Gut microbiota is associated with dietary intake and metabolic markers in healthy individuals

  • Line Gaundal Department of Nursing and Health Promotion, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
  • Mari C.W. Myhrstad Department of Nursing and Health Promotion, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway https://orcid.org/0000-0003-1982-1792
  • Ida Rud Nofima AS (Norwegian Institute of Food, Fisheries and Aquaculture Research), Ås, Norway
  • Terje Gjøvaag Department of Occupational Therapy, Prosthetics and Orthotics, Oslo Metropolitan University, Oslo, Norway
  • Marte G. Byfuglien Mills AS, Oslo, Norway
  • Kjetil Retterstøl Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Blindern, Oslo, Norway; and The Norwegian National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
  • Kirsten B. Holven Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Blindern, Oslo, Norway; and The Norwegian National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
  • Stine M. Ulven Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Blindern, Oslo, Norway
  • Vibeke H. Telle-Hansen Department of Nursing and Health Promotion, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway https://orcid.org/0000-0003-0874-1420
Keywords: Gut microbiota, metabolic markers, diet, healthy, humans, dietary fiber, vegetables, dietary fat, blood pressure, cholesterol.

Abstract

Background: Metabolic diseases have been related to gut microbiota, and new knowledge indicates that diet impacts host metabolism through the gut microbiota. Identifying specific gut bacteria associated with both diet and metabolic risk markers may be a potential strategy for future dietary disease prevention. However, studies investigating the association between the gut microbiota, diet, and metabolic markers in healthy individuals are scarce.

Objective: We explored the relationship between a panel of gut bacteria, dietary intake, and metabolic and anthropometric markers in healthy adults.

Design: Forty-nine volunteers were included in this cross-sectional study. Measures of glucose, serum triglyceride, total cholesterol, hemoglobin A1c (HbA1c), blood pressure (BP), and body mass index (BMI) were collected after an overnight fast, in addition to fecal samples for gut microbiota analyzes using a targeted approach with a panel of 48 bacterial DNA probes and assessment of dietary intake by a Food Frequency Questionnaire (FFQ). Correlations between gut bacteria, dietary intake, and metabolic and anthropometric markers were assessed by Pearson’s correlation. Gut bacteria varying according to dietary intake and metabolic markers were assessed by a linear regression model and adjusted for age, sex, and BMI.

Results: Of the 48 gut bacteria measured, 24 and 16 bacteria correlated significantly with dietary intake and metabolic and/or anthropometric markers, respectively. Gut bacteria including AlistipesLactobacillus spp., and Bacteroides stercoris differed according to the intake of the food components, fiber, sodium, saturated fatty acids, and dietary indices, and metabolic markers (BP and total cholesterol) after adjustments. Notably, Bacteroides stercoris correlated positively with the intake of fiber, grain products, and vegetables, and higher Bacteroides stercoris abundance was associated with higher adherence to Healthy Nordic Food Index (HNFI) and lower diastolic BP after adjustment.

Conclusion: Our findings highlight the relationship between the gut microbiota, diet, and metabolic markers in healthy individuals. Further investigations are needed to address whether these findings are causally linked and whether targeting these gut bacteria can prevent metabolic diseases.

Downloads

Download data is not yet available.

References


  1. Sonnenburg JL, Backhed F. Diet-microbiota interactions as moderators of human metabolism. Nature 2016; 535: 56–64. doi: 10.1038/nature18846

  2. Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J 2017; 474: 1823–36. doi: 10.1042/BCJ20160510

  3. O’Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep 2006; 7: 688–93. doi: 10.1038/sj.embor.7400731

  4. Koh A, Bäckhed F. From association to causality: the role of the gut microbiota and its functional products on host metabolism. Mol Cell 2020; 78: 584–96. doi: 10.1016/j.molcel.2020.03.005

  5. Arora T, Backhed F. The gut microbiota and metabolic disease: current understanding and future perspectives. J Intern Med 2016; 280: 339–49. doi: 10.1111/joim.12508

  6. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al. Diversity of the human intestinal microbial flora. Science (New York, N.Y.) 2005; 308: 1635–8. doi: 10.1126/science.1110591

  7. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010; 464: 59–65. doi: 10.1038/nature08821

  8. Hansen TH, Gøbel RJ, Hansen T, Pedersen O. The gut microbiome in cardio-metabolic health. Genome Med 2015; 7: 33. doi: 10.1186/s13073-015-0157-z

  9. Hur KY, Lee M-S. Gut microbiota and metabolic disorders. Diabetes Metab J 2015; 39: 198–203. doi: 10.4093/dmj.2015.39.3.198

  10. Hooks KB, O’Malley MA, Davies JE. Dysbiosis and its discontents. mBio 2017; 8: e01492-17. doi: 10.1128/mBio.01492-17

  11. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, et al. Richness of human gut microbiome correlates with metabolic markers. Nature 2013; 500: 541–6. doi: 10.1038/nature12506

  12. Vrieze A, Van Nood E, Holleman F, Salojarvi J, Kootte RS, Bartelsman JF, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 2012; 143: 913–6.e7. doi: 10.1053/j.gastro.2012.06.031

  13. Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D, et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 2018; 555: 210–5. doi: 10.1038/nature25973

  14. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al. Human gut microbiome viewed across age and geography. Nature 2012; 486: 222–7. doi: 10.1038/nature11053

  15. Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R, et al. Human genetics shape the gut microbiome. Cell 2014; 159: 789–99. doi: 10.1016/j.cell.2014.09.053

  16. Graf D, Di Cagno R, Fåk F, Flint HJ, Nyman M, Saarela M, et al. Contribution of diet to the composition of the human gut microbiota. Microb Ecol Health Dis 2015; 26: 26164. doi: 10.3402/mehd.v26.26164

  17. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science (New York, N.Y.) 2011; 334: 105–8. doi: 10.1126/science.1208344

  18. Valdes AM, Walter J, Segal E, Spector TD. Role of the gut microbiota in nutrition and health. BMJ (Clinical research ed.) 2018; 361: k2179. doi: 10.1136/bmj.k2179

  19. Flint HJ, Duncan SH, Scott KP, Louis P. Links between diet, gut microbiota composition and gut metabolism. Proc Nutr Soc 2015; 74: 13–22. doi: 10.1017/S0029665114001463

  20. Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 2016; 165: 1332–45. doi: 10.1016/j.cell.2016.05.041

  21. Miyamoto J, Kasubuchi M, Nakajima A, Irie J, Itoh H, Kimura I. The role of short-chain fatty acid on blood pressure regulation. Curr Opin Nephrol Hypertens 2016; 25: 379–83. doi: 10.1097/mnh.0000000000000246

  22. Schoeler M, Caesar R. Dietary lipids, gut microbiota and lipid metabolism. Rev Endocr Metab Disord 2019; 20: 461–72. doi: 10.1007/s11154-019-09512-0

  23. Candido FG, Valente FX, Grzeskowiak LM, Moreira APB, Rocha D, Alfenas RCG. Impact of dietary fat on gut microbiota and low-grade systemic inflammation: mechanisms and clinical implications on obesity. Int J Food Sci Nutr 2017, 69, 1–19. doi: 10.1080/09637486.2017.1343286

  24. Caesar R, Tremaroli V, Kovatcheva-Datchary P, Cani PD, Backhed F. Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metab 2015; 22: 658–68. doi: 10.1016/j.cmet.2015.07.026

  25. Cao W, Liu F, Li RW, Chin Y, Wang Y, Xue C, et al. Docosahexaenoic acid-rich fish oil prevented insulin resistance by modulating gut microbiome and promoting colonic peptide YY expression in diet-induced obesity mice. Food Sci Hum Wellness 2022; 11: 177–88. doi: 10.1016/j.fshw.2021.07.018

  26. Falony G, Joossens M, Vieira-Silva S, Wang J, Darzi Y, Faust K, et al. Population-level analysis of gut microbiome variation. Science (New York, N.Y.) 2016; 352: 560–4. doi: 10.1126/science.aad3503

  27. Zhernakova A, Kurilshikov A, Bonder MJ, Tigchelaar EF, Schirmer M, Vatanen T, et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science (New York, N.Y.) 2016; 352: 565–9. doi: 10.1126/science.aad3369

  28. Partula V, Mondot S, Torres MJ, Kesse-Guyot E, Deschasaux M, Assmann K, et al. Associations between usual diet and gut microbiota composition: results from the Milieu Intérieur cross-sectional study. Am J Clin Nutr 2019; 109: 1472–83. doi: 10.1093/ajcn/nqz029

  29. Noh H, Jang H-H, Kim G, Zouiouich S, Cho S-Y, Kim H-J, et al. Taxonomic composition and diversity of the gut microbiota in relation to habitual dietary intake in Korean adults. Nutrients 2021; 13: 366. doi: 10.3390/nu13020366

  30. Trefflich I, Jabakhanji A, Menzel J, Blaut M, Michalsen A, Lampen A, et al. Is a vegan or a vegetarian diet associated with the microbiota composition in the gut? Results of a new cross-sectional study and systematic review. Crit Rev Food Sci Nutr 2020; 60: 2990–3004. doi: 10.1080/10408398.2019.1676697

  31. De Filippis F, Pellegrini N, Vannini L, Jeffery IB, La Storia A, Laghi L, et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut 2016; 65: 1812–21. doi: 10.1136/gutjnl-2015-309957

  32. Asnicar F, Berry SE, Valdes AM, Nguyen LH, Piccinno G, Drew DA, et al. Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals. Nat Med 2021; 27(2): 321–332. doi: 10.1038/s41591-020-01183-8

  33. Ma W, Nguyen LH, Song M, Wang DD, Franzosa EA, Cao Y, et al. Dietary fiber intake, the gut microbiome, and chronic systemic inflammation in a cohort of adult men. Genome Med 2021; 13: 102. doi: 10.1186/s13073-021-00921-y

  34. Companys J, Gosalbes MJ, Pla-Pagà L, Calderón-Pérez L, Llauradó E, Pedret A, et al. Gut microbiota profile and its association with clinical variables and dietary intake in overweight/obese and lean subjects: a cross-sectional study. Nutrients 2021; 13: 2032. doi: 10.3390/nu13062032

  35. Li Y, Wang DD, Satija A, Ivey KL, Li J, Wilkinson JE, et al. Plant-based diet index and metabolic risk in men: exploring the role of the gut microbiome. J Nutr 2021; 151: 2780–9. doi: 10.1093/jn/nxab175

  36. Gaundal L, Myhrstad MCW, Leder L, Byfuglien MG, Gjøvaag T, Rud I, et al. Beneficial effect on serum cholesterol levels, but not glycaemic regulation, after replacing SFA with PUFA for 3 d: a randomised crossover trial. Br J Nutr 2020; 125, 1–11. doi: 10.1017/S0007114520003402

  37. Carlsen MH, Lillegaard ITL, Karlsen A, Blomhoff R, Drevon CA, Andersen LF. Evaluation of energy and dietary intake estimates from a food frequency questionnaire using independent energy expenditure measurement and weighed food records. Nutr J 2010; 9: 37. doi: 10.1186/1475-2891-9-37

  38. Olsen A, Egeberg R, Halkjær J, Christensen J, Overvad K, Tjønneland A. Healthy aspects of the nordic diet are related to lower total mortality. J Nutr 2011; 141: 639–44. doi: 10.3945/jn.110.131375

  39. Roswall N, Sandin S, Löf M, Skeie G, Olsen A, Adami H-O, et al. Adherence to the healthy Nordic food index and total and cause-specific mortality among Swedish women. Eur J Epidemiol 2015; 30: 509–17. doi: 10.1007/s10654-015-0021-x

  40. Puaschitz NG, Assmus J, Strand E, Karlsson T, Vinknes KJ, Lysne V, et al. Adherence to the Healthy Nordic Food Index and the incidence of acute myocardial infarction and mortality among patients with stable angina pectoris. J Hum Nutr Dietet 2019; 32: 86–97. doi: 10.1111/jhn.12592

  41. Garnweidner-Holme L, Torheim LE, Henriksen L, Borgen I, Holmelid S, Lukasse M. Adherence to the Norwegian dietary recommendations in a multi-ethnic pregnant population prior to being diagnosed with gestational diabetes mellitus. Food Sci Nutr 2020; 8: 3031–40. doi: 10.1002/fsn3.1248

  42. Totland THM, Kjerpeseth B, Lundberg-Hallén N, Helland-Kigen KM, Lund-Blix NA, Myhre JB, et al. Norkost 3 En landsomfattende kostholdsundersøkelse blant menn og kvinner i Norge i alderen 18-70 år, 2010-11. Oslo. Helsedirektoratet; 2012.

  43. NNR. Nordic nutrition recommendations 2012: integrating nutrition and physical activity; 9289326700. Copenhagen: Nordic Council of Ministers; 2014.

  44. Casén C, Vebø HC, Sekelja M, Hegge FT, Karlsson MK, Ciemniejewska E, et al. Deviations in human gut microbiota: a novel diagnostic test for determining dysbiosis in patients with IBS or IBD. Aliment Pharmacol Ther 2015; 42: 71–83. doi: 10.1111/apt.13236

  45. Nasjonalt råd for ernæring. Kostråd for å fremme folkehelsen og forebygge kroniske sykdommer: Metodologi og vitenskapelig kunnskapsgrunnlag. Oslo, Helsedirektoratet, 2011.

  46. Hollister EB, Gao C, Versalovic J. Compositional and functional features of the gastrointestinal microbiome and their effects on human health. Gastroenterology 2014; 146: 1449–58. doi: 10.1053/j.gastro.2014.01.052

  47. Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar Reddy D. Role of the normal gut microbiota. World J Gastroenterol 2015; 21: 8787–803. doi: 10.3748/wjg.v21.i29.8787

  48. Sorbara MT, Pamer EG. Microbiome-based therapeutics. Nat Rev Microbiol 2022, 20, 365–380. doi: 10.1038/s41579-021-00667-9

  49. Fisher CK, Mehta P. Identifying keystone species in the human gut microbiome from metagenomic timeseries using sparse linear regression. PLoS One 2014; 9: e102451. doi: 10.1371/journal.pone.0102451

  50. Strömbeck A, Lasson A, Strid H, Sundin J, Stotzer P-O, Simrén M, et al. Fecal microbiota composition is linked to the postoperative disease course in patients with Crohn’s disease. BMC Gastroenterol 2020; 20: 130. doi: 10.1186/s12876-020-01281-4

  51. Nomura K, Ishikawa D, Okahara K, Ito S, Haga K, Takahashi M, et al. Bacteroidetes species are correlated with disease activity in ulcerative colitis. J Clin Med 2021; 10: 1749. doi: 10.3390/jcm10081749

  52. Agans R, Gordon A, Kramer DL, Perez-Burillo S, Rufián-Henares JA, Paliy O, et al. Dietary fatty acids sustain the growth of the human gut microbiota. Appl Environ Microbiol 2018; 84: e01525-18. doi: 10.1128/AEM.01525-18

  53. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014; 505: 559–63. doi: 10.1038/nature12820

  54. Parker BJ, Wearsch PA, Veloo ACM, Rodriguez-Palacios A. The genus alistipes: gut bacteria with emerging implications to inflammation, cancer, and mental health. Front Immunol 2020; 11: 906. doi: 10.3389/fimmu.2020.00906

  55. Kong Y, Li Y, Dai Z-R, Qin M, Fan H-L, Hao J-G, et al. Glycosaminoglycan from Ostrea rivularis attenuates hyperlipidemia and regulates gut microbiota in high-cholesterol diet-fed zebrafish. Food Sci Nutr 2021; 9: 5198–210. doi: 10.1002/fsn3.2492

  56. Choi Y, Kwon Y, Kim D-K, Jeon J, Jang SC, Wang T, et al. Gut microbe-derived extracellular vesicles induce insulin resistance, thereby impairing glucose metabolism in skeletal muscle. Sci Rep 2015; 5: 15878. doi: 10.1038/srep15878

  57. Jeong M-Y, Jang H-M, Kim D-H. High-fat diet causes psychiatric disorders in mice by increasing Proteobacteria population. Neurosci Lett 2019; 698: 51–7. doi: 10.1016/j.neulet.2019.01.006

  58. Hildebrandt MA, Hoffmann C, Sherrill-Mix SA, Keilbaugh SA, Hamady M, Chen YY, et al. High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology 2009; 137: 1716–24.e1–2. doi: 10.1053/j.gastro.2009.08.042

  59. Rizzatti G, Lopetuso LR, Gibiino G, Binda C, Gasbarrini A. Proteobacteria: a common factor in human diseases. BioMed Res Int 2017; 2017: 9351507. doi: 10.1155/2017/9351507

  60. Peters BA, Shapiro JA, Church TR, Miller G, Trinh-Shevrin C, Yuen E, et al. A taxonomic signature of obesity in a large study of American adults. Sci Rep 2018; 8: 9749. doi: 10.1038/s41598-018-28126-1

  61. Xiao S, Fei N, Pang X, Shen J, Wang L, Zhang B, et al. A gut microbiota-targeted dietary intervention for amelioration of chronic inflammation underlying metabolic syndrome. FEMS Microbiol Ecol 2014; 87: 357–67. doi: 10.1111/1574-6941.12228

  62. Sotos M, Nadal I, Marti A, Martínez A, Martin-Matillas M, Campoy C, et al. Gut microbes and obesity in adolescents. Proceed Nutr Soc 2008; 67: E20. doi: 10.1017/S0029665108006290

  63. Fei N, Zhao L. An opportunistic pathogen isolated from the gut of an obese human causes obesity in germfree mice. ISME J 2013; 7: 880–4. doi: 10.1038/ismej.2012.153

  64. Palmu J, Salosensaari A, Havulinna AS, Cheng S, Inouye M, Jain M, et al. Association between the gut microbiota and blood pressure in a population cohort of 6953 individuals. J Am Heart Assoc 2020; 9: e016641. doi: 10.1161/JAHA.120.016641

  65. Wilck N, Matus MG, Kearney SM, Olesen SW, Forslund K, Bartolomaeus H, et al. Salt-responsive gut commensal modulates TH17 axis and disease. Nature 2017; 551: 585–9. doi: 10.1038/nature24628

  66. Dong J-Y, Szeto IMY, Makinen K, Gao Q, Wang J, Qin L-Q, et al. Effect of probiotic fermented milk on blood pressure: a meta-analysis of randomised controlled trials. Br J Nutr 2013; 110: 1188–94. doi: 10.1017/S0007114513001712

  67. Khalesi S, Sun J, Buys N, Jayasinghe R. Effect of probiotics on blood pressure: a systematic review and meta-analysis of randomized, controlled trials. Hypertension 2014; 64: 897–903. doi: 10.1161/hypertensionaha.114.03469

  68. Li J, Zhao F, Wang Y, Chen J, Tao J, Tian G, et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome 2017; 5: 14. doi: 10.1186/s40168-016-0222-x

  69. Fu J, Bonder MJ, Cenit MC, Tigchelaar EF, Maatman A, Dekens JA, et al. The gut microbiome contributes to a substantial proportion of the variation in blood lipids. Circ Res 2015; 117: 817–24. doi: 10.1161/circresaha.115.306807

  70. Koren O, Spor A, Felin J, Fåk F, Stombaugh J, Tremaroli V, et al. Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc Natl Acad Sci 2011; 108: 4592–8. doi: 10.1073/pnas.1011383107

  71. Liu Y, Song X, Zhou H, Zhou X, Xia Y, Dong X, et al. Gut microbiome associates with lipid-lowering effect of rosuvastatin in vivo. Front Microbiol 2018; 9: 530. doi: 10.3389/fmicb.2018.00530

  72. Tindall AM, McLimans CJ, Petersen KS, Kris-Etherton PM, Lamendella R. Walnuts and vegetable oils containing oleic acid differentially affect the gut microbiota and associations with cardiovascular risk factors: follow-up of a randomized, controlled, feeding trial in adults at risk for cardiovascular disease. J Nutr 2020; 150: 806–17. doi: 10.1093/jn/nxz289

  73. Vacca M, Celano G, Calabrese FM, Portincasa P, Gobbetti M, De Angelis M. The controversial role of human gut lachnospiraceae. Microorganisms 2020; 8: 573. doi: 10.3390/microorganisms8040573

  74. Sorbara MT, Littmann ER, Fontana E, Moody TU, Kohout CE, Gjonbalaj M, et al. Functional and genomic variation between human-derived isolates of lachnospiraceae reveals inter- and intra-species diversity. Cell Host Microbe 2020; 28: 134–46.e134. doi: 10.1016/j.chom.2020.05.005

  75. Zhang X, Shen D, Fang Z, Jie Z, Qiu X, Zhang C, et al. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS One 2013; 8: e71108. doi: 10.1371/journal.pone.0071108

  76. Chávez-Carbajal A, Nirmalkar K, Pérez-Lizaur A, Hernández-Quiroz F, Ramírez-Del-Alto S, García-Mena J, et al. Gut microbiota and predicted metabolic pathways in a sample of Mexican women affected by obesity and obesity plus metabolic syndrome. Int J Mol Sci 2019; 20: 438. doi: 10.3390/ijms20020438

  77. Kelly TN, Bazzano LA, Ajami NJ, He H, Zhao J, Petrosino JF, et al. Gut microbiome associates with lifetime cardiovascular disease risk profile among Bogalusa heart study participants. Circ Res 2016; 119: 956–64. doi: 10.1161/CIRCRESAHA.116.309219

  78. Enget Jensen TM, Braaten T, Jacobsen BK, Barnung RB, Olsen A, Skeie G. Adherence to the Healthy Nordic Food Index in the Norwegian Women and Cancer (NOWAC) cohort. Food Nutr Res 2018; 62. doi: 10.29219/fnr.v62.1339

  79. Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH, Chinwalla AT, et al. Structure, function and diversity of the healthy human microbiome. Nature 2012; 486: 207–14. doi: 10.1038/nature11234

  80. Mueller S, Saunier K, Hanisch C, Norin E, Alm L, Midtvedt T, et al. Differences in fecal microbiota in different European study populations in relation to age, gender, and country: a cross-sectional study. Appl Environ Microbiol 2006; 72: 1027–33. doi: 10.1128/aem.72.2.1027-1033.2006

  81. Haro C, Rangel-Zúñiga OA, Alcalá-Díaz JF, Gómez-Delgado F, Pérez-Martínez P, Delgado-Lista J, et al. Intestinal microbiota is influenced by gender and body mass index. PLoS One 2016; 11: e0154090. doi: 10.1371/journal.pone.0154090

Published
2022-06-22
How to Cite
Gaundal L., Myhrstad M. C., Rud I., Gjøvaag T., Byfuglien M. G., Retterstøl K., Holven K. B., Ulven S. M., & Telle-Hansen V. H. (2022). Gut microbiota is associated with dietary intake and metabolic markers in healthy individuals. Food & Nutrition Research, 66. https://doi.org/10.29219/fnr.v66.8580
Section
Original Articles

Most read articles by the same author(s)