Maternal nutrition and offspring lung health: sex-specific pathway modulation in fibrosis, metabolism, and immunity

  • Shuangyi Zhao Department of Obstetrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
  • Zhimin Chen Department of Obstetrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
  • Huina Liu Department of Obstetrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
  • Xinyan Wang Department of Obstetrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
  • Xiuru Zhang Department of Surgery of Spine and Spinal Cord, Henan Provincial People’s Hospital, Zhengzhou, China
  • Huirong Shi Department of Gynaecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
Keywords: lung injury, maternal diet, offspring, RNA-seq, high salt diet

Abstract

Background: Maternal nutrition profoundly influences offspring health, impacting both prenatal and early postnatal development. Previous studies have demonstrated that maternal dietary habits can affect key developmental pathways in the offsprings, including those related to lung function and disease susceptibility. However, the sex-specific impact of a maternal high-salt diet (HSD) on offspring lung injury remains poorly understood.

Objective: This study aimed to investigate the sex-specific effects of maternal HSD on lung injury in mouse offsprings, focusing on pathways related to fibrosis, metabolism, immunity, and apoptosis.

Design: Pregnant C57BL/6J mice were subjected to either normal or HSD conditions during gestation. Lung tissues from the male and female offsprings were analyzed using high-throughput RNA sequencing and bioinformatics tools to examine transcriptomic changes. Wet-lab validation, including Masson trichrome staining, immunofluorescence for α-SMA, and qRT-PCR for fibrotic markers (α-SMA, collagen I, Fn1, and TGF-β), was conducted to confirm fibrosis and other injury markers. Lung structure and weight were also evaluated to assess physical alterations due to maternal diet.

Results: Maternal HSD significantly altered lung transcriptomes in a sex-specific manner. Male offsprings showed increased susceptibility to fibrosis, as confirmed by histological and molecular analyses, including elevated expression of α-SMA, collagen I, Fn1, and TGF-β. In contrast, female offsprings exhibited distinct changes in metabolic and immune pathways. These findings highlight the differential regulation of pulmonary injury mechanisms between male and female offsprings exposed to HSD.

Conclusions: Maternal HSD induces sex-specific lung injury in offsprings by disrupting critical pathways involved in fibrosis, metabolism, immunity, and apoptosis. The combination of transcriptomic and orthogonal data underscores the need for balanced maternal nutrition during pregnancy to promote long-term respiratory health in offsprings. These results provide new insights into the sex-specific vulnerabilities to lung disease arising from maternal diet.

Downloads

Download data is not yet available.

References


1.
Sun X, Yon DK, Nguyen TT, Tanisawa K, Son K, Zhang L, et al. Dietary and other lifestyle factors and their influence on non-communicable diseases in the Western Pacific region. Lancet Reg Health West Pac. 2024; 43: 100842. doi: 10.1016/j.lanwpc.2023.100842


2.
Nie T, Huang S, Yang Y, Hu A, Wang J, Cheng Z, et al. A review of the world’s salt reduction policies and strategies – preparing for the upcoming year 2025. Food Funct. 2024; 15(6): 2836–59. doi: 10.1039/d3fo03352j


3.
Lin TY, Jiang D, Chen WR, Lin JS, Zhang XY, Chen CH, et al. Trained immunity induced by high-salt diet impedes stroke recovery. EMBO Rep. 2023; 24(12): e57164. doi: 10.15252/embr.202357164


4.
Hipgrave DB, Chang S, Li X, Wu Y. Salt and sodium intake in China. JAMA. 2016; 315(7): 703–5. doi: 10.1001/jama.2015.15816


5.
Brown IJ, Tzoulaki I, Candeias V, Elliott P. Salt intakes around the world: implications for public health. Int J Epidemiol. 2009; 38(3): 791–813. doi: 10.1093/ije/dyp139


6.
Organization WH. WHO. Guideline: sodium intake for adults and children. Geneva: World Health Organization; 2012.


7.
Bhat S, Marklund M, Henry ME, Appel LJ, Croft KD, Neal B, et al. A systematic review of the sources of dietary salt around the world. Adv Nutr. 2020; 11(3): 677–86. doi: 10.1093/advances/nmz134


8.
O’Donnell M, Mente A, Alderman MH, Brady AJB, Diaz R, Gupta R, et al. Salt and cardiovascular disease: insufficient evidence to recommend low sodium intake. Eur Heart J. 2020; 41(35): 3363–73. doi: 10.1093/eurheartj/ehaa586


9.
Mahtani KR, Heneghan C, Onakpoya I, Tierney S, Aronson JK, Roberts N, et al. Reduced salt intake for heart failure: a systematic review. JAMA Intern Med. 2018; 178(12): 1693–700. doi: 10.1001/jamainternmed.2018.4673


10.
Andresen MC. High-salt diet elevates baroreceptor pressure thresholds in normal and Dahl rats. Circ Res. 1989; 64(4): 695–702. doi: 10.1161/01.res.64.4.695


11.
Dahl LK, Heine M, Tassinari L. High salt content of western infant’s diet: possible relationship to hypertension in the adult. Nature. 1963; 198: 1204–5. doi: 10.1038/1981204a0


12.
Ibrahim MM, Damasceno A. Hypertension in developing countries. Lancet. 2012; 380(9841): 611–9. doi: 10.1016/s0140-6736(12)60861-7


13.
Wang M. High-salt diet aggravates pyelonephritis. Nat Rev Nephrol. 2020; 16(6): 315. doi: 10.1038/s41581-020-0285-6


14.
Schwartz L, de Dios Ruiz-Rosado J, Stonebrook E, Becknell B, Spencer JD. Uropathogen and host responses in pyelonephritis. Nat Rev Nephrol. 2023; 19(10): 658–71. doi: 10.1038/s41581-023-00737-6


15.
Fyfe I. High-salt diet promotes Alzheimer disease-like changes. Nat Rev Neurol. 2020; 16(1): 2–3. doi: 10.1038/s41582-019-0289-7


16.
Balendra V. High-salt diet enhances Helicobacter pylori infection and increases the prevalence of Alzheimer’s disease. Alzheimers Dement. 2023; 19(S13): e075775. doi: 10.1002/alz.075775


17.
Baack ML, Forred BJ, Larsen TD, Jensen DN, Wachal AL, Khan MA, et al. Consequences of a maternal high-fat diet and late gestation diabetes on the developing rat lung. PLoS One. 2016; 11(8): e0160818. doi: 10.1371/journal.pone.0160818


18.
Heyob KM, Mieth S, Sugar SS, Graf AE, Lallier SW, Britt RD, Jr, et al. Maternal high-fat diet alters lung development and function in the offspring. Am J Physiol Lung Cell Mol Physiol. 2019; 317(2): L167–74. doi: 10.1152/ajplung.00331.2018


19.
Zhang WC, Zheng XJ, Du LJ, Sun JY, Shen ZX, Shi C, et al. High salt primes a specific activation state of macrophages, M(Na). Cell Res. 2015; 25(8): 893–910. doi: 10.1038/cr.2015.87


20.
Smit HA, Grievink L, Tabak C. Dietary influences on chronic obstructive lung disease and asthma: a review of the epidemiological evidence. Proc Nutr Soc. 1999; 58(2): 309–19. doi: 10.1017/s0029665199000427


21.
Musiol S, Harris CP, Gschwendtner S, Burrell A, Amar Y, Schnautz B, et al. The impact of high-salt diet on asthma in humans and mice: effect on specific T-cell signatures and microbiome. Allergy. 2024; 79(7): 1844–57. doi: 10.1111/all.16148


22.
Falagas ME, Mourtzoukou EG, Vardakas KZ. Sex differences in the incidence and severity of respiratory tract infections. Respir Med. 2007; 101(9): 1845–63. doi: 10.1016/j.rmed.2007.04.011


23.
Pérez-Cerezales S, Ramos-Ibeas P, Rizos D, Lonergan P, Bermejo-Alvarez P, Gutiérrez-Adán A. Early sex-dependent differences in response to environmental stress. Reproduction. 2018; 155(1): R39–51. doi: 10.1530/rep-17-0466


24.
Hartman S, Belsky J, Pluess M. Prenatal programming of environmental sensitivity. Transl Psychiatry. 2023; 13(1): 161. doi: 10.1038/s41398-023-02461-y


25.
Chen X, Wu H, Huang S. Excessive sodium intake leads to cardiovascular disease by promoting sex-specific dysfunction of murine heart. Front Nutr. 2022; 9: 830738. doi: 10.3389/fnut.2022.830738


26.
Chen X, Huang S, Wang L, Liu K, Wu H. Maternal exposure to polystyrene nanoplastics induces sex-specific cardiotoxicity in offspring mice. Heliyon. 2024; 10(20): e39139. doi: 10.1016/j.heliyon.2024.e39139


27.
Card JW, Zeldin DC. Hormonal influences on lung function and response to environmental agents: lessons from animal models of respiratory disease. Proc Am Thorac Soc. 2009; 6(7): 588–95. doi: 10.1513/pats.200904-020RM


28.
Rodriguez-Lara V, Avila-Costa MR. An overview of lung cancer in women and the impact of estrogen in lung carcinogenesis and lung cancer treatment. Front Med (Lausanne). 2021; 8: 600121. doi: 10.3389/fmed.2021.600121


29.
Li W, Lin X, Wang R, Wang F, Xie S, Tse LA. Hormone therapy and lung cancer mortality in women: systematic review and meta-analysis. Steroids. 2017; 118: 47–54. doi: 10.1016/j.steroids.2016.12.005


30.
Wilck N, Balogh A, Markó L, Bartolomaeus H, Müller DN. The role of sodium in modulating immune cell function. Nat Rev Nephrol. 2019; 15(9): 546–58. doi: 10.1038/s41581-019-0167-y


31.
Willebrand R, Kleinewietfeld M. The role of salt for immune cell function and disease. Immunology. 2018; 154(3): 346–53. doi: 10.1111/imm.12915


32.
Kozina N, Jukić I, Mihaljević Z, Matić A, Dobrivojević Radmilović M, Barić A, et al. The effect of high-salt diet on oxidative stress production and vascular function in Tff3-/-/C57BL/6N knockout and wild type (C57BL/6N) mice. J Vasc Res. 2024; 61(5): 214–24. doi: 10.1159/000539614


33.
Martin K, Toussaint ND, Tan SJ, Hewitson TD. Skin regulation of salt and blood pressure and potential clinical implications. Hypertens Res. 2023; 46(2): 408–16. doi: 10.1038/s41440-022-01096-8


34.
Gregorio BM, Souza-Mello V, Carvalho JJ, Mandarim-de-Lacerda CA, Aguila MB. Maternal high-fat intake predisposes nonalcoholic fatty liver disease in C57BL/6 offspring. Am J Obstet Gynecol. 2010; 203(5): 495.e491–8. doi: 10.1016/j.ajog.2010.06.042


35.
Torres-Pinzon DL, Ralph DL, Veiras LC, McDonough AA. Sex-specific adaptations to high-salt diet preserve electrolyte homeostasis with distinct sodium transporter profiles. Am J Physiol Cell Physiol. 2021; 321(5): C897–909. doi: 10.1152/ajpcell.00282.2021


36.
Roden AC, Maleszewski JJ, Yi ES, Jenkins SM, Gandhi MJ, Scott JP, et al. Reproducibility of Complement 4d deposition by immunofluorescence and immunohistochemistry in lung allograft biopsies. J Heart Lung Transplant. 2014; 33(12): 1223–32. doi: 10.1016/j.healun.2014.06.006


37.
Dorrello NV, Guenthart BA, O’Neill JD, Kim J, Cunningham K, Chen YW, et al. Functional vascularized lung grafts for lung bioengineering. Sci Adv. 2017; 3(8): e1700521. doi: 10.1126/sciadv.1700521


38.
Leiss H, Salzberger W, Jacobs B, Gessl I, Kozakowski N, Blüml S, et al. MicroRNA 155-deficiency leads to decreased autoantibody levels and reduced severity of nephritis and pneumonitis in pristane-induced lupus. PLoS One. 2017; 12(7): e0181015. doi: 10.1371/journal.pone.0181015


39.
Wang C, Xie J, Zhao L, Fei X, Zhang H, Tan Y, et al. Alveolar macrophage dysfunction and cytokine storm in the pathogenesis of two severe COVID-19 patients. EBioMedicine. 2020; 57: 102833. doi: 10.1016/j.ebiom.2020.102833


40.
Song S, Fu Z, Guan R, Zhao J, Yang P, Li Y, et al. Intracellular hydroxyproline imprinting following resolution of bleomycin-induced pulmonary fibrosis. Eur Respir J. 2022; 59(5): 2100864. doi: 10.1183/13993003.00864-2021


41.
Morton J, Snider TA. Guidelines for collection and processing of lungs from aged mice for histological studies. Pathobiol Aging Age Relat Dis. 2017; 7(1): 1313676. doi: 10.1080/20010001.2017.1313676


42.
Braber S, Verheijden KA, Henricks PA, Kraneveld AD, Folkerts G. A comparison of fixation methods on lung morphology in a murine model of emphysema. Am J Physiol Lung Cell Mol Physiol. 2010; 299(6): L843–51. doi: 10.1152/ajplung.00192.2010


43.
Fang J, Xu X, Jiang L, Qiao J, Zhou H, Li K. Preliminary results of toxicity studies in rats following low-dose and short-term exposure to methyl mercaptan. Toxicol Rep. 2019; 6: 431–8. doi: 10.1016/j.toxrep.2019.05.006


44.
Sweet ME, Cocciolo A, Slavov D, Jones KL, Sweet JR, Graw SL, et al. Transcriptome analysis of human heart failure reveals dysregulated cell adhesion in dilated cardiomyopathy and activated immune pathways in ischemic heart failure. BMC Genomics. 2018; 19(1): 812. doi: 10.1186/s12864-018-5213-9


45.
Dong Y, Geng Y, Li L, Li X, Yan X, Fang Y, et al. Blocking follistatin-like 1 attenuates bleomycin-induced pulmonary fibrosis in mice. J Exp Med. 2015; 212(2): 235–52. doi: 10.1084/jem.20121878


46.
Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019; 47(D1): D607–13. doi: 10.1093/nar/gky1131


47.
Keenan AB, Torre D, Lachmann A, Leong AK, Wojciechowicz ML, Utti V, et al. ChEA3: transcription factor enrichment analysis by orthogonal omics integration. Nucleic Acids Res. 2019; 47(W1): W212–24. doi: 10.1093/nar/gkz446


48.
Mrozek JD, Smith KM, Bing DR, Meyers PA, Simonton SC, Connett JE, et al. Exogenous surfactant and partial liquid ventilation: physiologic and pathologic effects. Am J Respir Crit Care Med. 1997; 156(4 Pt 1): 1058–65. doi: 10.1164/ajrccm.156.4.9610104


49.
Ren XY, Vorst O, Fiers MW, Stiekema WJ, Nap JP. In plants, highly expressed genes are the least compact. Trends Genet. 2006; 22(10): 528–32. doi: 10.1016/j.tig.2006.08.008


50.
Willis GR, Fernandez-Gonzalez A, Anastas J, Vitali SH, Liu X, Ericsson M, et al. Mesenchymal stromal cell exosomes ameliorate experimental bronchopulmonary dysplasia and restore lung function through macrophage immunomodulation. Am J Respir Crit Care Med. 2018; 197(1): 104–16. doi: 10.1164/rccm.201705-0925OC


51.
Geng L, Chen Z, Ren H, Niu X, Yu X, Yan H. Effects of an early intervention using human amniotic epithelial cells in a COPD rat model. Pathol Res Pract. 2016; 212(11): 1027–33. doi: 10.1016/j.prp.2016.08.014


52.
Velten M, Heyob KM, Rogers LK, Welty SE. Deficits in lung alveolarization and function after systemic maternal inflammation and neonatal hyperoxia exposure. J Appl Physiol (1985). 2010; 108(5): 1347–56. doi: 10.1152/japplphysiol.01392.2009


53.
Velten M, Britt RD, Jr., Heyob KM, Welty SE, Eiberger B, Tipple TE, et al. Prenatal inflammation exacerbates hyperoxia-induced functional and structural changes in adult mice. Am J Physiol Regul Integr Comp Physiol. 2012; 303(3): R279–90. doi: 10.1152/ajpregu.00029.2012


54.
Velten M, Britt RD, Jr., Heyob KM, Tipple TE, Rogers LK. Maternal dietary docosahexaenoic acid supplementation attenuates fetal growth restriction and enhances pulmonary function in a newborn mouse model of perinatal inflammation. J Nutr. 2014; 144(3): 258–66. doi: 10.3945/jn.113.179259


55.
Ali M, Heyob KM, Velten M, Tipple TE, Rogers LK. DHA suppresses chronic apoptosis in the lung caused by perinatal inflammation. Am J Physiol Lung Cell Mol Physiol. 2015; 309(5): L441–8. doi: 10.1152/ajplung.00137.2015


56.
Simunovic F, Yi M, Wang Y, Stephens R, Sonntag KC. Evidence for gender-specific transcriptional profiles of nigral dopamine neurons in Parkinson disease. PLoS One. 2010; 5(1): e8856. doi: 10.1371/journal.pone.0008856


57.
Buckley DB, Klaassen CD. Tissue- and gender-specific mRNA expression of UDP-glucuronosyltransferases (UGTs) in mice. Drug Metab Dispos. 2007; 35(1): 121–7. doi: 10.1124/dmd.106.012070


58.
Yang ML, Xu C, Gupte T, Hoffmann TJ, Iribarren C, Zhou X, et al. Sex-specific genetic architecture of blood pressure. Nat Med. 2024; 30(3): 818–28. doi: 10.1038/s41591-024-02858-2


59.
MacDonald KD, Moran AR, Scherman AJ, McEvoy CT, Platteau AS. Maternal high-fat diet in mice leads to innate airway hyperresponsiveness in the adult offspring. Physiol Rep. 2017; 5(5): e13082. doi: 10.14814/phy2.13082


60.
Xue B, Yin H, Guo F, Beltz TG, Thunhorst RL, Johnson AK. Maternal gestational hypertension-induced sensitization of angiotensin ii hypertension is reversed by renal denervation or angiotensin-converting enzyme inhibition in rat offspring. Hypertension. 2017; 69(4): 669–77. doi: 10.1161/hypertensionaha.116.08597


61.
Zhang YP, Huo YL, Fang ZQ, Wang XF, Li JD, Wang HP, et al. Maternal high-fat diet acts on the brain to induce baroreflex dysfunction and sensitization of angiotensin II-induced hypertension in adult offspring. Am J Physiol Heart Circ Physiol. 2018; 314(5): H1061–9. doi: 10.1152/ajpheart.00698.2017


62.
Reynolds CM, Vickers MH, Harrison CJ, Segovia SA, Gray C. High fat and/or high salt intake during pregnancy alters maternal meta-inflammation and offspring growth and metabolic profiles. Physiol Rep. 2014; 2(8): e12110. doi: 10.14814/phy2.12110


63.
Ding Y, Lv J, Mao C, Zhang H, Wang A, Zhu L, et al. High-salt diet during pregnancy and angiotensin-related cardiac changes. J Hypertens. 2010; 28(6): 1290–7. doi: 10.1097/HJH.0b013e328337da8f


64.
Maruyama K, Kagota S, Van Vliet BN, Wakuda H, Shinozuka K. A maternal high salt diet disturbs cardiac and vascular function of offspring. Life Sci. 2015; 136: 42–51. doi: 10.1016/j.lfs.2015.06.023


65.
Dehmel S, Nathan P, Bartel S, El-Merhie N, Scherb H, Milger K, et al. Intrauterine smoke exposure deregulates lung function, pulmonary transcriptomes, and in particular insulin-like growth factor (IGF)-1 in a sex-specific manner. Sci Rep. 2018; 8(1): 7547. doi: 10.1038/s41598-018-25762-5


66.
Lingappan K, Jiang W, Wang L, Couroucli XI, Moorthy B. Sex-specific differences in hyperoxic lung injury in mice: role of cytochrome P450 (CYP)1A. Toxicology. 2015; 331: 14–23. doi: 10.1016/j.tox.2015.01.019


67.
Coarfa C, Grimm SL, Katz T, Zhang Y, Jangid RK, Walker CL, et al. Epigenetic response to hyperoxia in the neonatal lung is sexually dimorphic. Redox Biol. 2020; 37: 101718. doi: 10.1016/j.redox.2020.101718


68.
Coarfa C, Zhang Y, Maity S, Perera DN, Jiang W, Wang L, et al. Sexual dimorphism of the pulmonary transcriptome in neonatal hyperoxic lung injury: identification of angiogenesis as a key pathway. Am J Physiol Lung Cell Mol Physiol. 2017; 313(6): L991–1005. doi: 10.1152/ajplung.00230.2017


69.
Murtha LA, Schuliga MJ, Mabotuwana NS, Hardy SA, Waters DW, Burgess JK, et al. The processes and mechanisms of cardiac and pulmonary fibrosis. Front Physiol. 2017; 8: 777. doi: 10.3389/fphys.2017.00777


70.
Lal A, Veinot JP, Leenen FH. Prevention of high salt diet-induced cardiac hypertrophy and fibrosis by spironolactone. Am J Hypertens. 2003; 16(4): 319–23. doi: 10.1016/s0895-7061(02)03268-5


71.
Gao F, Liang Y, Wang X, Lu Z, Li L, Zhu S, et al. Trpv1 activation attenuates high-salt diet-induced cardiac hypertrophy and fibrosis through PPAR-δ upregulation. PPAR Res. 2014; 2014: 491963. doi: 10.1155/2014/491963


72.
Salimi U, Dummula K, Tucker MH, Dela Cruz CS, Sampath V. Postnatal sepsis and bronchopulmonary dysplasia in premature infants: mechanistic insights into ‘New BPD’. Am J Respir Cell Mol Biol. 2022; 66(2): 137–45. doi: 10.1165/rcmb.2021-0353PS


73.
Coalson JJ. Pathology of bronchopulmonary dysplasia. Semin Perinatol. 2006; 30(4): 179–84. doi: 10.1053/j.semperi.2006.05.004


74.
Richeldi L, Collard HR, Jones MG. Idiopathic pulmonary fibrosis. Lancet. 2017; 389(10082): 1941–52. doi: 10.1016/s0140-6736(17)30866-8


75.
Chen W, Pilling D, Gomer RH. Dietary NaCl affects bleomycin-induced lung fibrosis in mice. Exp Lung Res. 2017; 43(9–10): 395–406. doi: 10.1080/01902148.2017.1385110


76.
Wang Y, Liu X, Zhang C, Wang Z. High salt diet induces metabolic alterations in multiple biological processes of Dahl salt-sensitive rats. J Nutr Biochem. 2018; 56: 133–41. doi: 10.1016/j.jnutbio.2018.01.007


77.
Wang L, Zheng L, Luo R, Zhao X, Han Z, Wang Y, et al. A 1H NMR-based metabonomic investigation of time-dependent metabolic trajectories in a high salt-induced hypertension rat model. RSC Adv. 2015; 5(1): 281–90. doi: 10.1039/C4RA07215D


78.
Fujita T. Mineralocorticoid receptors, salt-sensitive hypertension, and metabolic syndrome. Hypertension. 2010; 55(4): 813–8. doi: 10.1161/hypertensionaha.109.149062


79.
Appel LJ, Brands MW, Daniels SR, Karanja N, Elmer PJ, Sacks FM. Dietary approaches to prevent and treat hypertension: a scientific statement from the American Heart Association. Hypertension. 2006; 47(2): 296–308. doi: 10.1161/01.Hyp.0000202568.01167.B6


80.
Segovia SA, Vickers MH, Harrison CJ, Patel R, Gray C, Reynolds CM. Maternal high-fat and high-salt diets have differential programming effects on metabolism in adult male rat offspring. Front Nutr. 2018; 5: 1. doi: 10.3389/fnut.2018.00001


81.
Derkach A, Sampson J, Joseph J, Playdon MC, Stolzenberg-Solomon RZ. Effects of dietary sodium on metabolites: the Dietary Approaches to Stop Hypertension (DASH)-Sodium Feeding Study. Am J Clin Nutr. 2017; 106(4): 1131–41. doi: 10.3945/ajcn.116.150136


82.
Lin W, Liu Z, Zheng X, Chen M, Gao D, Tian Z. High-salt diet affects amino acid metabolism in plasma and muscle of Dahl salt-sensitive rats. Amino Acids. 2018; 50(10): 1407–14. doi: 10.1007/s00726-018-2615-6


83.
Li Y, Lyu Y, Huang J, Huang K, Yu J. Transcriptome sequencing reveals high-salt diet-induced abnormal liver metabolic pathways in mice. BMC Gastroenterol. 2021; 21(1): 335. doi: 10.1186/s12876-021-01912-4


84.
Wan C, Chen S, Zhao K, Ren Z, Peng L, Xia H, et al. Serum untargeted metabolism reveals the mechanism of l. Plantarum ZDY2013 in alleviating kidney injury induced by high-salt diet. Nutrients. 2021; 13(11): 3920. doi: 10.3390/nu13113920


85.
Binger KJ, Gebhardt M, Heinig M, Rintisch C, Schroeder A, Neuhofer W, et al. High salt reduces the activation of IL-4- and IL-13-stimulated macrophages. J Clin Invest. 2015; 125(11): 4223–38. doi: 10.1172/jci80919


86.
Afsar B, Kuwabara M, Ortiz A, Yerlikaya A, Siriopol D, Covic A, et al. Salt intake and immunity. Hypertension. 2018; 72(1): 19–23. doi: 10.1161/hypertensionaha.118.11128


87.
Kleinewietfeld M, Manzel A, Titze J, Kvakan H, Yosef N, Linker RA, et al. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature. 2013; 496(7446): 518–22. doi: 10.1038/nature11868


88.
Chen J, Liu X, Huang H, Zhang F, Lu Y, Hu H. High salt diet may promote progression of breast tumor through eliciting immune response. Int Immunopharmacol. 2020; 87: 106816. doi: 10.1016/j.intimp.2020.106816
Published
2025-01-03
How to Cite
Zhao S., Chen Z., Liu H., Wang X., Zhang X., & Shi H. (2025). Maternal nutrition and offspring lung health: sex-specific pathway modulation in fibrosis, metabolism, and immunity. Food & Nutrition Research, 69. https://doi.org/10.29219/fnr.v69.11035
Section
Original Articles