High oleic peanuts improve parameters leading to fatty liver development and change the microbiota in mice intestine

  • Elise Taieb Bimro Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
  • Ran Hovav Department of Field Crops and Vegetables Research, Plant Sciences Institute, Agricultural Research Organization, Bet-Dagan, Israel
  • Abraham Nyska Toxicologic Pathology, Timrat and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
  • Tal Assa Glazer Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
  • Zecharia Madar Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
Keywords: high oleic peanut, liver, lipids, triglycerides, microbiota


Background: Oleic-acid consumption can possibly prevent or delay metabolic diseases. In Israel, a Virginia- type peanut cultivar with a high content of oleic acid has been developed.

Objective: This study examined the effect of consuming high oleic peanuts (D7) on the development of fatty liver compared to the standard HN strain.

Design: The two peanut cultivars were added to normal diet (ND) and high-fat (HF) mouse diet. Male C57BL/6 mice were fed for 8 and 10 weeks on a 4% D7, 4% HN, or control diet. At the end of the experiments, blood and tissues were collected. Triglyceride, lipid levels, histology, and protein expression were examined. The diets’ effects on intestinal microbiota were also evaluated.

Results: Both D7 and HFD7 led to a reduction in plasma triglycerides. Lipids, triglycerides, and free fatty acids in the liver were low in diets containing D7. Additionally, CD36 expression decreased in the D7 group. Consumption of D7 led to higher Prevotella levels, and consumption of ND that contained HN or D7 led to a lower Firmicutes/Bacteroidetes ratio.

Conclusion: These findings suggest that consumption of peanuts high in oleic acid (D7) may have the potential to delay primary fatty liver symptoms.


Download data is not yet available.


  1. Settaluri VS, Kandala CVK, Puppala N, Sundaram J. Peanuts and their nutritional aspects – a review. Food Nutr Sci 2012; 3(12): 1644. doi: 10.4236/fns.2012.312215

  2. Arya SS, Salve AR, Chauhan S. Peanuts as functional food: a review. J Food Sci Technol 2016; 53(1): 31–41. doi: 10.1007/s13197-015-2007-9

  3. Toomer OT. Nutritional chemistry of the peanut (Arachis hypogaea). Crit Rev Food Sci Nutr 2018; 58(17): 3042–53. Available from: https://www.tandfonline.com/loi/bfsn20

  4. Foster-Powell K, Holt SHA, Brand-Miller JC. International table of glycemic index and glycemic load values: 2002. Am J Clin Nutr 2002; 76(1): 5–56. doi: 10.1093/ajcn/76.1.5

  5. Alper CM, Mattes RD. Peanut consumption improves indices of cardiovascular disease risk in healthy adults. J Am Coll Nutr 2003; 22(2): 133–41. doi: 10.1080/07315724.2003.10719286

  6. Fraser GE, Sabate J, Beeson WL, Strahan TM. A possible protective effect of nut consumption on risk of coronary heart disease: the Adventist Health Study. Arch Intern Med 1992; 152(7): 1416–24. doi: 10.1001/archinte.1992.00400190054010

  7. Kris-Etherton PM, Pearson TA, Wan Y, Hargrove RL, Moriarty K, Fishell V, et al. High–monounsaturated fatty acid diets lower both plasma cholesterol and triacylglycerol concentrations. Am J Clin Nutr 1999; 70(6): 1009–15. doi: 10.1093/ajcn/70.6.1009

  8. Jiang R, Manson JE, Stampfer MJ, Liu S, Willett WC, Hu FB. Nut and peanut butter consumption and risk of type 2 diabetes in women. JAMA 2002; 288(20): 2554–60. doi: 10.1001/jama.288.20.2554

  9. Mattes RD, Kris-Etherton PM, Foster GD. Impact of peanuts and tree nuts on body weight and healthy weight loss in adults. J Nutr 2008; 138(9): 1741S–5S. doi: 10.1093/jn/138.9.1741S

  10. Bellentani S. The epidemiology of non-alcoholic fatty liver disease. Liver Int 2017; 37: 81–4. doi: 10.1159/000282080

  11. Than NN, Newsome PN. A concise review of non-alcoholic fatty liver disease. Atherosclerosis 2015; 239(1): 192–202. doi: 10.1016/j.atherosclerosis.2015.01.001

  12. Lewis GF, Carpentier A, Adeli K, Giacca A. Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes. Endocr Rev 2002; 23(2): 201–29. doi: 10.1210/edrv.23.2.0461

  13. Isleib TG, Pattee HE, Sanders TH, Hendrix KW, Dean LO. Compositional and sensory comparisons between normal-and high-oleic peanuts. J Agric Food Chem 2006; 54(5): 1759–63. doi: 10.1021/jf052353t

  14. Norden AJ, Gorbet DW, Knauft DA, Young CT. Variability in oil quality among peanut genotypes in the Florida breeding program. Peanut Sci 1987; 14(1): 7–11. doi: 10.3146/i0095-3679-14-1-3

  15. Vassiliou EK, Gonzalez A, Garcia C, Tadros JH, Chakraborty G, Toney JH. Oleic acid and peanut oil high in oleic acid reverse the inhibitory effect of insulin production of the inflammatory cytokine TNF-α both in vitro and in vivo systems. Lipids Health Dis 2009; 8(1): 25. http://www.lipidworld.com/content/8/1/25

  16. Alves RDM, Moreira APB, Macedo VS, de Cássia Gonçalves Alfenas R, Bressan J, Mattes R, et al. Regular intake of high-oleic peanuts improves fat oxidation and body composition in overweight/obese men pursuing a energy-restricted diet. Obesity 2014; 22(6): 1422–9. doi: 10.1002/oby.20746.

  17. Barbour J, Howe P, Buckley J, Bryan J, Coates A. Effect of 12 weeks high oleic peanut consumption on cardio-metabolic risk factors and body composition. Nutrients 2015; 7(9): 7381–98. doi: 10.3390/nu7095343

  18. Barbour JA, Howe PRC, Buckley JD, Bryan J, Coates AM. Cerebrovascular and cognitive benefits of high-oleic peanut consumption in healthy overweight middle-aged adults. Nutr Neurosci 2017; 20(10): 555–62. doi: 10.1080/1028415X.2016.1204744

  19. Compare D, Coccoli P, Rocco A, Nardone OM, De Maria S, Cartenì M, et al. Gut–liver axis: the impact of gut microbiota on nonalcoholic fatty liver disease. Nutr Metab Cardiovasc Dis 2012; 22(6): 471–6. doi: 10.1016/j.numecd.2012.02.007

  20. Lamuel-Raventos RM, Onge M-PS. Prebiotic nut compounds and human microbiota. Crit Rev Food Sci Nutr 2017; 57(14): 3154–63. doi: 10.1080/10408398.2015.1096763

  21. Nakamura A, Terauchi Y. Lessons from mouse models of high-fat diet-induced NAFLD. Int J Mol Sci 2013; 14(11): 21240–57.

  22. Rivero-Gutiérrez B, Anzola A, Martínez-Augustin O, de Medina FS. Stain-free detection as loading control alternative to Ponceau and housekeeping protein immunodetection in Western blotting. Anal Biochem 2014; 467: 1–3.

  23. Smith NT, Soriano-Arroquia A, Goljanek-Whysall K, Jackson MJ, McDonagh B. Redox responses are preserved across muscle fibres with differential susceptibility to aging. J Proteomics 2018; 177: 112–23.

  24. Thoolen B, Maronpot RR, Harada T, Nyska A, Rousseaux C, Nolte T, et al. Proliferative and nonproliferative lesions of the rat and mouse hepatobiliary system. Toxicol Pathol 2010; 38(7_suppl): 5S–81S. doi: 10.1177%2F0192623310386499

  25. Martínez R , Kapravelou G , Donaire A , et al. Effects of a combined intervention with a lentil protein hydrolysate and a mixed training protocol on the lipid metabolism and hepatic markers of NAFLD in Zucker rats. Food Funct. 2018;9(2):830–850. doi: 10.1039/C7FO01790A

  26. Hardie DG, Schaffer BE, Brunet A. AMPK: an energy-sensing pathway with multiple inputs and outputs. Trends Cell Biol 2016; 26(3): 190–201. doi: 10.1016/j.tcb.2015.10.013

  27. Choi JS, Kim J-H, Ali MY, Min B-S, Kim G-D, Jung HA. Coptis chinensis alkaloids exert anti-adipogenic activity on 3T3-L1 adipocytes by downregulating C/EBP-α and PPAR-γ. Fitoterapia 2014; 98: 199–208.

  28. Magnusson I, Rothman DL, Katz LD, Shulman RG, Shulman GI. Increased rate of gluconeogenesis in type II diabetes mellitus. A 13C nuclear magnetic resonance study. J Clin Invest 1992; 90(4): 1323–7.

  29. Shackelford DB, Shaw RJ. The LKB1–AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer 2009; 9(8): 563.

  30. Buettner R, Parhofer KG, Woenckhaus M, Wrede CE, Kunz-Schughart LA, Scholmerich J, et al. Defining high-fat-diet rat models: metabolic and molecular effects of different fat types. J Mol Endocrinol 2006; 36(3): 485–501.

  31. Bates MW, Linn LC, Huen AH-J. Effects of oleic acid infusion on plasma free fatty acids and blood ketone bodies in the fasting rat. Metabolism 1976; 25(4): 361–73. doi: 10.1016/0026-0495(76)90068-8

  32. Engin A. Non-alcoholic fatty liver disease. Adv Exp Med Biol. 2017;960:443–67. doi: 10.1007/978-3-319-48382-5_19

  33. Cintra DEC, Costa AV, Maria do Carmo GP, Matta SLP, Silva MTC, Costa NMB. Lipid profile of rats fed high-fat diets based on flaxseed, peanut, trout, or chicken skin. Nutrition 2006; 22(2): 197–205. doi: 10.1016/j.nut.2005.09.003

  34. Hussein O, Grosovski M, Lasri E, Svalb S, Ravid U, Assy N. Monounsaturated fat decreases hepatic lipid content in non-alcoholic fatty liver disease in rats. World J Gastroenterol 2007; 13(3): 361.

  35. da Silva-Santi L, Antunes M, Caparroz-Assef S, Carbonera F, Masi L, Curi R, et al. Liver fatty acid composition and inflammation in mice fed with high-carbohydrate diet or high-fat diet. Nutrients 2016; 8(11): 682. doi: 10.3390/nu8110682

  36. Yamada K, Mizukoshi E, Sunagozaka H, Arai K, Yamashita T, Takeshita Y, et al. Characteristics of hepatic fatty acid compositions in patients with nonalcoholic steatohepatitis. Liver Int 2015; 35(2): 582–90. doi: 10.1111/liv.12685

  37. Kawano Y, Cohen DE. Mechanisms of hepatic triglyceride accumulation in non-alcoholic fatty liver disease. J Gastroenterol 2013; 48(4): 434–41. doi: 10.1007/s00535-013-0758-5

  38. Djohan YF, Badia E, Bonafos B, Fouret G, Lauret C, Dupuy A-M, et al. High dietary intake of palm oils compromises glucose tolerance whereas high dietary intake of olive oil compromises liver lipid metabolism and integrity. Eur J Nutr 2019;58(8):3091–107. doi: 10.1007/s00394-018-1854-3

  39. Udomsinprasert W, Honsawek S, Poovorawan Y. Adiponectin as a novel biomarker for liver fibrosis. World J Hepatol 2018; 10(10): 708. doi: 10.4254/wjh.v10.i10.708

  40. Pintó X, Fanlo-maresma M, Corbella E, Corbella X, Mitjavila MT, Moreno JJ, et al. A Mediterranean diet rich in extra-virgin olive oil is associated with a reduced prevalence of nonalcoholic fatty liver disease in older individuals at high cardiovascular risk. J Nutr 2019; 149(11): 1–10. doi: 10.1093/jn/nxz147

  41. Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci 2005; 102(31): 11070–5. doi: 10.1073/pnas.0504978102

  42. Koliada A, Syzenko G, Moseiko V, Budovska L, Puchkov K, Perederiy V, et al. Association between body mass index and Firmicutes/Bacteroidetes ratio in an adult Ukrainian population. BMC Microbiol 2017; 17(1): 120.

  43. Shin N-R, Whon TW, Bae J-W. Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol 2015; 33(9): 496–503. doi: 10.1016/j.tibtech.2015.06.011

  44. Zhu L, Baker SS, Gill C, Liu W, Alkhouri R, Baker RD, et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology 2013; 57(2): 601–9. doi: 10.1002/hep.26093

  45. Kovatcheva-Datchary P, Nilsson A, Akrami R, Lee YS, De Vadder F, Arora T, et al. Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of Prevotella. Cell Metab 2015; 22(6): 971–82. doi: 10.1016/j.cmet.2015.10.001

  46. Haro C, García-Carpintero S, Rangel-Zúñiga OA, Alcalá-Díaz JF, Landa BB, Clemente JC, et al. Consumption of two healthy dietary patterns restored microbiota dysbiosis in obese patients with metabolic dysfunction. Mol Nutr Food Res 2017; 61(12): 1700300. doi: 10.1002/mnfr.201700300

  47. Nakanishi M, Chen Y, Qendro V, Miyamoto S, Weinstock E, Weinstock GM, et al. Effects of walnut consumption on colon carcinogenesis and microbial community structure. Cancer Prev Res 2016; 9(8): 692–703. doi: 10.1158/1940-6207.CAPR-16-0026

  48. Sobhonslidsuk A, Chanprasertyothin S, Pongrujikorn T, Kaewduang P, Promson K, Petraksa S, et al. The association of gut microbiota with nonalcoholic steatohepatitis in Thais. Biomed Res Int 2018; 2018: 8. doi: 10.1155/2018/9340316

How to Cite
Taieb Bimro, E., Hovav, R., Nyska, A., Assa Glazer, T., & Madar, Z. (2020). High oleic peanuts improve parameters leading to fatty liver development and change the microbiota in mice intestine. Food & Nutrition Research, 64. https://doi.org/10.29219/fnr.v64.4278
Original Articles

Most read articles by the same author(s)