Zhao J, Bindi M, Eitzinger J, Ferrise R, Gaile Z, Gobin A, et al. Priority for climate adaptation measures in European crop production systems. Eur J Agron 2022; 138: 1–17. doi: 10.1016/j.eja.2022.126516


48.
Seppälä J, Grönroos J, Heinonen T, Häkkinen T, Koljonen T, Kurnitski J, et al. Kuluttajien mahdollisuudet Suomen päästövähennysten vauhdittamiseksi : Taustaraportti ruokaan, asumiseen, liikkumiseen ja muuhun kulutukseen liittyvistä toimista. (in Finnish, English translation: Consumer Opportunities for Accelerating Emission Reduction. Suomen ilmastopaneeli (Finnish Climate Panel); 2022.


49.
Mittenzwei K, Walland F, Milford AB, Grønlund A. Klimakur 2030. Overgang fra rødt kjøtt til vegetabilsk og fisk in Norwegian] (Climate cure 2030. Transition from red meat to plants and fish). Ås: NIBIO Norsk Institut for Bioøkonomi; 2020.


50.
Sundin N, Rosell M, Eriksson M, Jensen C, Bianchi M. The climate impact of excess food intake – an avoidable environmental burden. Resour Conserv Recycl 2021; 174: 105777. doi: 10.1016/j.resconrec.2021.105777


51.
Hallström E, Carlsson-Kanyama A, Börjesson P. Environmental impact of dietary change: a systematic review. J Clean Prod 2015; 91: 1–11. doi: 10.1016/j.jclepro.2014.12.008


52.
Vieux F, Darmon N, Touazi D, Soler LG. Greenhouse gas emissions of self-selected individual diets in France: changing the diet structure or consuming less? Ecol Econ 2012; 75: 91–101. doi: 10.1016/J.ECOLECON.2012.01.003


53.
Lassen AD, Christensen LM, Trolle E. Development of a Danish Adapted Healthy Plant-Based Diet Based on the EAT-Lancet Reference Diet. Nutrients 2020; 12: 1–19. doi: 10.3390/nu12030738


54.
Martin M, Brandão M. Evaluating the environmental consequences of Swedish food consumption and dietary choices. Sustainability (Switzerland) 2017; 9: 2227. doi: 10.3390/su9122227


55.
Wright EC, van Oort B, Bjøntegaard MM, Carlsen MH, Andersen LF. Environmental and nutritional assessment of young children’s diets in Norway: comparing the current diet with national dietary guidelines and the EAT-Lancet reference diet. Eur J Nutr 2023; 62: 3383–96. doi: 10.1007/s00394-023-03243-4


56.
Vanham D, Gawlik BM, Bidoglio G. Food consumption and related water resources in Nordic cities. Ecol Indic 2017; 74: 119–29. doi: 10.1016/j.ecolind.2016.11.019


57.
Wallén A, Brandt N, Wennersten R. Does the Swedish consumer’s choice of food influence greenhouse gas emissions? Environ Sci Policy 2004; 7: 525–35. doi: 10.1016/j.envsci.2004.08.004


58.
Röös E, Carlsson G, Ferawati F, Hefni M, Stephan A, Tidåker P, et al. Less meat, more legumes: prospects and challenges in the transition toward sustainable diets in Sweden. Renew Agric Food Syst 2020; 35: 192–205. doi: 10.1017/S1742170518000443


59.
Kaljonen M, Karttunen K, Kortetmäki T. Fair food transformation. Paths to a sustainable and just food system (in Finnish with an English abstract). Reports of the Finnish Environment Institute 38/2022. Helsinki: Finnish Environment Institute; 2022.


60.
Risku-Norja H, Mäenpää I. MFA model to assess economic and environmental consequences of food production and consumption. Ecol Econ 2007; 60: 700–11. doi: 10.1016/j.ecolecon.2006.05.001


61.
Springmann M, Wiebe K, Mason-D’Croz D, Sulser TB, Rayner M, Scarborough P. Health and nutritional aspects of sustainable diet strategies and their association with environmental impacts: a global modelling analysis with country-level detail. Lancet Planet Health 2018; 2: e451–61. doi: 10.1016/S2542-5196(18)30206-7


62.
Wood A, Moberg E, Curi-Quinto K, Van Rysselberge P, Röös E. From ‘good for people’ to ‘good for people and planet’ – placing health and environment on equal footing when developing food-based dietary guidelines. Food Policy 2023; 117: 1–11. doi: 10.1016/j.foodpol.2023.102444


63.
Wilson N, Cleghorn CL, Cobiac LJ, Mizdrak A, Nghiem N. Achieving healthy and sustainable diets: a review of the results of recent mathematical optimization studies. Adv Nutr 2019; 10: S389–403. doi: 10.1093/advances/nmz037


64.
van Dooren C. A review of the use of linear programming to optimize diets, nutritiously, economically and environmentally. Front Nutr 2018; 5: 1–15. doi: 10.3389/fnut.2018.00048


65.
Vieux F, Perignon M, Gazan R, Darmon N. Dietary changes needed to improve diet sustainability: are they similar across Europe? Eur J Clin Nutr 2018; 72: 951–60. doi: 10.1038/s41430-017-0080-z


66.
Mazac R, Meinilä J, Korkalo L, Järviö N, Jalava M, Tuomisto HL. Incorporation of novel foods in European diets can reduce global warming potential, water use and land use by over 80%. Nat Food 2022; 3: 286–93. doi: 10.1038/s43016-022-00489-9


67.
Mertens E, Kuijsten A, Kanellopoulos A, Dofková M, Mistura L, D’Addezio L, et al. Improving health and carbon footprints of European diets using a benchmarking approach. Public Health Nutr 2021; 24: 565–75. doi: 10.1017/S1368980020003341


68.
Mertens E, Biesbroek S, Dofková M, Mistura L, D’Addezio L, Turrini A, et al. Potential impact of meat replacers on nutrient quality and greenhouse gas emissions of diets in four European countries. Sustainability (Switzerland) 2020; 12(17): 1–11. doi: 10.3390/SU12176838


69.
Nordman M, Lassen AD, Stockmarr A, van ‘t Veer P, Biesbroek S, Trolle E. Exploring healthy and climate-friendly diets for Danish adults: an optimization study using quadratic programming. Front Nutr 2023; 10: 1–13. doi: 10.3389/fnut.2023.1158257


70.
Jalava M, Kummu M, Porkka M, Siebert S, Varis O. Diet change – a solution to reduce water use? Environmental Research Letters 2014; 9: 1–14. doi: 10.1088/1748-9326/9/7/074016


71.
Colombo PE, Patterson E, Elinder LS, Lindroos AK, Sonesson U, Darmon N, et al. Optimizing school food supply: integrating environmental, health, economic, and cultural dimensions of diet sustainability with linear programming. Int J Environ Res Public Health 2019; 16: 1–18. doi: 10.3390/ijerph16173019


72.
Elinder LS, Colombo PE, Patterson E, Parlesak A, Lindroos AK. Successful implementation of climate-friendly, nutritious, and acceptable school meals in practice: the optimatTM intervention study. Sustainability (Switzerland) 2020; 12: 1–16. doi: 10.3390/su12208475


73.
Päivärinta E, Itkonen ST, Pellinen T, Lehtovirta M, Erkkola M, Pajari AM. Replacing animal-based proteins with plant-based proteins changes the composition of a whole Nordic diet – a randomised clinical trial in healthy Finnish adults. Nutrients 2020; 12: 1–16. doi: 10.3390/nu12040943


74.
Itkonen ST, Päivärinta E, Pellinen T, Viitakangas H, Risteli J, Erkkola M, et al. Partial replacement of animal proteins with plant proteins for 12 weeks accelerates bone turnover among healthy adults: a randomized clinical trial. J Nutr 2021; 151: 11–9. doi: 10.1093/jn/nxaa264


75.
Pellinen T, Päivärinta E, Isotalo J, Lehtovirta M, Itkonen ST, Korkalo L, et al. Replacing dietary animal-source proteins with plant-source proteins changes dietary intake and status of vitamins and minerals in healthy adults: a 12-week randomized controlled trial. Eur J Nutr 2022; 61: 1391–404. doi: 10.1007/s00394-021-02729-3


76.
Natural Resources Institute Finland (Luke). Natural Resources Institute Finland. Significant health and environmental benefits can be achieved with moderate dietary changes. [In Finnish] LUKE Policy Brief 1/2021. Helsinki: Luonnonvarakeskus; 2021. Available from: https://jukuri.luke.fi/handle/10024/547168 [cited 01 June 2023].


77.
Colombo PE, Patterson E, Lindroos AK, Parlesak A, Elinder LS. Sustainable and acceptable school meals through optimization analysis: an intervention study. Nutr J 2020; 19: 61. doi: 10.1186/s12937-020-00579-z


78.
Thorsen AV, Mogensen L, Jørgensen MS, Trolle E. Klimaorienterede kostråd. Lyngby: National Food Institute, DTU; 2012.


79.
Trolle E, Mogensen L, Thorsen A, Søgaard Jørgensen M. Climate friendly dietary guidelines. In Proceedings of the 9th International Conference on Life Cycle Assessment in the Agri-Food Sector. LCA Food 2014 2014: 1344–51.


80.
Norwegian Directorate of Health. Norwegian guidelines on diet, nutrition, and physical activity. Oslo: Norwegian Directorate of Health; 2014.


81.
Norwegian Council of Nutrition. Kostråd for å fremme folkehelsen og forebygge kroniske sykdommer Metodologi og vitenskapelig kunnskapsgrunnlag [In Norwegian]. Food Based dietary guidelines for health promotion and prevention of chronical diseases. Methods and scientific evidence. Oslo: Norwegian Directorate of Health; 2011.


82.
Norwegian Council of Nutrition. Bærekraftig kosthold – vurdering av de norske kostrådene i et bærekraftperspektiv [In Norwegian] (Sustainable diets – assessment of the Norwegian Food Based Dietary Guidelines in a sustainability perspective). Oslo: Norwegian Council of Nutrition; 2017.


83.
National Nutrition Council Finland. Nutrition and food recommendations. National Nutrition Council, Helsinki: Finnish Food Authority; 2014.


84.
Olafsdottir AS, Gisladottir E, Thorgeirsdottir H, Thorsdottir I, Gunnarsdottir I, Steingrimsdottir L, et al. Food based dietary guidelines for adults and children from 2 years of age (In Icelandic: Ráðleggingar um mataræði fyrir fullorðna og börn frá tveggja ára aldri). 5th ed. Reykjavík: Directorate of Health; 2021.


85.
Swedish Food Agency. The Swedish dietary guidelines – find your way to eat greener, not too much and be active. Uppsala: Swedish Food Agency; 2015.


86.
The Danish Veterinary and Food Administration. The official dietary guidelines – good for health and climate. Copenhagen: The Danish Veterinary and Food Administration, Ministry of Food, Agriculture and Fisheries of Denmark; 2021.


87.
Lassen AD, Christensen LM, Fagt S, Trolle E. Råd om bæredygtig sund kost - fagligt grundlag for et supplement til De officielle Kostråd. In Danish (Advice on sustainable healthy diets – scientific basis for supplementary advice to the official Food Based Dietary Guidelines). Kgs. Lyngby: National Food Institute, Technical University of Denmark; 2020.


88.
THE 17 GOALS. Sustainable development. United Nations; n.d. Available from: https://sdgs.un.org/goals [cited 10 April 2024].


89.
Bechthold A, Boeing H, Tetens I, Schwingshackl L, Nöthlings U. Perspective: Food-based dietary guidelines in Europe – scientific concepts, current status, and perspectives. Adv Nutr 2018; 9: 544–60. doi: 10.1093/advances/nmy033


90.
Tetens I, Birt CA, Brink E, Bodenbach S, Bugel S, De Henauw S, et al. Food-Based Dietary Guidelines-development of a conceptual framework for future Food-Based Dietary Guidelines in Europe: report of a Federation of European Nutrition Societies Task-Force Workshop in Copenhagen, 12-13 March 2018. Br J Nutr 2020; 124: 1338–44. doi: 10.1017/S0007114520002469


91.
Mazac R, Renwick K, Seed B, Black JL. An approach for integrating and analyzing sustainability in food-based dietary guidelines. Front Sustain Food Syst 2021; 5: 1–14. doi: 10.3389/fsufs.2021.544072


92.
Perignon M, Darmon N. Advantages and limitations of the methodological approaches used to study dietary shifts towards improved nutrition and sustainability. Nutr Rev 2022; 80: 579–97. doi: 10.1093/nutrit/nuab091


93.
Tetens I, Andersen L, Astrup A, Gondolf U, Hermansen K, Jakobsen MU, et al. The evidence base for the Danish Dietary Guidelines for diet and physical activity (In Danish). Lyngby: National Food Institute, DTU; 2013.


94.
Ryberg MW, Andersen MM, Owsianiak M, Hauschild MZ. Downscaling the planetary boundaries in absolute environmental sustainability assessments – a review. J Clean Prod 2020; 276: 1–12. doi: 10.1016/j.jclepro.2020.123287


95.
Afshin A, Sur PJ, Fay KA, Cornaby L, Ferrara G, Salama JS, et al. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019; 393: 1958–72. doi: 10.1016/S0140-6736(19)30041-8


96.
Abbafati C, Abbas KM, Abbasi-Kangevari M, Abd-Allah F, Abdelalim A, Abdollahi M, et al. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020; 396: 1223–49. doi: 10.1016/S0140-6736(20)30752-2


97.
Scarborough P, Clark M, Cobiac L, Papier K, Knuppel A, Lynch J, et al. Vegans, vegetarians, fish-eaters and meat-eaters in the UK show discrepant environmental impacts. Nat Food 2023; 4: 565–74. doi: 10.1038/s43016-023-00795-w


98.
Aleksandrowicz L, Green R, Joy EJM, Smith P, Haines A. The impacts of dietary change on greenhouse gas emissions, land use, water use, and health: a systematic review. PLoS One 2016; 11: 1–16. doi: 10.1371/journal.pone.0165797


99.
Stockholm Resilience Centre. Insight paper 4. Nordic food system transformation series. Stockholm: Stockholm Resilience Centre, Stockholm University; 2021.


100.
Gephart JA, Davis KF, Emery KA, Leach AM, Galloway JN, Pace ML. The environmental cost of subsistence: optimizing diets to minimize footprints. Sci Tot Environ 2016; 553: 120–7. doi: 10.1016/j.scitotenv.2016.02.050


101.
Poore J, Nemecek T. Reducing food’s environmental impacts through producers and consumers. Science (1979) 2018; 360: 987–92. doi: 10.1126/science.aaq0216


102.
Vellinga RE, van de Kamp M, Toxopeus IB, van Rossum CTM, de Valk E, Biesbroek S, et al. Greenhouse Gas Emissions and blue water use of dutch diets and its association with health. Sustainability (Switzerland) 2019; 11: 1–15. doi: 10.3390/su11216027


103.
Crippa M, Solazzo E, Guizzardi D, Monforti-Ferrario F, Tubiello FN, Leip A. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat Food 2021; 2: 198–209. doi: 10.1038/s43016-021-00225-9


104.
Volkery A, Ribeiro T, Henrichs T, Hoogeveen Y. Your vision or my model? Lessons from participatory land use scenario development on a European scale. Syst Pract Action Res 2008; 21: 459–77. doi: 10.1007/s11213-008-9104-x


105.
Mauser W, Klepper G, Rice M, Schmalzbauer BS, Hackmann H, Leemans R, et al. Transdisciplinary global change research: the co-creation of knowledge for sustainability. Curr Opin Environ Sustain 2013; 5: 420–31. doi: 10.1016/j.cosust.2013.07.001


106.
Guo A, Bryngelsson S, Strid A, Bianchi M, Winkvist A, Hallström E. Choice of health metrics for combined health and environmental assessment of foods and diets: a systematic review of methods. J Clean Prod 2022; 365: 1–15. doi: 10.1016/j.jclepro.2022.132622


107.
Potter HK, Lundmark L, Röös E. Environmental impact of plant-based foods -Data collection for the development of a consumer guide for plant-based foods. Title of series: report 112. Uppsala: Swedish University of Agricultural Sciences SLU; 2020.


108.
Carlsson Kanyama A, Hedin B, Katzeff C. Differences in environmental impact between plant-based alternatives to dairy and dairy products: a systematic literature review. Sustainability (Switzerland) 2021; 13: 1–16. doi: 10.3390/su132212599


109.
Silva BQ, Smetana S. Review on milk substitutes from an environmental and nutritional point of view. Appl Food Res 2022; 2: 100105. doi: 10.1016/j.afres.2022.100105


110.
Berardy AJ, Rubín-García M, Sabaté J. A scoping review of the environmental impacts and nutrient composition of plant-based milks. Adv Nutr 2022; 13: 2559–72. doi: 10.1093/advances/nmac098


111.
Jakobsen J, Danielsen M, Langwagen M, Svarc PL, Poulsen A, Trolle E. Næringsstofindhold i plantedrikke. Nutrient content in plant-based beverages, in Danish. Kgs. Lyngby: DTU Fødevareinstituttet; 2022.


112.
Marcone S, Belton O, Fitzgerald DJ. Milk-derived bioactive peptides and their health promoting effects: a potential role in atherosclerosis. Br J Clin Pharmacol 2017; 83: 152–62. doi: 10.1111/bcp.13002


113.
Mäkinen OE, Wanhalinna V, Zannini E, Arendt EK. Foods for special dietary needs: non-dairy plant-based milk substitutes and fermented dairy-type products. Crit Rev Food Sci Nutr 2016; 56: 339–49. doi: 10.1080/10408398.2012.761950


114.
Norwegian Food Safety Authority. Analyse av næringsstoffer og uønskede stoffer i plantebaserte middagsprodukter og drikker [In Norwegian] (Analyses of nutrients and other substances in plant-based meal products and drinks). Oslo: Norwegian Food Safety Authority; 2022.


115.
Bryngelsson S, Moshtaghian H, Bianchi M, Hallström E. Nutritional assessment of plant-based meat analogues on the Swedish market. Int J Food Sci Nutr 2022; 73: 889–901. doi: 10.1080/09637486.2022.2078286


116.
Shanmugam K, Bryngelsson S, Östergren K, Hallström E. Climate impact of plant-based meat analogues: a review of life cycle assessments. Sustain Prod Consum 2023; 36: 328–37. doi: 10.1016/j.spc.2023.01.014


117.
World Food Programme (WFP). State of school feeding worldwide. Rome: World Food Programme; 2020.


118.
Raulio S, Roos E, Prättälä R. School and workplace meals promote healthy food habits. Public Health Nutr 2010; 13: 987–92. doi: 10.1017/S1368980010001199


119.
Boyle NB, Adolphus K, Caton S, Croden F, Dye L, Glass A, et al. Increasing fibre intake in the UK: lessons from the Danish Whole Grain Partnership. Br J Nutr 2023; 131: 672–85. doi: 10.1017/S0007114523002106


120.
Pulkkinen H, Roininen T, Katajajuuri JM, Järvinen M. Development of a climate choice meal concept for restaurants based on carbon footprinting. Int J Life Cycle Assess 2016; 21: 621–30. doi: 10.1007/s11367-015-0913-8


121.
IPCC. In: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. Geneva, Switzerland: IPCC; 2023, pp. 35–115. doi: 10.59327/IPCC/AR6-9789291691647


122.
Clune S, Crossin E, Verghese K. Systematic review of greenhouse gas emissions for different fresh food categories. J Clean Prod 2017; 140: 766–83. doi: 10.1016/j.jclepro.2016.04.082


123.
Moberg E, Walker Andersson M, Säll S, Hansson PA, Röös E. Determining the climate impact of food for use in a climate tax – design of a consistent and transparent model. Int J Life Cycle Assess 2019; 24: 1715–28. doi: 10.1007/s11367-019-01597-8


124.
Sugimoto M, Murakami K, Asakura K, Masayasu S, Sasaki S. Diet-related greenhouse gas emissions and major food contributors among Japanese adults: comparison of different calculation methods. Public Health Nutr 2021; 24: 973–83. doi: 10.1017/S1368980019004750


125.
European Commission. Commission recommendation on the use of Environmental Footprint methods. Bruxelles: Official Journal of the European Union. European Commission; 2021.


126.
Mogensen L, Nguyen TLT, Madsen NT, Pontoppidan O, Preda T, Hermansen JE. Environmental impact of beef sourced from different production systems – focus on the slaughtering stage: input and output. J Clean Prod 2016; 133: 284–93. doi: 10.1016/j.jclepro.2016.05.105


127.
Nguyen TT, Hermansen JE, Mogensen L. Environmental assessment of Danish Pork. Report no 103. Aarhus: Aarhus University; 2011.


128.
Dorca-Preda T, Mogensen L, Kristensen T, Knudsen MT. Environmental impact of Danish pork at slaughterhouse gate – a life cycle assessment following biological and technological changes over a 10-year period. Livest Sci 2021; 251: 104622. doi: 10.1016/j.livsci.2021.104622


129.
Halberg N, Dalgaard R, Rasmussen MD. Miljøvurdering af konventionel og økologisk avl af grøntsager – Livscyklusvurdering af produktion i væksthuse og på friland: Tomater, agurker, løg, gulerødder. Arbejdsrapport Fra Miljøstyrelsen Nr 5 2006. Copenhagen: Ministry of Environment; 2006.


130.
Landquist B, Woodhouse A. Klimatavtryck av rotfrukter, grönsaker och kryddor Analys av tio produkter odlade i Sverige [in Swedish] (Climate footprint of roots, vegetables and herbs). Rapport 894. Gothenburg: SIK The Swedish Institute for Food and Biotechnology; 2015.


131.
Flysjö A, Henriksson M, Cederberg C, Ledgard S, Englund JE. The impact of various parameters on the carbon footprint of milk production in New Zealand and Sweden. Agric Syst 2011; 104: 459–69. doi: 10.1016/j.agsy.2011.03.003


132.
Cederberg C, Sonesson U, Henriksson M, Sund V, Davis J. Greenhouse gas emissions from Swedish consumption of meat, milk and eggs 1990 and 2005. Gothenburg: SiK; 2009.


133.
Ziegler F, Jafarzadeh S, Skontorp Hognes E, Winther U. Greenhouse gas emissions of Norwegian seafoods: from comprehensive to simplified assessment. J Ind Ecol 2021: 1–12. doi: 10.1111/jiec.13150


134.
Ziegler F, Winther U, Hognes ES, Emanuelsson A, Sund V, Ellingsen H. The carbon footprint of Norwegian seafood products on the global seafood market. J Ind Ecol 2013; 17: 103–16. doi: 10.1111/j.1530-9290.2012.00485.x


135.
Mejia M, Fresán U, Harwatt H, Oda K, Uriegas-Mejia G, Sabaté J. Life cycle assessment of the production of a large variety of meat analogs by three diverse factories. J Hunger Environ Nutr 2020; 15: 699–711. doi: 10.1080/19320248.2019.1595251


136.
RISE. RISE Food Climate Database; n.d. Available from: https://www.ri.se/en/what-we-do/expertises/rise-food-climate-database [cited 18 December 2023].


137.
Röös E. Mat-klimat-listan Version 1.1. Uppsala: Swedish University of Agricultural Sciences; 2014.


138.
Concito. Den store klimadatabase [ in Danish ] (The big climate database). Database for Climate Impact 2024. Available from: https://denstoreklimadatabase.dk/ [cited 10 April 2024].


139.
Mogensen L, Knudsen MT, Hashemi F, Jensen A, Kristensen T. Vidensyntese om livscyklusvurderinger og klimaeffektivitet i landbrugssektoren [In Danish] (Synthesis of knowledge on life cycle assessments and climate impact i the agriculture sector). Aarhus: Aarhus University, DCA Danish Centre for Food and Agriculture; 2022.


140.
van Oort B, Andrew R. Climate Footprints of Norwegian Dairy and Meat-a Synthesis A literature study of emissions of Norwegian dairy and meat products compared to other relevant products and regions, commissioned by TINE AS 2016.CICERO Report 2016, Oslo: Center for International Climate and Environmental Research 2016; 06: 1–73. Available from: http://www.cicero.uio.no.


141.
Gephart JA, Henriksson PJG, Parker RWR, Shepon A, Gorospe KD, Bergman K, et al. Environmental performance of blue foods. Nature 2021; 597: 360–5. doi: 10.1038/s41586-021-03889-2


142.
Bianchi M, Hallström E, Parker RWR, Mifflin K, Tyedmers P, Ziegler F. Assessing seafood nutritional diversity together with climate impacts informs more comprehensive dietary advice. Commun Earth Environ 2022; 3: 1–12. doi: 10.1038/s43247-022-00516-4


143.
Chiriacò MV, Castaldi S, Valentini R. Determining organic versus conventional food emissions to foster the transition to sustainable food systems and diets: insights from a systematic review. J Clean Prod 2022; 380: 1–10. doi: 10.1016/j.jclepro.2022.134937


144.
van der Werf HMG, Knudsen MT, Cederberg C. Towards better representation of organic agriculture in life cycle assessment. Nat Sustain 2020; 3: 419–25. doi: 10.1038/s41893-020-0489-6
Published
2024-10-25
How to Cite
Trolle E., Meinilä J., Eneroth H., Meltzer H. M., Þórsdóttir I., Halldorsson T., & Erkkola M. (2024). Integrating environmental sustainability into food-based dietary guidelines in the Nordic countries. Food & Nutrition Research, 68. https://doi.org/10.29219/fnr.v68.10792
Section
Nordic Nutrition Recommendations

Most read articles by the same author(s)