Cross-sectional analysis of the health profile and dietary intake of a sample of Canadian adults diagnosed with non-alcoholic fatty liver disease

  • Michelle L. Aktary Faculty of Kinesiology, University of Calgary, Calgary, Canada
  • Lindsay K. Eller Faculty of Kinesiology, University of Calgary, Calgary, Canada
  • Alissa C. Nicolucci Faculty of Kinesiology, University of Calgary, Calgary, Canada
  • Raylene A. Reimer Faculty of Kinesiology, University of Calgary, and Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Canada
Keywords: nutrients; NAFLD; steatosis; energy intake; micronutrients; obesity; metabolic syndrome

Abstract

Background: Dietary intake is an important factor in the development and management of non-alcoholic fatty liver disease (NAFLD); however, optimal dietary composition remains unclear. Moreover, there is minimal evidence on the relationship between dietary intake and markers of liver health in Canadian adults diagnosed with NAFLD.

Objective: The aim of this study is to characterize the dietary intake of a sample of Canadian adults diagnosed with NAFLD and examine the correlations with markers of liver health. Design: Forty-two adults recruited from the community and hepatology clinics in Calgary, Canada from 2016 to 2019 completed a 3-day food record. Anthropometrics, blood biomarkers, liver stiffness (FibroScan), and liver fat (magnetic resonance imaging) were measured. Nutrient intake was compared with the data from the 2004 and 2015 Canadian Community Health Surveys. Relationships were assessed using Pearson’s correlation and regression analysis.

Results: Relative to Canadian dietary recommendations, participants consumed lower magnesium, fiber, calcium, vitamin D, and vitamin E, and higher cholesterol, saturated fat, total fat, fructose, iron, vitamin B12, selenium, phosphorus, and sodium. Compared with the national average, participants consumed more energy, fiber, sodium, total fat, and saturated fat. Systolic blood pressure (P = 0.012), serum α-2 macroglobulin (P = 0.008), carbohydrate (P = 0.022), total fat (P = 0.029), and saturated fat intakes (P = 0.029) were associated with FibroScan scores. Liver fat was correlated with serum triglycerides (P < 0.001), trunk fat (P = 0.029), added sugar (P = 0.042), phosphorus (P = 0.017), and magnesium intake (P = 0.013). In females, selenium intake was associated with liver fat (P = 0.015) and FibroScan score (P = 0.05), while in males, liver fat was associated with trunk fat (P = 0.004), body weight (P = 0.004), high-density lipoprotein (P < 0.001), and fructose intake (P = 0.037). Regression analysis showed that increasing magnesium intake corresponds to a decrease in liver fat.

Conclusion: Despite the higher energy intake of participants, overall nutrient intake is low, suggesting lower diet quality. Associations between select micronutrients and liver health markers warrant further investigation.

Downloads

Download data is not yet available.

References


  1. Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, et al. The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Association for the study of liver diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatol 2012; 55(6): 2005–23. doi: 10.1002/hep.25762

  2. Brea A, Puzo J. Non-alcoholic fatty liver disease and cardiovascular risk. Int J Cardiol 2013; 167(4): 1109–17. doi: 10.1016/j.ijcard.2012.09.085

  3. Le MH, Devaki P, Ha NB, Jun DW, Te HS, Cheung RC, et al. Prevalence of non-alcoholic fatty liver disease and risk factors for advanced fibrosis and mortality in the United States. PLoS One 2017; 12(3): e0173499. doi: 10.1371/journal.pone.0173499

  4. Lazo M, Clark JM. The epidemiology of nonalcoholic fatty liver disease: a global perspective. Semin Liver Dis 2008; 28(4): 339–50. doi: 10.1055/s-0028-1091978

  5. Vernon G, Baranova A, Younossi ZM. Systematic review: the epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Aliment Pharmacol Ther 2011; 34(3): 274–85. doi: 10.1111/j.1365-2036.2011.04724.x

  6. Zezos P, Renner EL. Liver transplantation and non-alcoholic fatty liver disease. World J Gastroenterol 2014; 20(42): 7. doi: 10.3748/wjg.v20.i42.15532

  7. Georgoulis M, Kontogianni MD, Margariti A, Tiniakos D, Fragopoulou E, Zafiropoulou R, et al. Associations between dietary intake and the presence of the metabolic syndrome in patients with non-alcoholic fatty liver disease. J Hum Nutr Diet 2015; 28(4): 409–15. doi: 10.1111/jhn.12323

  8. Mazhar K. The future of nonalcoholic fatty liver disease treatment. Med Clin North Am 2019; 103(1): 57–69. doi: 10.1016/j.mcna.2018.08.005

  9. Fan JG, Cao HX. Role of diet and nutritional management in non-alcoholic fatty liver disease. J Gastroenterol Hepatol 2013; 28 Suppl 4: 81–7. doi: 10.1111/jgh.12244

  10. Promrat K, Kleiner DE, Niemeier HM, Jackvony E, Kearns M, Wands JR, et al. Randomized controlled trial testing the effects of weight loss on nonalcoholic steatohepatitis. Hepatology 2010; 51(1): 121–9. doi: 10.1002/hep.23276

  11. Kantartzis K, Thamer C, Peter A, Machann J, Schick F, Schraml C, et al. High cardiorespiratory fitness is an independent predictor of the reduction in liver fat during a lifestyle intervention in non-alcoholic fatty liver disease. Gut 2008; 58(9): 1281–8. doi: 10.1136/gut.2008.151977

  12. Harrison SA, Day CP. Benefits of lifestyle modification in NAFLD. Gut 2007; 56(12): 1760–9. doi: 10.1136/gut.2006.112094

  13. Suzuki A, Lindor K, Saver JS, Lymp J, Mendes F, Muto A, et al. Effect of changes on body weight and lifestyle in nonalcoholic fatty liver disease. J Hepatol 2005; 43(6): 1060–6. doi: 10.1016/j.jhep.2005.06.008

  14. Katsagoni CN, Georgoulis M, Papatheodoridis GV, Panagiotakos DB, Kontogianni MD. Effects of lifestyle interventions on clinical characteristics of patients with non-alcoholic fatty liver disease: a meta-analysis. Metabol 2017; 68: 119–32. doi: 10.1016/j.metabol.2016.12.006

  15. McCarthy EM, Rinella ME. The role of diet and nutrient composition in nonalcoholic fatty liver disease. J Acad Nutr Diet 2012; 112(3): 401–9. doi: 10.1016/j.jada.2011.10.007

  16. Musso G, Gambino R, De Michieli F, Cassader M, Rizzetto M, Durazzo M, et al. Dietary habits and their relations to insulin resistance and postprandial lipemia in nonalcoholic steatohepatitis. Hepatol 2003; 37(4): 909–16. doi: 10.1053/jhep.2003.50132

  17. DongiovanniP, Lanti C, Riso P, Valenti L. Nutritional therapy for nonalcoholic fatty liver disease. J Nutr Biochem 2016; 29: 1–11. doi: 10.1016/j.jnutbio.2015.08.024

  18. Marchesini G, Bugianesi E, Forlani G, Cerrelli F, Lenzi M, Manini R, et al. Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome. Hepatol 2003; 37(4): 917–23. doi: 10.1053/jhep.2003.50161

  19. Asrih M, Jornayvaz FR. Diets and nonalcoholic fatty liver disease: the good and the bad. Clin Nutr 2014; 33(2): 186–90. doi: 10.1016/j.clnu.2013.11.003

  20. Zelber-Sagi S, Nitzan-Kaluski D, Goldsmith R, Webb M, Blendis L, Halpern Z, et al. Long term nutritional intake and the risk for non-alcoholic fatty liver disease (NAFLD): a population based study. J Hepatol 2007; 47(5): 711–7. doi: 10.1016/j.jhep.2007.06.020

  21. Sathiaraj E, Chutke M, Reddy M, Pratap N, Rao P, Reddy D, et al. A case-control study on nutritional risk factors in non-alcoholic fatty liver disease in Indian population. E J Clin Nutr 2011; 65(4): 533. doi: 10.1038/ejcn.2011.3

  22. Kang H, Greenson JK, Omo JT, Chao C,Peterman D,Anderson L,et al. Metabolic syndrome is associated with greater histologic severity, higher carbohydrate, and lower fat diet in patients with NAFLD. Am J Gastroentrol 2006; 101(10): 2247–53. doi: 10.1111/j.1572-0241.2006.00719.x

  23. Kirk E, Reeds DN, Finck BN, Mayurranjan MS, Patterson BW, Klein S. Dietary fat and carbohydrates differentially alter insulin sensitivity during caloric restriction. Gastroenterol 2009; 136(5): 1552–60. doi: 10.1053/j.gastro.2009.01.048

  24. Browning JD, Baker JA, Rogers T, Davis J, Satapati S, Burgess SC. Short-term weight loss and hepatic triglyceride reduction: evidence of a metabolic advantage with dietary carbohydrate restriction. Am J Clin Nutr 2011; 93(5): 1048–52. doi: 10.3945/ajcn.110.007674

  25. Lu W, Li S, Li J, Wang J, Zhang R, Zhou Y, et al. Effects of omega-3 fatty acid in nonalcoholic fatty liver disease: a meta-analysis. Gastroent Res Pract 2016; 2016:1–11. doi: 10.1155/2016/1459790

  26. Anania C, Perla FM, Olivero F, Pacifico L, Chiesa C. Mediterranean diet and nonalcoholic fatty liver disease. World J Gastroenterol 2018; 24(19): 2083–94. doi: 10.3748/wjg.v24.i19.2083

  27. Sato K, Gosho M, Yamamoto T, Kobayashi Y, Ishii N, Ohashi T, et al. Vitamin E has a beneficial effect on nonalcoholic fatty liver disease: a meta-analysis of randomized controlled trials. Nutr 2015; 31(7–8): 923–30. doi: 10.1016/j.nut.2014.11.018

  28. Sanyal AJ, Chalasani N, Kowdley KV, McCullough A, Diehl AM, Bass NM, et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med 2010; 362: 11. doi: 10.1056/NEJMoa0907929

  29. Li W, Zhu X, Song Y, Fan L, Wu L, Kabagambe EK, et al. Intakes of magnesium, calcium and risk of fatty liver disease and prediabetes. Public Health Nutr 2018; 21(11): 2088–95. doi: 10.1017/S1368980018000642

  30. Eshraghian A, Nikeghbalian S, Geramizadeh B, Malek-HosseiniSA. Serum magnesium concentration is independently associated with non-alcoholic fatty liver and non-alcoholic steatohepatitis. United Eur Gastroent J 2018; 6(1): 97–103. doi: 10.1177/2050640617707863

  31. Freidoony L, Kong ID. Practical approaches to the nutritional management of nonalcoholic fatty liver disease. IMR 2014; 3(4): 192–7. doi: 10.1016/j.imr.2014.09.003

  32. Vranesic Bender D, Nutrizio M, Josic M, Ljubas Kelecic D, Karas I, Premuzic M, et al. Nutritional status and nutrition quality in patients with non-alcoholic fatty liver disease. Acta Clin Croat 2017; 56(4): 625–34. doi: 10.20471/acc.2017.56.04.07

  33. Festi D, Schiumerini R, Marzi L, Di Biase AR, Mandolesi D, Montrone L, et al. Review article: the diagnosis of non-alcoholic fatty liver disease – availability and accuracy of non-invasive methods. Aliment Pharmacol Ther 2013; 37(4): 392–400. doi: 10.1111/apt.12186

  34. World Health Organization (2008). Waist circumference and waist–hip ratio: report of a WHO expert consultation Geneva. Available from: http://apps.who.int/iris/bitstream/handle/10665/44583/9789241501491_eng.pdf?sequence=1 [cited 12 February 2020]

  35. Health Canada. Available from: https://www.canada.ca/en/health-canada/services/publications/food-nutrition/sodium-intake-canadians-2017.html [cited 10 February 2020]

  36. Health Canada. Do Canadian adults meet their nutrient requirements through food intake alone? Health Canada; 2012: ISBN. 978-1-100-20026-2 [cited 15 February 2020]

  37. Statistics Canada. Canadian Community Health Survey – Nutrition: nutrient intakes from food and nutritional supplements. Available from: https://www150.statcan.gc.ca/n1/daily-quotidien/170620/dq170620b-eng.html [cited 15 February 2020]

  38. Brisbois TD, Marsden SL, Anderson GH, Sievenpiper JL. Estimated intakes and sources of total and added sugars in the Canadian diet. Nutr 2014; 6(5): 1899–912. doi: 10.3390/nu6051899

  39. Ratnayake WM, L’Abbe MR, Farnworth S, Dumais L, Gagnon C, Lampi B, et al. Trans fatty acids: current contents in Canadian foods and estimated intake levels for the Canadian population. J AOAC Int 2009; 92(5): 1258–76. Available from: https://www.ncbi.nlm.nih.gov/pubmed/19916364 [cited 10 February 2020]

  40. Belanger M, Poirier M, Jbilou J, Scarborough P. Modelling the impact of compliance with dietary recommendations on cancer and cardiovascular disease mortality in Canada. Public Health 2014; 128(3): 222–30. doi: 10.1016/j.puhe.2013.11.003

  41. Health Canada (2006). Dietary reference intakes. Available from: https://www.canada.ca/en/health-canada/services/food-nutrition/healthy-eating/dietary-reference-intakes/tables.html#rvm [cited 15 February 2020]

  42. Health Canada. Reference guide to understanding and using the data: 2015 Canadian Community Health Survey – Nutrition. Available from: https://www.canada.ca/content/dam/hc-sc/documents/services/food-nutrition/food-nutrition-surveillance/ReferenceGuide2015CCHS-Nutr_Eng_Final_06192017.pdf [cited 18 February 2020]

  43. Da Silva HE, Arendt BM, Noureldin SA, Therapondos G, Guindi M, Allard JP. A cross-sectional study assessing dietary intake and physical activity in Canadian patients with nonalcoholic fatty liver disease vs healthy controls. J Acad Nutr Diet 2014; 114(8): 1181–94. doi: 10.1016/j.jand.2014.01.009

  44. World Health Organization (2003). Population nutrient intake goals for preventing diet-related chronic diseases. Geneva: World Health Organization. Available from: https://apps.who.int/iris/bitstream/handle/10665/42665/WHO_TRS_916.pdf;jsessionid=7D6121FA33A3817D4CC1D11DDF5E5DFB?sequence=1 [cited 18 February 2020]

  45. Katamay SW, Esslinger KA, Vigneault M, Johnston JL, Junkins BA, Robbins LG, et al. Eating well with Canada’s food guide (2007): development of the food intake pattern. Nutr Rev 2007; 65(4): 155–66. doi: 10.1301/nr.2007.apr.155–166

  46. Uhanova J, Minuk G, Lopez Ficher F, Chandok N. Nonalcoholic fatty liver disease in Canadian first nations and non-first nations patients. Can J Gastroenterol Hepatol 2016; 2016: 1–6. doi: 10.1155/2016/6420408

  47. Schwenger KJP, Fischer SE, Jackson T, Okrainec A, Allard JP. In nonalcoholic fatty liver disease, Roux-en-Y gastric bypass improves liver histology while persistent disease is associated with lower improvements in waist circumference and glycemic control. Surg Obes Relat Dis 2018; 14(9): 1233–9. doi: 10.1016/j.soard.2018.06.007

  48. Fan JG, Zhu J, Li XJ, Chen L, Li L, Dai F, et al. Prevalence of and risk factors for fatty liver in a general population of Shanghai, China. J Hepatol 2005; 43(3): 508–14. doi: 10.1016/j.jhep.2005.02.042

  49. Omagari K, Kadokawa Y, Masuda J, Egawa I, Sawa T, Hazama H, et al. Fatty liver in non-alcoholic non-overweight Japanese adults – incidence and clinical characteristics. J Gastroen Hepatol 2002; 17(10): 1098–105. doi: 10.1046/j.1440-1746.2002.02846.x

  50. Zelber-Sagi S, Shoham D, Zvibel I, Abu-Abeid S, Shibolet O, Fishman S. Predictors for advanced fibrosis in morbidly obese non-alcoholic fatty liver patients. World J Hepatol 2017; 9(2): 91–8. doi: 10.4254/wjh.v9.i2.91

  51. Lonardo A, Nascimbeni F, Ballestri S, Fairweather D, Win S, Than TA, et al. Sex differences in nonalcoholic fatty liver disease: state of the art and identification of research gaps. Hepatol 2019; 70(4): 1457–69. doi: 10.1002/hep.30626

  52. Poehlman ET, Toth MJ, Bunyard LB, Gardner AW, Donaldson KE, Colman E, et al. Physiological predictors of increasing total and central adiposity in aging men and women. Arch Intern Med 1995; 155: 2443–8. doi: 10.1001/archinte.1995.00430220101011

  53. Statistics Canada (2015). Body composition of adults, 2012 to 2013. Available from: https://www150.statcan.gc.ca/n1/pub/82-625-x/2014001/article/14104-eng.htm [cited 18 February 2020]

  54. Lonardo A, Trande P. Are there any sex differences in fatty liver? A study of glucose metabolism and body fat distribution. J Gastroent Hepatol 2000; 15(7): 775–82. doi: 10.1046/j.1440-1746.2000.02226.x

  55. Eslamparast T, Tandon P, Raman M. Dietary composition independent of weight loss in the management of non-alcoholic fatty liver disease. Nutr 2017; 9(8): 800. doi: 10.3390/nu9080800

  56. Romagnolo DF, Selmin OI. Mediterranean diet and prevention of chronic diseases. Nutr Today 2017; 52(5): 208–22. doi: 10.1097/NT.0000000000000228

  57. Machado MV, Ravasco P, Jesus L, Marques-VidalP, Oliveira CR, Proença T, et al. Blood oxidative stress markers in non-alcoholic steatohepatitis and how it correlates with diet. Scand J Gastroenterol 2008; 43(1): 95–102. doi: 10.1080/00365520701559003

  58. Spadaro L, Magliocco O, Spampinato D, Piro S, Oliveri C, Alagona C, et al. Effects of n-3 polyunsaturated fatty acids in subjects with nonalcoholic fatty liver disease. Dig Liver Dis 2008; 40(3): 194–9. doi: 10.1016/j.dld.2007.10.003

  59. Jensen T, Abdelmalek MF, Sullivan S, Nadeau KJ, Green M, Roncal C, et al. Fructose and sugar: a major mediator of non-alcoholic fatty liver disease. J Hepatol 2018; 68(5): 1063–75. doi: 10.1016/j.jhep.2018.01.019

  60. York LW, Puthalapattu S, Wu GY. Nonalcoholic fatty liver disease and low-carbohydrate diets. Ann Rev Nutr 2009; 29(1): 365–79. doi: 10.1146/annurev-nutr-070208-114232

  61. Le KA, Bortolotti M. Role of dietary carbohydrates and macronutrients in the pathogenesis of nonalcoholic fatty liver disease. Curr Opin Clin Nutr 2008; 11(4): 477–82. doi: 10.1097/MCO.0b013e328302f3ec

  62. Alwahsh SM, Gebhardt R. Dietary fructose as a risk factor for non-alcoholic fatty liver disease (NAFLD). Arch Toxicol 2017; 91(4): 1545–63. doi: 10.1007/s00204-016-1892-7

  63. Huang D, Tania D, Young S, Yong WH, Boros LG, Heaney AP. Fructose impairs glucose-induced hepatic triglyceride synthesis. Lipids Health Dis 2011; 10: 10. doi: 10.1186/1476-511X-10-20

  64. Chiu S, Sievenpiper JL, de Souza RJ, Cozma AI, Mirrahimi A, Carleton AJ, et al. Effect of fructose on markers of non-alcoholic fatty liver disease (NAFLD): a systematic review and meta-analysis of controlled feeding trials. Eur J Clin Nutr 2014; 68(4): 416–23. doi: 10.1038/ejcn.2014.8

  65. Tajima R, Kimura T, Enomoto A, Saito A, Kobayashi S, Masuda K, et al. No association between fruits or vegetables and non-alcoholic fatty liver disease in middle-aged men and women. Nutr 2019; 61: 119–24. doi: 10.1016/j.nut.2018.10.016

  66. Mosca A, Nobili V, De Vito R, Crudele A, Scorletti E, Villani A, et al. Serum uric acid concentrations and fructose consumption are independently associated with NASH in children and adolescents. J Hepatol 2017; 66(5): 1031–6. doi: 10.1016/j.jhep.2016.12.025

  67. Hochuli M, Aeberli I, Weiss A, Hersberger M, Troxler H, Gerber PA, et al. Sugar-sweetened beverages with moderate amounts of fructose, but not sucrose, induce fatty acid synthesis in healthy young men: a randomized crossover study. J Clin Endocr Metab 2014; 99(6): 2164–72. doi: 10.1210/jc.2013-3856

  68. Liu Q, Ayoub-Charette S, Khan TA, Au-Yeung F, Blanco Mejia S, de Souza RJ, et al. Important food sources of fructose-containing sugars and incident hypertension: a systematic review and dose-response meta-analysis of prospective cohort studies. J Am Heart Assoc 2019; 8(24). doi: 10.1161/jaha.118.010977

  69. Rayman MP. The importance of selenium to human health. Lancet 2000; 356(9225): 233–41. doi: 10.1016/s0140-6736(00)02490-9

  70. Wu J, Zeng C, Yang Z, Li X, Lei G, Xie D, et al. Association between dietary selenium intake and the prevalence of nonalcoholic fatty liver disease: a cross-sectional study. J Am Coll Nutr 2019: 39(2): 103–111. doi: 10.1080/07315724.2019.1613271

  71. Yang Z, Yan C, Liu G, Niu Y, Zhang W, Lu S, et al. Plasma selenium levels and nonalcoholic fatty liver disease in Chinese adults: a cross-sectional analysis. Sci Rep 2016; 6(1). doi: 10.1038/srep37288

  72. Ellam T, Wilkie M, Chamberlain J, Crossman D, Eastell R, Francis S, et al. Dietary phosphate modulates atherogenesis and insulin resistance in apolipoprotein E knockout mice – brief report. Arterioscler Thromb Vasc Biol 2011; 31(9): 1988–90. doi: 10.1161/ATVBAHA.111.231001

  73. Xie W, Tran TL, Finegood DT, van de Werve G. Dietary P(i) deprivation in rats affects liver cAMP, glycogen, key steps of gluconeogenesis and glucose production. Biochem J 2000; 352(1): 227–32. doi: 10.1042/0264-6021:3520227

  74. Tanaka S, Yamamoto H, Nakahashi O, Kagawa T, Ishiguro M, Masuda M, et al. Dietary phosphate restriction induces hepatic lipid accumulation through dysregulation of cholesterol metabolism in mice. Nutr Res 2013; 33(7): 586–93. doi: 10.1016/j.nutres.2013.05.004

  75. Shin JY, Kim MJ, Kim ES, Mo EY, Moon SD, Han JH, et al. Association between serum calcium and phosphorus concentrations with non-alcoholic fatty liver disease in Korean population. J Gastroenterol Hepatol 2015; 30(4): 733–41. doi: 10.1111/jgh.12832

  76. Foley RN, Collins AJ, Ishani A, Kalra PA. Calcium-phosphate levels and cardiovascular disease in community-dwelling adults: the atherosclerosis risk in communities (ARIC) study. Am Heart J 2008; 156(3): 556–63. doi: 10.1016/j.ahj.2008.05.016

  77. Dhingra R, Sullivan LM, Fox CS, Wang TJ, D’Agostino RB, Gaziano M, Vasan RS. Relations of serum phosphorus and calcium levels to the incidence of cardiovascular disease in the community. Arch Intern Med 2007; 167(9): 879–85. doi: 10.1001/archinte.167.9.879

  78. Wu L, Zhu X, Fan L, Kabagambe EK, Song Y, Tao M, et al. Magnesium intake and mortality due to liver diseases: results from the Third National Health and Nutrition Examination Survey Cohort. Sci Rep 2017; 7(1): 17913. doi: 10.1038/s41598-017-18076-5

  79. Song Y, He K, Levitan EB, Manson JE, Liu S. Effects of oral magnesium supplementation on glycaemic control in Type 2 diabetes: a meta-analysis of randomized double-blind controlled trials. Diabet Med 2006; 23(10): 1050–6. doi: 10.1111/j.1464-5491.2006.01852.x

  80. McCarty MF. Magnesium may mediate the favorable impact of whole grains on insulin sensitivity by acting as a mild calcium antagonist. Med Hypotheses 2005; 64(3): 619–27. doi: 10.1016/j.mehy.2003.10.034

  81. Romero-Gomez M, Zelber-Sagi S, Trenell M. Treatment of NAFLD with diet, physical activity and exercise. J Hepatol 2017; 67(4): 829–46. doi: 10.1016/j.jhep.2017.05.016

  82. Trovato FM, Catalano D, Martines GF, Pace P, Trovato GM. Mediterranean diet and non-alcoholic fatty liver disease: the need of extended and comprehensive interventions. Clin Nutr 2015; 34(1): 86–8. doi: 10.1016/j.clnu.2014.01.018

  83. Baratta F, Pastori D, Polimeni L, Bucci T, Ceci F, Calabrese C, et al. Adherence to mediterranean diet and non-alcoholic fatty liver disease: effect on insulin resistance. Am J Gastroenterol 2017; 112(12): 1832–9. doi: 10.1038/ajg.2017.371

  84. Bahreini N, Gharipour M, Khosravi-Boroujeni H,Rouhi-Boroujeni H, Shiranian A, Salehi-Abargouei A, et al. Pivotal role of mediterranean dietary regimen in the increase of serum magnesium concentration in patients with coronary artery disease. J Nutr Metab 2013; 2013: 431070. doi: 10.1155/2013/431070

  85. Via M. The malnutrition of obesity: micronutrient deficiencies that promote diabetes. ISRN Endocrinol 2012; 2012: 103472. doi: 10.5402/2012/103472

  86. Laillou A, Yakes E, Le TH, Wieringa FT, Le BM, Moench-Pfanner R, et al. Intra-individual double burden of overweight and micronutrient deficiencies among Vietnamese women. PLoS One 2014; 9(10): e110499. doi: 10.1371/journal.pone.0110499

  87. Della Pepa G, Vetrani C, Lombardi G, Bozzetto L, Annuzzi G, Rivellese AA. Isocaloric dietary changes and non-alcoholic fatty liver disease in high cardiometabolic risk individuals. Nutr 2017; 9(10): 1065. doi: 10.3390/nu9101065

  88. National Cancer Institute (2020). Dietary assessment primer 2020. Available from: https://dietassessmentprimer.cancer.gov/profiles/record/ [cited 19 February 2020]

  89. Scagliusi FB, Ferriolli E, Pfrimer K, Laureano C, Cunha CS, Gualano B, et al. Underreporting of energy intake in Brazilian women varies according to dietary assessment: a cross-sectional study using doubly labeled water. J Am Diet Assoc 2008; 108(12): 2031–40. doi: 10.1016/j.jada.2008.09.012

  90. Heitmann BL, Lissner L. Dietary underreporting by obese individuals – is it specific or non-specific? BMJ 1995; 311(7011): 5. doi: 10.1136/bmj.311.7011.986

  91. Mendez MA, Wynter S, Wilks R, Forrester T. Under- and overreporting of energy is related to obesity, lifestyle factors and food group intakes in Jamaican adults. Public Health Nutr 2007; 7(1): 9–19. doi: 10.1079/phn2003508

Published
2020-09-18
How to Cite
Aktary, M. L., Eller, L. K., Nicolucci, A. C., & Reimer, R. A. (2020). Cross-sectional analysis of the health profile and dietary intake of a sample of Canadian adults diagnosed with non-alcoholic fatty liver disease. Food & Nutrition Research, 64. https://doi.org/10.29219/fnr.v64.4548
Section
Original Articles