Gut microbiota is associated with dietary intake and metabolic markers in healthy individuals
Abstract
Background: Metabolic diseases have been related to gut microbiota, and new knowledge indicates that diet impacts host metabolism through the gut microbiota. Identifying specific gut bacteria associated with both diet and metabolic risk markers may be a potential strategy for future dietary disease prevention. However, studies investigating the association between the gut microbiota, diet, and metabolic markers in healthy individuals are scarce.
Objective: We explored the relationship between a panel of gut bacteria, dietary intake, and metabolic and anthropometric markers in healthy adults.
Design: Forty-nine volunteers were included in this cross-sectional study. Measures of glucose, serum triglyceride, total cholesterol, hemoglobin A1c (HbA1c), blood pressure (BP), and body mass index (BMI) were collected after an overnight fast, in addition to fecal samples for gut microbiota analyzes using a targeted approach with a panel of 48 bacterial DNA probes and assessment of dietary intake by a Food Frequency Questionnaire (FFQ). Correlations between gut bacteria, dietary intake, and metabolic and anthropometric markers were assessed by Pearson’s correlation. Gut bacteria varying according to dietary intake and metabolic markers were assessed by a linear regression model and adjusted for age, sex, and BMI.
Results: Of the 48 gut bacteria measured, 24 and 16 bacteria correlated significantly with dietary intake and metabolic and/or anthropometric markers, respectively. Gut bacteria including Alistipes, Lactobacillus spp., and Bacteroides stercoris differed according to the intake of the food components, fiber, sodium, saturated fatty acids, and dietary indices, and metabolic markers (BP and total cholesterol) after adjustments. Notably, Bacteroides stercoris correlated positively with the intake of fiber, grain products, and vegetables, and higher Bacteroides stercoris abundance was associated with higher adherence to Healthy Nordic Food Index (HNFI) and lower diastolic BP after adjustment.
Conclusion: Our findings highlight the relationship between the gut microbiota, diet, and metabolic markers in healthy individuals. Further investigations are needed to address whether these findings are causally linked and whether targeting these gut bacteria can prevent metabolic diseases.
Downloads
References
- Sonnenburg JL, Backhed F. Diet-microbiota interactions as moderators of human metabolism. Nature 2016; 535: 56–64. doi: 10.1038/nature18846
- Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J 2017; 474: 1823–36. doi: 10.1042/BCJ20160510
- O’Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep 2006; 7: 688–93. doi: 10.1038/sj.embor.7400731
- Koh A, Bäckhed F. From association to causality: the role of the gut microbiota and its functional products on host metabolism. Mol Cell 2020; 78: 584–96. doi: 10.1016/j.molcel.2020.03.005
- Arora T, Backhed F. The gut microbiota and metabolic disease: current understanding and future perspectives. J Intern Med 2016; 280: 339–49. doi: 10.1111/joim.12508
- Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al. Diversity of the human intestinal microbial flora. Science (New York, N.Y.) 2005; 308: 1635–8. doi: 10.1126/science.1110591
- Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010; 464: 59–65. doi: 10.1038/nature08821
- Hansen TH, Gøbel RJ, Hansen T, Pedersen O. The gut microbiome in cardio-metabolic health. Genome Med 2015; 7: 33. doi: 10.1186/s13073-015-0157-z
- Hur KY, Lee M-S. Gut microbiota and metabolic disorders. Diabetes Metab J 2015; 39: 198–203. doi: 10.4093/dmj.2015.39.3.198
- Hooks KB, O’Malley MA, Davies JE. Dysbiosis and its discontents. mBio 2017; 8: e01492-17. doi: 10.1128/mBio.01492-17
- Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, et al. Richness of human gut microbiome correlates with metabolic markers. Nature 2013; 500: 541–6. doi: 10.1038/nature12506
- Vrieze A, Van Nood E, Holleman F, Salojarvi J, Kootte RS, Bartelsman JF, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 2012; 143: 913–6.e7. doi: 10.1053/j.gastro.2012.06.031
- Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D, et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 2018; 555: 210–5. doi: 10.1038/nature25973
- Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al. Human gut microbiome viewed across age and geography. Nature 2012; 486: 222–7. doi: 10.1038/nature11053
- Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R, et al. Human genetics shape the gut microbiome. Cell 2014; 159: 789–99. doi: 10.1016/j.cell.2014.09.053
- Graf D, Di Cagno R, Fåk F, Flint HJ, Nyman M, Saarela M, et al. Contribution of diet to the composition of the human gut microbiota. Microb Ecol Health Dis 2015; 26: 26164. doi: 10.3402/mehd.v26.26164
- Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science (New York, N.Y.) 2011; 334: 105–8. doi: 10.1126/science.1208344
- Valdes AM, Walter J, Segal E, Spector TD. Role of the gut microbiota in nutrition and health. BMJ (Clinical research ed.) 2018; 361: k2179. doi: 10.1136/bmj.k2179
- Flint HJ, Duncan SH, Scott KP, Louis P. Links between diet, gut microbiota composition and gut metabolism. Proc Nutr Soc 2015; 74: 13–22. doi: 10.1017/S0029665114001463
- Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 2016; 165: 1332–45. doi: 10.1016/j.cell.2016.05.041
- Miyamoto J, Kasubuchi M, Nakajima A, Irie J, Itoh H, Kimura I. The role of short-chain fatty acid on blood pressure regulation. Curr Opin Nephrol Hypertens 2016; 25: 379–83. doi: 10.1097/mnh.0000000000000246
- Schoeler M, Caesar R. Dietary lipids, gut microbiota and lipid metabolism. Rev Endocr Metab Disord 2019; 20: 461–72. doi: 10.1007/s11154-019-09512-0
- Candido FG, Valente FX, Grzeskowiak LM, Moreira APB, Rocha D, Alfenas RCG. Impact of dietary fat on gut microbiota and low-grade systemic inflammation: mechanisms and clinical implications on obesity. Int J Food Sci Nutr 2017, 69, 1–19. doi: 10.1080/09637486.2017.1343286
- Caesar R, Tremaroli V, Kovatcheva-Datchary P, Cani PD, Backhed F. Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metab 2015; 22: 658–68. doi: 10.1016/j.cmet.2015.07.026
- Cao W, Liu F, Li RW, Chin Y, Wang Y, Xue C, et al. Docosahexaenoic acid-rich fish oil prevented insulin resistance by modulating gut microbiome and promoting colonic peptide YY expression in diet-induced obesity mice. Food Sci Hum Wellness 2022; 11: 177–88. doi: 10.1016/j.fshw.2021.07.018
- Falony G, Joossens M, Vieira-Silva S, Wang J, Darzi Y, Faust K, et al. Population-level analysis of gut microbiome variation. Science (New York, N.Y.) 2016; 352: 560–4. doi: 10.1126/science.aad3503
- Zhernakova A, Kurilshikov A, Bonder MJ, Tigchelaar EF, Schirmer M, Vatanen T, et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science (New York, N.Y.) 2016; 352: 565–9. doi: 10.1126/science.aad3369
- Partula V, Mondot S, Torres MJ, Kesse-Guyot E, Deschasaux M, Assmann K, et al. Associations between usual diet and gut microbiota composition: results from the Milieu Intérieur cross-sectional study. Am J Clin Nutr 2019; 109: 1472–83. doi: 10.1093/ajcn/nqz029
- Noh H, Jang H-H, Kim G, Zouiouich S, Cho S-Y, Kim H-J, et al. Taxonomic composition and diversity of the gut microbiota in relation to habitual dietary intake in Korean adults. Nutrients 2021; 13: 366. doi: 10.3390/nu13020366
- Trefflich I, Jabakhanji A, Menzel J, Blaut M, Michalsen A, Lampen A, et al. Is a vegan or a vegetarian diet associated with the microbiota composition in the gut? Results of a new cross-sectional study and systematic review. Crit Rev Food Sci Nutr 2020; 60: 2990–3004. doi: 10.1080/10408398.2019.1676697
- De Filippis F, Pellegrini N, Vannini L, Jeffery IB, La Storia A, Laghi L, et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut 2016; 65: 1812–21. doi: 10.1136/gutjnl-2015-309957
- Asnicar F, Berry SE, Valdes AM, Nguyen LH, Piccinno G, Drew DA, et al. Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals. Nat Med 2021; 27(2): 321–332. doi: 10.1038/s41591-020-01183-8
- Ma W, Nguyen LH, Song M, Wang DD, Franzosa EA, Cao Y, et al. Dietary fiber intake, the gut microbiome, and chronic systemic inflammation in a cohort of adult men. Genome Med 2021; 13: 102. doi: 10.1186/s13073-021-00921-y
- Companys J, Gosalbes MJ, Pla-Pagà L, Calderón-Pérez L, Llauradó E, Pedret A, et al. Gut microbiota profile and its association with clinical variables and dietary intake in overweight/obese and lean subjects: a cross-sectional study. Nutrients 2021; 13: 2032. doi: 10.3390/nu13062032
- Li Y, Wang DD, Satija A, Ivey KL, Li J, Wilkinson JE, et al. Plant-based diet index and metabolic risk in men: exploring the role of the gut microbiome. J Nutr 2021; 151: 2780–9. doi: 10.1093/jn/nxab175
- Gaundal L, Myhrstad MCW, Leder L, Byfuglien MG, Gjøvaag T, Rud I, et al. Beneficial effect on serum cholesterol levels, but not glycaemic regulation, after replacing SFA with PUFA for 3 d: a randomised crossover trial. Br J Nutr 2020; 125, 1–11. doi: 10.1017/S0007114520003402
- Carlsen MH, Lillegaard ITL, Karlsen A, Blomhoff R, Drevon CA, Andersen LF. Evaluation of energy and dietary intake estimates from a food frequency questionnaire using independent energy expenditure measurement and weighed food records. Nutr J 2010; 9: 37. doi: 10.1186/1475-2891-9-37
- Olsen A, Egeberg R, Halkjær J, Christensen J, Overvad K, Tjønneland A. Healthy aspects of the nordic diet are related to lower total mortality. J Nutr 2011; 141: 639–44. doi: 10.3945/jn.110.131375
- Roswall N, Sandin S, Löf M, Skeie G, Olsen A, Adami H-O, et al. Adherence to the healthy Nordic food index and total and cause-specific mortality among Swedish women. Eur J Epidemiol 2015; 30: 509–17. doi: 10.1007/s10654-015-0021-x
- Puaschitz NG, Assmus J, Strand E, Karlsson T, Vinknes KJ, Lysne V, et al. Adherence to the Healthy Nordic Food Index and the incidence of acute myocardial infarction and mortality among patients with stable angina pectoris. J Hum Nutr Dietet 2019; 32: 86–97. doi: 10.1111/jhn.12592
- Garnweidner-Holme L, Torheim LE, Henriksen L, Borgen I, Holmelid S, Lukasse M. Adherence to the Norwegian dietary recommendations in a multi-ethnic pregnant population prior to being diagnosed with gestational diabetes mellitus. Food Sci Nutr 2020; 8: 3031–40. doi: 10.1002/fsn3.1248
- Totland THM, Kjerpeseth B, Lundberg-Hallén N, Helland-Kigen KM, Lund-Blix NA, Myhre JB, et al. Norkost 3 En landsomfattende kostholdsundersøkelse blant menn og kvinner i Norge i alderen 18-70 år, 2010-11. Oslo. Helsedirektoratet; 2012.
- NNR. Nordic nutrition recommendations 2012: integrating nutrition and physical activity; 9289326700. Copenhagen: Nordic Council of Ministers; 2014.
- Casén C, Vebø HC, Sekelja M, Hegge FT, Karlsson MK, Ciemniejewska E, et al. Deviations in human gut microbiota: a novel diagnostic test for determining dysbiosis in patients with IBS or IBD. Aliment Pharmacol Ther 2015; 42: 71–83. doi: 10.1111/apt.13236
- Nasjonalt råd for ernæring. Kostråd for å fremme folkehelsen og forebygge kroniske sykdommer: Metodologi og vitenskapelig kunnskapsgrunnlag. Oslo, Helsedirektoratet, 2011.
- Hollister EB, Gao C, Versalovic J. Compositional and functional features of the gastrointestinal microbiome and their effects on human health. Gastroenterology 2014; 146: 1449–58. doi: 10.1053/j.gastro.2014.01.052
- Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar Reddy D. Role of the normal gut microbiota. World J Gastroenterol 2015; 21: 8787–803. doi: 10.3748/wjg.v21.i29.8787
- Sorbara MT, Pamer EG. Microbiome-based therapeutics. Nat Rev Microbiol 2022, 20, 365–380. doi: 10.1038/s41579-021-00667-9
- Fisher CK, Mehta P. Identifying keystone species in the human gut microbiome from metagenomic timeseries using sparse linear regression. PLoS One 2014; 9: e102451. doi: 10.1371/journal.pone.0102451
- Strömbeck A, Lasson A, Strid H, Sundin J, Stotzer P-O, Simrén M, et al. Fecal microbiota composition is linked to the postoperative disease course in patients with Crohn’s disease. BMC Gastroenterol 2020; 20: 130. doi: 10.1186/s12876-020-01281-4
- Nomura K, Ishikawa D, Okahara K, Ito S, Haga K, Takahashi M, et al. Bacteroidetes species are correlated with disease activity in ulcerative colitis. J Clin Med 2021; 10: 1749. doi: 10.3390/jcm10081749
- Agans R, Gordon A, Kramer DL, Perez-Burillo S, Rufián-Henares JA, Paliy O, et al. Dietary fatty acids sustain the growth of the human gut microbiota. Appl Environ Microbiol 2018; 84: e01525-18. doi: 10.1128/AEM.01525-18
- David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014; 505: 559–63. doi: 10.1038/nature12820
- Parker BJ, Wearsch PA, Veloo ACM, Rodriguez-Palacios A. The genus alistipes: gut bacteria with emerging implications to inflammation, cancer, and mental health. Front Immunol 2020; 11: 906. doi: 10.3389/fimmu.2020.00906
- Kong Y, Li Y, Dai Z-R, Qin M, Fan H-L, Hao J-G, et al. Glycosaminoglycan from Ostrea rivularis attenuates hyperlipidemia and regulates gut microbiota in high-cholesterol diet-fed zebrafish. Food Sci Nutr 2021; 9: 5198–210. doi: 10.1002/fsn3.2492
- Choi Y, Kwon Y, Kim D-K, Jeon J, Jang SC, Wang T, et al. Gut microbe-derived extracellular vesicles induce insulin resistance, thereby impairing glucose metabolism in skeletal muscle. Sci Rep 2015; 5: 15878. doi: 10.1038/srep15878
- Jeong M-Y, Jang H-M, Kim D-H. High-fat diet causes psychiatric disorders in mice by increasing Proteobacteria population. Neurosci Lett 2019; 698: 51–7. doi: 10.1016/j.neulet.2019.01.006
- Hildebrandt MA, Hoffmann C, Sherrill-Mix SA, Keilbaugh SA, Hamady M, Chen YY, et al. High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology 2009; 137: 1716–24.e1–2. doi: 10.1053/j.gastro.2009.08.042
- Rizzatti G, Lopetuso LR, Gibiino G, Binda C, Gasbarrini A. Proteobacteria: a common factor in human diseases. BioMed Res Int 2017; 2017: 9351507. doi: 10.1155/2017/9351507
- Peters BA, Shapiro JA, Church TR, Miller G, Trinh-Shevrin C, Yuen E, et al. A taxonomic signature of obesity in a large study of American adults. Sci Rep 2018; 8: 9749. doi: 10.1038/s41598-018-28126-1
- Xiao S, Fei N, Pang X, Shen J, Wang L, Zhang B, et al. A gut microbiota-targeted dietary intervention for amelioration of chronic inflammation underlying metabolic syndrome. FEMS Microbiol Ecol 2014; 87: 357–67. doi: 10.1111/1574-6941.12228
- Sotos M, Nadal I, Marti A, Martínez A, Martin-Matillas M, Campoy C, et al. Gut microbes and obesity in adolescents. Proceed Nutr Soc 2008; 67: E20. doi: 10.1017/S0029665108006290
- Fei N, Zhao L. An opportunistic pathogen isolated from the gut of an obese human causes obesity in germfree mice. ISME J 2013; 7: 880–4. doi: 10.1038/ismej.2012.153
- Palmu J, Salosensaari A, Havulinna AS, Cheng S, Inouye M, Jain M, et al. Association between the gut microbiota and blood pressure in a population cohort of 6953 individuals. J Am Heart Assoc 2020; 9: e016641. doi: 10.1161/JAHA.120.016641
- Wilck N, Matus MG, Kearney SM, Olesen SW, Forslund K, Bartolomaeus H, et al. Salt-responsive gut commensal modulates TH17 axis and disease. Nature 2017; 551: 585–9. doi: 10.1038/nature24628
- Dong J-Y, Szeto IMY, Makinen K, Gao Q, Wang J, Qin L-Q, et al. Effect of probiotic fermented milk on blood pressure: a meta-analysis of randomised controlled trials. Br J Nutr 2013; 110: 1188–94. doi: 10.1017/S0007114513001712
- Khalesi S, Sun J, Buys N, Jayasinghe R. Effect of probiotics on blood pressure: a systematic review and meta-analysis of randomized, controlled trials. Hypertension 2014; 64: 897–903. doi: 10.1161/hypertensionaha.114.03469
- Li J, Zhao F, Wang Y, Chen J, Tao J, Tian G, et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome 2017; 5: 14. doi: 10.1186/s40168-016-0222-x
- Fu J, Bonder MJ, Cenit MC, Tigchelaar EF, Maatman A, Dekens JA, et al. The gut microbiome contributes to a substantial proportion of the variation in blood lipids. Circ Res 2015; 117: 817–24. doi: 10.1161/circresaha.115.306807
- Koren O, Spor A, Felin J, Fåk F, Stombaugh J, Tremaroli V, et al. Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc Natl Acad Sci 2011; 108: 4592–8. doi: 10.1073/pnas.1011383107
- Liu Y, Song X, Zhou H, Zhou X, Xia Y, Dong X, et al. Gut microbiome associates with lipid-lowering effect of rosuvastatin in vivo. Front Microbiol 2018; 9: 530. doi: 10.3389/fmicb.2018.00530
- Tindall AM, McLimans CJ, Petersen KS, Kris-Etherton PM, Lamendella R. Walnuts and vegetable oils containing oleic acid differentially affect the gut microbiota and associations with cardiovascular risk factors: follow-up of a randomized, controlled, feeding trial in adults at risk for cardiovascular disease. J Nutr 2020; 150: 806–17. doi: 10.1093/jn/nxz289
- Vacca M, Celano G, Calabrese FM, Portincasa P, Gobbetti M, De Angelis M. The controversial role of human gut lachnospiraceae. Microorganisms 2020; 8: 573. doi: 10.3390/microorganisms8040573
- Sorbara MT, Littmann ER, Fontana E, Moody TU, Kohout CE, Gjonbalaj M, et al. Functional and genomic variation between human-derived isolates of lachnospiraceae reveals inter- and intra-species diversity. Cell Host Microbe 2020; 28: 134–46.e134. doi: 10.1016/j.chom.2020.05.005
- Zhang X, Shen D, Fang Z, Jie Z, Qiu X, Zhang C, et al. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS One 2013; 8: e71108. doi: 10.1371/journal.pone.0071108
- Chávez-Carbajal A, Nirmalkar K, Pérez-Lizaur A, Hernández-Quiroz F, Ramírez-Del-Alto S, García-Mena J, et al. Gut microbiota and predicted metabolic pathways in a sample of Mexican women affected by obesity and obesity plus metabolic syndrome. Int J Mol Sci 2019; 20: 438. doi: 10.3390/ijms20020438
- Kelly TN, Bazzano LA, Ajami NJ, He H, Zhao J, Petrosino JF, et al. Gut microbiome associates with lifetime cardiovascular disease risk profile among Bogalusa heart study participants. Circ Res 2016; 119: 956–64. doi: 10.1161/CIRCRESAHA.116.309219
- Enget Jensen TM, Braaten T, Jacobsen BK, Barnung RB, Olsen A, Skeie G. Adherence to the Healthy Nordic Food Index in the Norwegian Women and Cancer (NOWAC) cohort. Food Nutr Res 2018; 62. doi: 10.29219/fnr.v62.1339
- Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH, Chinwalla AT, et al. Structure, function and diversity of the healthy human microbiome. Nature 2012; 486: 207–14. doi: 10.1038/nature11234
- Mueller S, Saunier K, Hanisch C, Norin E, Alm L, Midtvedt T, et al. Differences in fecal microbiota in different European study populations in relation to age, gender, and country: a cross-sectional study. Appl Environ Microbiol 2006; 72: 1027–33. doi: 10.1128/aem.72.2.1027-1033.2006
- Haro C, Rangel-Zúñiga OA, Alcalá-Díaz JF, Gómez-Delgado F, Pérez-Martínez P, Delgado-Lista J, et al. Intestinal microbiota is influenced by gender and body mass index. PLoS One 2016; 11: e0154090. doi: 10.1371/journal.pone.0154090
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright of their work, with first publication rights granted to SNF Swedish Nutrition Foundation. Read the full Copyright- and Licensing Statement.