Inositol hexaphosphate promotes intestinal adaptation in short bowel syndrome via an HDAC3-mediated epigenetic pathway

  • Weipeng Wang Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
  • Ying Wang Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
  • Ying Lu Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
  • Xinbei Tian Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
  • Shanshan Chen Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
  • Bo Wu Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
  • Jun Du Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
  • Yongtao Xiao Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University
  • Wei Cai Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
Keywords: Inositol hexaphosphate, short bowel syndrome, intestinal adaptation, HDAC3, cell proliferation

Abstract

Background: Short bowel syndrome (SBS) has high morbidity and mortality rates, and promoting intestinal adaptation of the residual intestine is a critical treatment. Dietary inositol hexaphosphate (IP6) plays an important role in maintaining intestinal homeostasis, but its effect on SBS remains unclear. This study aimed at investigating the effect of IP6 on SBS and clarified its underlying mechanism.

Methods: Forty male Sprague–Dawley rats (3-week-old) were randomly assigned into four groups (Sham, Sham + IP6, SBS, and SBS + IP6 groups). Rats were fed standard pelleted rat chow and underwent resection of 75% of the small intestine after 1 week of acclimation. They received 1 mL IP6 treatment (2 mg/g) or sterile water daily for 13 days by gavage. Intestinal length, levels of inositol 1,4,5-trisphosphate (IP3), histone deacetylase 3 (HDAC3) activity, and proliferation of intestinal epithelial cell-6 (IEC-6) were detected.

Results: IP6 treatment increased the length of the residual intestine in rats with SBS. Furthermore, IP6 treatment caused an increase in body weight, intestinal mucosal weight, and IEC proliferation, and a decrease in intestinal permeability. IP6 treatment led to higher levels of IP3 in feces and serum, and higher HDAC3 activity of the intestine. Interestingly, HDAC3 activity was positively correlated with the levels of IP3 in feces (r = 0.49, P = 0.01) and serum (r = 0.44, P = 0.03). Consistently, IP3 treatment promoted the proliferation of IEC-6 cells by increasing HDAC3 activity in vitro. IP3 regulated the Forkhead box O3 (FOXO3)/Cyclin D1 (CCND1) signaling pathway.

Conclusion: IP6 treatment promotes intestinal adaptation in rats with SBS. IP6 is metabolized to IP3 to increase HDAC3 activity to regulate the FOXO3/CCND1 signaling pathway and may represent a potential therapeutic approach for patients with SBS.

Downloads

Download data is not yet available.

References


1.
Wales PW, Christison-Lagay ER. Short bowel syndrome: epidemiology and etiology. Semin Pediatr Surg 2010; 19(1): 3–9. doi: 10.1053/j.sempedsurg.2009.11.001

2.
Billiauws L, Corcos O, Joly F. What’s new in short bowel syndrome? Curr Opin Clin Nutr Metab Care 2018; 21(4): 313–8. doi: 10.1097/MCO.0000000000000473

3.
Siddiqui MT, Al-Yaman W, Singh A, Kirby DF. Short-bowel syndrome: epidemiology, hospitalization trends, in-hospital mortality, and healthcare utilization. JPEN J Parenter Enteral Nutr 2021; 45: 1441–55. doi: 10.1002/jpen.2051

4.
Zhang T, Feng H, Cao Y, Tao Y, Lu L, Yan W, et al. Long-term outcomes of various pediatric short bowel syndrome in China. Pediatr Surg Int 2021; 37(4): 495–502. doi: 10.1007/s00383-020-04797-8

5.
Lim DW, Wales PW, Turner JM, Bigam DL, Brubaker PL. On the horizon: trophic peptide growth factors as therapy for neonatal short bowel syndrome. Expert Opin Ther Targets 2016; 20(7): 819–30. doi: 10.1517/14728222.2016.1146695

6.
Warner BW. The pathogenesis of resection-associated intestinal adaptation. Cell Mol Gastroenterol Hepatol 2016; 2(4): 429–38. doi: 10.1016/j.jcmgh.2016.05.001

7.
Tappenden KA. Intestinal adaptation following resection. J Parenteral Enteral Nutr 2014; 38(1 Suppl): 23S–31S. doi: 10.1177/0148607114525210

8.
Höllwarth ME, Solari V. Nutritional and pharmacological strategy in children with short bowel syndrome. Pediatr Surg Int 2021; 37(1): 1–15. doi: 10.1007/s00383-020-04781-2

9.
Muto M, Kaji T, Onishi S, Yano K, Yamada W, Ieiri S. An overview of the current management of short-bowel syndrome in pediatric patients. Surg Today 2021; 52(1): 12–21. doi: 10.1007/s00595-020-02207-z

10.
Wang R, Guo S. Phytic acid and its interactions: contributions to protein functionality, food processing, and safety. Compr Rev Food Sci Food Saf 2021; 20(2): 2081–105. doi: 10.1111/1541-4337.12714

11.
Croze ML, Soulage CO. Potential role and therapeutic interests of myo-inositol in metabolic diseases. Biochimie 2013; 95(10): 1811–27. doi: 10.1016/j.biochi.2013.05.011

12.
Chhetri DR. Myo-inositol and its derivatives: their emerging role in the treatment of human diseases. Front Pharmacol 2019; 10: 1172. doi: 10.3389/fphar.2019.01172

13.
Worley J, Luo X, Capaldi AP. Inositol pyrophosphates regulate cell growth and the environmental stress response by activating the HDAC Rpd3L. Cell Rep 2013; 3(5): 1476–82. doi: 10.1016/j.celrep.2013.03.043

14.
Kapral M, Wawszczyk J, Weglarz L. Regulation of MicroRNA-155 and its related genes expression by inositol hexaphosphate in colon cancer cells. Molecules 2019; 24(22): 4153. doi: 10.3390/molecules24224153

15.
Ivarsson ME, Durantie E, Huberli C, Huwiler S, Hegde C, Friedman J, et al. Small-molecule allosteric triggers of Clostridium difficile toxin B auto-proteolysis as a therapeutic strategy. Cell Chem Biol 2019; 26(1): 17–26.e13. doi: 10.1016/j.chembiol.2018.10.002

16.
Okazaki Y, Katayama T. Dietary phytic acid modulates characteristics of the colonic luminal environment and reduces serum levels of proinflammatory cytokines in rats fed a high-fat diet. Nutr Res 2014; 34(12): 1085–91. doi: 10.1016/j.nutres.2014.09.012

17.
Liu C, Chen C, Yang F, Li X, Cheng L, Song Y. Phytic acid improves intestinal mucosal barrier damage and reduces serum levels of proinflammatory cytokines in a 1,2-dimethylhydrazine-induced rat colorectal cancer model. Br J Nutr 2018; 120(2): 121–30. doi: 10.1017/S0007114518001290

18.
Wu SE, Hashimoto-Hill S, Woo V, Eshleman EM, Whitt J, Engleman L, et al. Microbiota-derived metabolite promotes HDAC3 activity in the gut. Nature 2020; 586(7827): 108–12. doi: 10.1038/s41586-020-2604-2

19.
Dai L-N, Yan J-K, Zhang T, Cai W, Yan W-H. Butyrate promotes the adaptation of intestinal smooth muscle cells through the yes-associated protein (YAP) pathway in a rat model of short bowel syndrome. Am J Transl Res 2019 Jan 15; 11(1): 453–62. PMID: 30788001, PMCID: PMC6357317.

20.
U.S. Food and Drug Administration. Guidance for industry: estimating the maximum safe starting dose in initial clinical trials for therapeutics in adult healthy volunteers. Silver Spring, MD: U.S. Food and Drug Administration; 2005 [cited 2022 Apr 1]. Available from: http://www.fda.gov/cder/guidance/index.htm

21.
Onishi S, Kaji T, Yamada W, Nakame K, Machigashira S, Kawano M, et al. Ghrelin stimulates intestinal adaptation following massive small bowel resection in parenterally fed rats. Peptides 2018; 106: 59–67. doi: 10.1016/j.peptides.2018.06.009

22.
Li Y, Wu J, Niu Y, Chen H, Tang Q, Zhong Y, et al. Milk fat globule membrane inhibits NLRP3 inflammasome activation and enhances intestinal barrier function in a rat model of short bowel. J Parenter Enteral Nutr 2018; 43(5): 677–85. doi: 10.1002/jpen.1435

23.
Aubert L, Nandagopal N, Steinhart Z, Lavoie G, Nourreddine S, Berman J, et al. Copper bioavailability is a KRAS-specific vulnerability in colorectal cancer. Nat Commun 2020; 11(1): 3701. doi: 10.1038/s41467-020-17549-y

24.
Divakaruni AS, Paradyse A, Ferrick DA, Murphy AN, Jastroch M. Analysis and interpretation of microplate-based oxygen consumption and pH data. Methods Enzymol 2014; 547: 309–54. doi: 10.1016/b978-0-12-801415-8.00016-3

25.
Schlemmer U, Frolich W, Prieto RM, Grases F. Phytate in foods and significance for humans: food sources, intake, processing, bioavailability, protective role and analysis. Mol Nutr Food Res 2009; 53 Suppl 2: S330–75. doi: 10.1002/mnfr.200900099

26.
Liu H, Huang L, Pei X. Effects of sorghum rice and black rice on genes associated with cholesterol metabolism in hypercholesterolemic mice liver and intestine. Food Sci Nutr 2020; 9(1): 217–29. doi: 10.1002/fsn3.1986

27.
Brubaker PL. Glucagon-like peptide-2 and the Regulation of intestinal growth and function. Compr Physiol 2018; 8(3): 1185–210. doi: 10.1002/cphy.c170055

28.
Hua Z, Turner JM, Sigalet DL, Wizzard PR, Nation PN, Mager DR, et al. Role of glucagon-like peptide-2 deficiency in neonatal short-bowel syndrome using neonatal piglets. Pediatr Res 2013; 73(6): 742–9. doi: 10.1038/pr.2013.44

29.
Iturrino J, Camilleri M, Acosta A, O’Neill J, Burton D, Edakkanambeth Varayil J, et al. Acute effects of a glucagon-like peptide 2 analogue, teduglutide, on gastrointestinal motor function and permeability in adult patients with short bowel syndrome on home parenteral nutrition. J Parenter Enteral Nutr 2016; 40(8): 1089–95. doi: 10.1177/0148607115597644

30.
Watson PJ, Fairall L, Santos GM, Schwabe JWR. Structure of HDAC3 bound to co-repressor and inositol tetraphosphate. Nature 2012; 481(7381): 335–40. doi: 10.1038/nature10728

31.
Alenghat T, Osborne LC, Saenz SA, Kobuley D, Ziegler CG, Mullican SE, et al. Histone deacetylase 3 coordinates commensal-bacteria-dependent intestinal homeostasis. Nature 2013; 504(7478): 153–7. doi: 10.1038/nature12687

32.
Feng D, Liu T, Sun Z, Bugge A, Mullican SE, Alenghat T, et al. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science 2011; 331(6022): 1315–9. doi: 10.1126/science.1198125

33.
Kaiko GE, Ryu SH, Koues OI, Collins PL, Solnica-Krezel L, Pearce EJ, et al. The colonic crypt protects stem cells from microbiota-derived metabolites. Cell 2016; 165(7): 1708–20. doi: 10.1016/j.cell.2016.05.018

34.
Wang Y, Zhou Y, Graves DT. FOXO transcription factors: their clinical significance and regulation. BioMed Res Int 2014; 2014: 1–13. doi: 10.1155/2014/925350

35.
Ai B, Kong X, Wang X, Zhang K, Yang X, Zhai J, et al. LINC01355 suppresses breast cancer growth through FOXO3-mediated transcriptional repression of CCND1. Cell Death Dis 2019; 10(7): 502. doi: 10.1038/s41419-019-1741-8

36.
Liu L, Yan X, Wu D, Yang Y, Li M, Su Y, et al. High expression of Ras-related protein 1A promotes an aggressive phenotype in colorectal cancer via PTEN/FOXO3/CCND1 pathway. J Exp Clin Cancer Res 2018; 37(1): 178. doi: 10.1186/s13046-018-0827-y
Published
2023-02-02
How to Cite
Wang W., Wang Y., Lu Y., Tian X., Chen S., Wu B., Du J., Xiao Y., & Cai W. (2023). Inositol hexaphosphate promotes intestinal adaptation in short bowel syndrome via an HDAC3-mediated epigenetic pathway. Food & Nutrition Research, 67. https://doi.org/10.29219/fnr.v67.8694
Section
Original Articles