Lactobacillus plantarum Lp2 improved LPS-induced liver injury through the TLR-4/MAPK/NFκB and Nrf2-HO-1/CYP2E1 pathways in mice

  • Yiying Chen
  • Yuhua Wang
  • Wuyang Guan
  • Nan Zhang
  • Yu Wang
  • Yuan Tian
  • Haiyue Sun
  • Xia Li
  • Jingsheng Liu
Keywords: Lactobacillus plantarum Lp2, liver injury, oxidative stress, inflammation response, TLR-4/MAPK/ NFκB, Nrf2-HO-1/CYP2E1


Background: Inflammatory liver diseases present a significant public health problem. Probiotics are a kind of living microorganisms, which can improve the balance of host intestinal flora, promote the proliferation of intestinal beneficial bacteria, inhibit the growth of harmful bacteria, improve immunity, reduce blood lipids and so on. Probiotics in fermented foods have attracted considerable attention lately as treatment options for liver injury.

Objective: The aim of this study was selected probiotic strain with well probiotic properties from naturally fermented foods and investigated the underlying mechanisms of screened probiotic strain on lipopolysaccharide (LPS)-induced liver injury, which provided the theoretical foundation for the development of probiotics functional food.

Design: The probiotic characteristics of Lactobacillus plantarum Lp2 isolated from Chinese traditional fermented food were evaluated. Male KM mice were randomly assigned into three groups: normal chow (Control), LPS and LPS with L. plantarum Lp2. L. plantarum Lp2 were orally administered for 4 weeks before exposure to LPS. The liver injury of LPS-induced mice was observed through the evaluation of biochemical indexes, protein expression level and liver histopathology.

Results and discussions: After treatment for 4 weeks, L. plantarum Lp2 administration significantly reduced the LPS-induced liver coefficient and the levels of serum or liver aspartate transaminase (AST), alanine aminotransferase (ALT), tumor necrosis factor α (TNF-α), interleukin-6 (IL-6) and LPS, as well as decreasing the histological alterations and protein compared with the LPS group. Western-blotting results showed that L. plantarum Lp2 activated the signal pathway of TLR4/MAPK/NFκB/NRF2-HO-1/CYP2E1/Caspase-3 and regulated the expression of related proteins.

Conclusions: In summary, L. plantarum Lp2 suppressed the LPS-induced activation of inflammatory pathways, oxidative injury and apoptosis has the potential to be used to improve liver injury.


Download data is not yet available.


  1. Wang Y, Kirpich I, Liu Y, Ma Z, Barve S, McClain CJ, et al. Lactobacillus rhamnosus GG treatment potentiates intestinal hypoxia-inducible factor, promotes intestinal integrity and ameliorates alcohol-induced liver injury. Am J Pathol 2011; 179(6): 2866–75. doi: 10.1016/j.ajpath.2011.08.039

  2. Nan B, Liu YL, You Y, Li WC, Fan JJ, Wang YS, et al. Protective effects of enhanced minor ginsenosides in Lactobacillus fermentum KP-3-fermented ginseng in mice fed a high fat diet. Food Funct 2018; 9(11): 6020–8. doi: 10.1039/C8FO01056K

  3. Teng Y, Wang Y, Tian Y, Chen Y, Guan W, Piao C, et al. Lactobacillus plantarum LP104 ameliorates hyperlipidemia induced by AMPK pathways in C57BL/6N mice fed high-fat diet. J Funct Foods 2020; 64: 103665. doi: 10.1016/j.jff.2019.103665

  4. Wang Y, Liu Y, Kirpich I, Ma Z, Wang C, Zhang M, et al. Lactobacillus rhamnosus GG reduces hepatic TNFalpha production and inflammation in chronic alcohol-induced liver injury. J Nutr Biochem 2013; 24(9): 1609–15. doi: 10.1016/j.jnutbio.2013.02.001

  5. Marcellin P, Kutala BK. Liver diseases: a major, neglected global public health problem requiring urgent actions and large-scale screening. Liver Int 2018; 38(Suppl 1): 2–6. doi: 10.1111/liv.13682

  6. Knolle PA, Wohlleber D. Immunological functions of liver sinusoidal endothelial cells. Cell Mol Immunol 2016; 13(3): 347–53. doi: 10.1038/cmi.2016.5

  7. Zhang Y, Xue W, Zhang W, Yuan Y, Zhu X, Wang Q, et al. Histone methyltransferase G9a protects against acute liver injury through GSTP1. Cell Death Differ 2020; 27(4): 1243–58. doi: 10.1038/s41418-019-0412-8

  8. McDonald B, Kubes P. Innate immune cell trafficking and function during sterile inflammation of the liver. Gastroenterology 2016; 151(6): 1087–95. doi: 10.1053/j.gastro.2016.09.048

  9. Tseng CK, Hsu SP, Lin CK, Wu YH, Lee JC, Young KC. Celastrol inhibits hepatitis C virus replication by upregulating heme oxygenase-1 via the JNK MAPK/Nrf2 pathway in human hepatoma cells. Antiviral Res 2017; 146: 191–200. doi: 10.1016/j.antiviral.2017.09.010

  10. Gu Z, Liu Y, Hu S, You Y, Wen J, Li W, et al. Probiotics for alleviating alcoholic liver injury. Gastroenterol Res Pract 2019; 2019: 9097276. doi: 10.1155/2019/9097276

  11. Li SC, Lin HP, Chang JS, Shih CK. Lactobacillus acidophilus-fermented germinated brown rice suppresses preneoplastic lesions of the colon in Rats. Nutrients 2019; 11(11): 2718. doi: 10.3390/nu11112718

  12. Hrdy J, Alard J, Couturier-Maillard A, Boulard O, Boutillier D, Delacre M, et al. Lactobacillus reuteri 5454 and Bifidobacterium animalis ssp. lactis 5764 improve colitis while differentially impacting dendritic cells maturation and antimicrobial responses. Sci Rep 2020; 10(1): 5345. doi: 10.1038/s41598-020-62161-1

  13. Huang WC, Wei CC, Huang CC, Chen WL, Huang HY. The beneficial effects of lactobacillus plantarum PS128 on high-intensity, exercise-induced oxidative stress, inflammation, and performance in triathletes. Nutrients 2019; 11(2): 353. doi: 10.3390/nu11020353

  14. Russo P, Lopez P, Capozzi V, de Palencia PF, Duenas MT, Spano G, et al. Beta-glucans improve growth, viability and colonization of probiotic microorganisms. Int J Mol Sci 2012; 13(5): 6026–39. doi: 10.3390/ijms13056026

  15. Dicks LM, Botes M. Probiotic lactic acid bacteria in the gastro-intestinal tract: health benefits, safety and mode of action. Benef Microbes 2010; 1(1): 11–29. doi: 10.3920/BM2009.0012

  16. Damodharan K, Palaniyandi SA, Suh JW, Yang SH. Probiotic characterization of Lactobacillus paracasei subsp. paracasei KNI9 inhibiting adherence of Yersinia enterocolitica on Caco-2 cells in vitro. Probiotics Antimicrob Proteins 2020; 12(2): 600–7. doi: 10.1007/s12602-019-09535-8

  17. Zhang X, Wu Y, Wang Y, Wang X, Piao C, Liu J, et al. The protective effects of probiotic-fermented soymilk on high-fat diet-induced hyperlipidemia and liver injury. J Funct Foods 2017; 30: 220–7. doi: 10.1016/j.jff.2017.01.002

  18. Fan J, Wang Y, You Y, Ai Z, Dai W, Piao C, et al. Fermented ginseng improved alcohol liver injury in association with changes in the gut microbiota of mice. Food Funct 2019; 10(9): 5566–73. doi: 10.1039/C9FO01415B

  19. Zhang M, Wang C, Wang C, Zhao H, Zhao C, Chen Y, et al. Enhanced AMPK phosphorylation contributes to the beneficial effects of Lactobacillus rhamnosus GG supernatant on chronic-alcohol-induced fatty liver disease. J Nutr Biochem 2015; 26(4): 337–44. doi: 10.1016/j.jnutbio.2014.10.016

  20. Lee CSK, Kim SH. Anti-inflammatory and anti-osteoporotic potential of Lactobacillus plantarum A41 and L. fermentum SRK414 as probiotics. Probiotics Antimicrob Proteins 2019; 12: 623–634. doi: 10.1007/s12602-019-09577-y

  21. Zhang M, Cai D, Song Q, Wang Y, Sun H, Piao C, et al. Effect on viability of microencapsulated Lactobacillus rhamnosus with the whey protein-pullulan gels in simulated gastrointestinal conditions and properties of gels. Food Sci Anim Resour 2019; 39(3): 459–73. doi: 10.5851/kosfa.2019.e42

  22. Arena MP, Caggianiello G, Fiocco D, Russo P, Torelli M, Spano G, et al. Barley beta-glucans-containing food enhances probiotic performances of beneficial bacteria. Int J Mol Sci 2014; 15(2): 3025–39. doi: 10.3390/ijms15023025

  23. Pilar Fernández de Palencia PL, Corbí AL, Peláez C, Requena T. Probiotic strains: sirvival under simulated gastrointestinal conditions, in vitro aahesion to Caco-2 cells and effect on vytokine sectretion. Eur Food Res Technol 2008; 227: 1475–84. doi: 10.1007/s00217-008-0870-6

  24. Li T, Wu YN, Wang H, Ma JY, Zhai SS, Duan J. Dapk1 improves inflammation, oxidative stress and autophagy in LPS-induced acute lung injury via p38MAPK/NF-kappaB signaling pathway. Mol Immunol 2020; 120: 13–22. doi: 10.1016/j.molimm.2020.01.014

  25. Swieca M, Gawlik-Dziki U, Jakubczyk A, Bochnak J, Sikora M, Suliburska J. Nutritional quality of fresh and stored legumes sprouts – Effect of Lactobacillus plantarum 299v enrichment. Food Chem 2019; 288: 325–32. doi: 10.1016/j.foodchem.2019.02.135

  26. Saelim K, Jampaphaeng K, Maneerat S. Functional properties of Lactobacillus plantarum S0/7 isolated fermented stinky bean (Sa Taw Dong) and its use as a starter culture. J Funct Foods 2017; 38: 370–7. doi: 10.1016/j.jff.2017.09.035

  27. Belguesmia Y, Alard J, Mendil R, Ravallec R, Grangette C, Drider D, et al. In vitro probiotic properties of selected lactobacilli and multi-strain consortium on immune function, gut barrier strengthening and gut hormone secretion. J Funct Foods 2019; 57: 382–91. doi: 10.1016/j.jff.2019.04.028

  28. Liu Q, Yu Z, Tian F, Zhao J, Zhang H, Zhai Q, et al. Surface components and metabolites of probiotics for regulation of intestinal epithelial barrier. Microb Cell Fact 2020; 19(1): 23. doi: 10.1186/s12934-020-1289-4

  29. Kalac P. Biologically active polyamines in beef, pork and meat products: a review. Meat Sci 2006; 73(1): 1–11. doi: 10.1016/j.meatsci.2005.11.001

  30. Liu Q, Jiang Y, Yang W, Liu Y, Shi C, Liu J, et al. Protective effects of a food-grade recombinant Lactobacillus plantarum with surface displayed AMA1 and EtMIC2 proteins of Eimeria tenella in broiler chickens. Microb Cell Fact 2020; 19(1): 28. doi: 10.1186/s12934-020-1297-4

  31. Sefidgari-Abrasi S, Roshangar L, Karimi P, Morshedi M, Rahimiyan-Heravan M, Saghafi-Asl M. From the gut to the heart: L. plantarum and inulin administration as a novel approach to control cardiac apoptosis via 5-HT2B and TrkB receptors in diabetes. Clin Nutr 2020; 2020: 4745389. doi: 10.1155/2020/4745389

  32. Arques JL, Rodriguez E, Langa S, Landete JM, Medina M. Antimicrobial activity of lactic acid bacteria in dairy products and gut: effect on pathogens. Biomed Res Int 2015; 2015: 584183. doi: 10.1155/2015/584183

  33. Campana R, van Hemert S, Baffone W. Strain-specific probiotic properties of lactic acid bacteria and their interference with human intestinal pathogens invasion. Gut Pathog 2017; 9: 12. doi: 10.1186/s13099-017-0162-4

  34. Kumar R, Seo BJ, Mun MR, Kim CJ, Lee I, Kim H, et al. Putative probiotic Lactobacillus spp. from porcine gastrointestinal tract inhibit transmissible gastroenteritis coronavirus and enteric bacterial pathogens. Trop Anim Health Prod 2010; 42(8): 1855–60. doi: 10.1007/s11250-010-9648-5

  35. Isolauri E, Salminen S, Ouwehand AC. Microbial-gut interactions in health and disease. Probiotics. Best Pract Res Clin Gastroenterol 2004; 18(2): 299–313. doi: 10.1016/j.bpg.2003.10.006

  36. Xu XY, Hu JN, Liu Z, Zhang R, He YF, Hou W, et al. Saponins (Ginsenosides) from the leaves of panax quinquefolius ameliorated acetaminophen-induced hepatotoxicity in mice. J Agric Food Chem 2017; 65(18): 3684–92. doi: 10.1021/acs.jafc.7b00610

  37. Williams ALB, Hoofnagle JH. Ratio of serum aspartate to alanine aminotransferase in chronic hepatitis relationship to cirrhosis. Gastroenterology 1988; 95(3): 734–9. doi: 10.1016/S0016-5085(88)80022-2

  38. Wullaert A, Bonnet MC, Pasparakis M. NF-kappaB in the regulation of epithelial homeostasis and inflammation. Cell Res 2011; 21(1): 146–58. doi: 10.1038/cr.2010.175

  39. Arthur JS, Ley SC. Mitogen-activated protein kinases in innate immunity. Nat Rev Immunol 2013; 13(9): 679–92. doi: 10.1038/nri3495

  40. Baltimore AABaD. An essential role for NF-KB in preventing TNF-a-induced cell death. Science 1996; 274: 782. doi: 10.1126/science.274.5288.782

  41. Zhou Xing JG, Cox G, Baumann H, Jordana M, Lei X-F, Achong MK. IL-6 is an antiinflammatory cytokine required for controlling local or systemic acute inflammatory responses. J Clin Investig 1998; 101: 311–20. doi: 10.1172/JCI1368

  42. Wang K, Lv L, Yan R, Wang Q, Jiang H, Wu W, et al. Bifidobacterium longum R0175 protects rats against d-galactosamine-induced acute liver failure. mSphere 2020; 5(1): e00791–19. doi: 10.1128/mSphere.00791-19

  43. Duan C, Zhao Y, Huang C, Zhao Z, Gao L, Niu C, et al. Hepatoprotective effects of Lactobacillus plantarum C88 on LPS/D-GalN–induced acute liver injury in mice. J Funct Foods 2018; 43: 146–53. doi: 10.1016/j.jff.2018.02.005

  44. Kong D, Zhuo L, Gao C, Shi S, Wang N, Huang Z, et al. Erythropoietin protects against cisplatin-induced nephrotoxicity by attenuating endoplasmic reticulum stress-induced apoptosis. J Nephrol 2013; 26(1): 219–27. doi: 10.5301/jn.5000177

  45. Chin AC, Teoh DA, Scott KG, Meddings JB, Macnaughton WK, Buret AG. Strain-dependent induction of enterocyte apoptosis by Giardia lamblia disrupts epithelial barrier function in a caspase-3-dependent manner. Infect Immun 2002; 70(7): 3673–80. doi: 10.1128/IAI.70.7.3673-3680.2002

  46. Cui Y, Liu L, Gao K, Liu J, Dou X, Wang H. Lactobacillus reuteri ZJ617 maintains intestinal integrity via regulating tight junction, autophagy and apoptosis in mice challenged with lipopolysaccharide. Oncotarget 2017; 8(44): 77489–99. doi: 10.18632/oncotarget.20536

  47. Dykstra NS, Hyde L, MacKenzie A, Mack DR. Lactobacillus plantarum 299v prevents caspase-dependent apoptosis in vitro. Probiotics Antimicrob Proteins 2011; 3(1): 21–6. doi: 10.1007/s12602-011-9066-7

  48. Mokhtari-Zaer A, Norouzi F, Askari VR, Khazdair MR, Roshan NM, Boskabady M, et al. The protective effect of Nigella sativa extract on lung inflammation and oxidative stress induced by lipopolysaccharide in rats. J Ethnopharmacol 2020; 253: 112653. doi: 10.1016/j.jep.2020.112653

  49. Abraham NG, Kappas A. Pharmacological and clinical aspects of heme oxygenase. Pharmacol Rev 2008; 60(1): 79–127. doi: 10.1124/pr.107.07104

  50. Singh R, Chandrashekharappa S, Bodduluri SR, Baby BV, Hegde B, Kotla NG, et al. Enhancement of the gut barrier integrity by a microbial metabolite through the Nrf2 pathway. Nat Commun 2019; 10(1): 89. doi: 10.1038/s41467-018-07859-7

How to Cite
Chen Y., Wang Y., Guan W., Zhang N., Wang Y., Tian Y., Sun H., Li X., & Liu J. (2022). <em>Lactobacillus plantarum</em&gt; Lp2 improved LPS-induced liver injury through the TLR-4/MAPK/NFκB and Nrf2-HO-1/CYP2E1 pathways in mice. Food & Nutrition Research, 66.
Original Articles