Sporoderm-broken spore powder of Ganoderma lucidum ameliorate obesity and inflammation process in high-fat diet-induced obese mice

  • Bao Zhong School of Food Engineering, Jilin Agriculture Science and Technology University, Hanlin Road, Changyi District, Jilin 132101, China
  • Feng-Lin Li School of Food Engineering, Jilin Agriculture Science and Technology University, Hanlin Road, Changyi District, Jilin 132101, China
  • Jia-Yao Zhao Jilin Agriculture Science and Technology University
  • Yao Fu Jilin People’s Hospital
  • Cheng Peng Jilin Agriculture Science and Technology University
Keywords: sporoderm-broken spore powder of Ganoderma lucidum, anti-obesity, anti-inflammation, adipocyte;, ameliorate;, high-fat diet


Objective: This study examined the anti-obesity and anti-inflammatory effects of sporoderm-broken spore powder of Ganoderma lucidum (SSPL) against obese mice fed with a high-fat diet.

Methods: Four groups of C57BL/6J mice were randomly assigned to the following diets: control diet (CD); high-fat diet (HD); high-fat diet plus l-carnitine (HDL); and high-fat diet with sporoderm-broken spore powder of Ganoderma lucidum (HDG). They were subjected to 12 weeks of testing.

Results: Supplementation with SSPL lowered weight gain caused by a high-fat diet and improved serum and liver lipid levels, and histological investigation indicated that the HDG group had a significant reduction in liver lipid deposits and adipocyte size in epididymal fat. SSPL administration decreased the expression of genes associated with inflammation and fat anabolism, including tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β), peroxisome proliferator-activated receptorγ (PPARγ), sterol regulatory element-binding protein 1c (SREBP-1c), fatty acid synthase (FAS), acetyl-coenzyme A (CoA) carboxylase (ACC), and leptin. SSPL therapy raised the levels of PPARα, carnitine palmitoyl-transferase 1 (CPT-1), acyl-CoA oxidase1 (ACOX1), and adiponectin.

Conclusion: In summary, SSPL protected mice against developing obesity caused by increased fat intake by regulating inflammatory factors and lipid metabolism. Our findings indicate that SSPL is a potentially beneficial healthy meal for treating obesity.


Download data is not yet available.


Monteiro R, Azevedo I. Chronic inflammation in obesity and the metabolic syndrome. Mediators Inflamm. 2010; 2010: 289645. doi: 10.1155/2010/289645

Piche ME, Tchernof A, Despres JP. Obesity phenotypes, diabetes, and cardiovascular diseases. Circ Res 2020; 126(11): 1477–500. doi: 10.1161/CIRCRESAHA.120.316101

Goossens GH. The metabolic phenotype in obesity: fat mass, body fat distribution, and adipose tissue function. Obes Facts 2017; 10(3): 207–15. doi: 10.1159/000471488

Milic S, Lulic D, Stimac D. Non-alcoholic fatty liver disease and obesity: biochemical, metabolic and clinical presentations. World J Gastroenterol 2014; 20(28): 9330–7.

Gadde KM, Atkins KD. The limits and challenges of antiobesity pharmacotherapy. Expert Opin Pharmacother 2020; 21(11): 1319–28. doi: 10.1080/14656566.2020.1748599

Konstantinidi M, Koutelidakis AE. Functional foods and bioactive compounds: a review of its possible role on weight management and obesity’s metabolic consequences. Medicines (Basel) 2019; 6(3): 94. doi: 10.3390/medicines6030094

Ganesan K, Xu B. Anti-obesity effects of medicinal and edible mushrooms. Molecules 2018; 23(11): 2880. doi: 10.3390/molecules23112880

Chang CJ, Lin CS, Lu CC, Martel J, Ko YF, Ojcius DM, et al. Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota. Nat Commun 2015; 6: 7489. doi: 10.1038/ncomms8489

Jeong YU, Park YJ. Ergosterol peroxide from the medicinal mushroom Ganoderma lucidum inhibits differentiation and lipid accumulation of 3T3-L1 adipocytes. Int J Mol Sci 2020; 21(2): 460. doi: 10.3390/ijms21020460

Zhu J, Jin J, Ding J, Li S, Cen P, Wang K, et al. Ganoderic acid A improves high fat diet-induced obesity, lipid accumulation and insulin sensitivity through regulating SREBP pathway. Chem Biol Interact 2018; 290: 77–87. doi: 10.1016/j.cbi.2018.05.014

Li W, Li Y, Wang Q, Yang Y. Crude extracts from Lycium barbarum suppress SREBP-1c expression and prevent diet-induced fatty liver through AMPK activation. Biomed Res Int 2014; 2014: 196198. doi: 10.1155/2014/196198

Fang K, Wu F, Chen G, Dong H, Li J, Zhao Y, et al. Diosgenin ameliorates palmitic acid-induced lipid accumulation via AMPK/ACC/CPT-1A and SREBP-1c/FAS signaling pathways in LO2 cells. BMC Complement Altern Med 2019; 19(1): 255. doi: 10.1186/s12906-019-2671-9

Liu F, Shi K, Dong J, Jin Z, Wu Y, Cai Y, et al. Ganoderic acid A attenuates high-fat-diet-induced liver injury in rats by regulating the lipid oxidation and liver inflammation. Arch Pharm Res 2020; 43(7): 744–54. doi: 10.1007/s12272-020-01256-9

Li HN, Zhao LL, Zhou DY, Chen DQ. Ganoderma lucidum polysaccharides ameliorates hepatic steatosis and oxidative stress in db/db mice via targeting nuclear factor E2 (erythroid-derived 2)-related factor-2/heme oxygenase-1 (HO-1) pathway. Med Sci Monit 2020; 26: e921905. doi: 10.12659/MSM.921905

Liang Z, Yuan Z, Li G, Fu F, Shan Y. Hypolipidemic, antioxidant, and antiapoptotic effects of polysaccharides extracted from reishi mushroom, Ganoderma lucidum (Leysser: Fr) karst, in mice fed a high-fat diet. J Med Food 2018; 21(12): 1218–27. doi: 10.1089/jmf.2018.4182

Sohretoglu D, Huang S. Ganoderma lucidum polysaccharides as an anti-cancer agent. Anticancer Agents Med Chem 2018; 18(5): 667–74. doi: 10.2174/1871520617666171113121246

Liu MT, Chen LX, Zhao J, Li SP. Ganoderma spore powder contains little triterpenoids. Chin Med 2020; 15: 111. doi: 10.1186/s13020-020-00391-1

Lai P, Cao X, Xu Q, Liu Y, Li R, Zhang J, et al. Ganoderma lucidum spore ethanol extract attenuates atherosclerosis by regulating lipid metabolism via upregulation of liver X receptor alpha. Pharm Biol 2020; 58(1): 760–70. doi: 10.1080/13880209.2020.1798471

Sang T, Guo C, Guo D, Wu J, Wang Y, Wang Y, et al. Suppression of obesity and inflammation by polysaccharide from sporoderm-broken spore of Ganoderma lucidum via gut microbiota regulation. Carbohydr Polym 2021; 256: 117594. doi: 10.1016/j.carbpol.2020.117594

Minniti ME, Ahmed O, Pedrelli M. Enzymatic quantification of liver lipids after folch extraction. Methods Mol Biol 2020; 2164: 101–8. doi: 10.1007/978-1-0716-0704-6_11

Lee GH, Peng C, Park SA, Hoang TH, Lee HY, Kim J, et al. Citrus peel extract ameliorates high-fat diet-induced NAFLD via activation of AMPK signaling. Nutrients 2020; 12(3): 673. doi: 10.3390/nu12030673

Shi X, Zhou X, Chu X, Wang J, Xie B, Ge J, et al. Allicin improves metabolism in high-fat diet-induced obese mice by modulating the gut microbiota. Nutrients 2019; 11(12): 2909. doi: 10.3390/nu11122909

Seweryn E, Ziala A, Gamian A. Health-promoting of polysaccharides extracted from Ganoderma lucidum. Nutrients 2021; 13(8): 2725. doi: 10.3390/nu13082725

Li Y, Zhu Z, Yao W, Chen R. [Study progress on triterpenoids from Ganoderma lucidum]. Zhongguo Zhong Yao Za Zhi 2012; 37(2): 165–71.

Lee HA, Cho JH, Afinanisa Q, An GH, Han JG, Kang HJ, et al. Ganoderma lucidum extract reduces insulin resistance by enhancing AMPK activation in high-fat diet-induced obese mice. Nutrients 2020; 12(11): 3338. doi: 10.3390/nu12113338

Chang CJ, Lin CS, Lu CC, Martel J, Ko YF, Ojcius DM, et al. Corrigendum: Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota. Nat Commun 2017; 8: 16130. doi: 10.1038/ncomms16130

Airaksinen K, Jokkala J, Ahonen I, Auriola S, Kolehmainen M, Hanhineva K, et al. High-fat diet, betaine, and polydextrose induce changes in adipose tissue inflammation and metabolism in C57BL/6J mice. Mol Nutr Food Res 2018; 62(23): e1800455. doi: 10.1002/mnfr.201800455

Thomas SS, Cha YS, Kim KA. Effect of vegetable oils with different fatty acid composition on high-fat diet-induced obesity and colon inflammation. Nutr Res Pract 2020; 14(5): 425–37. doi: 10.4162/nrp.2020.14.5.425

Li Y, Tang J, Gao H, Xu Y, Han Y, Shang H, et al. Ganoderma lucidum triterpenoids and polysaccharides attenuate atherosclerotic plaque in high-fat diet rabbits. Nutr Metab Cardiovasc Dis 2021; 31(6): 1929–38. doi: 10.1016/j.numecd.2021.03.023

Park JE, Oh SH, Cha YS. Lactobacillus brevis OPK-3 from kimchi prevents obesity and modulates the expression of adipogenic and pro-inflammatory genes in adipose tissue of diet-induced obese mice. Nutrients 2020; 12(3): 604. doi: 10.3390/nu12030604

Shang T, Liu L, Zhou J, Zhang M, Hu Q, Fang M, et al. Protective effects of various ratios of DHA/EPA supplementation on high-fat diet-induced liver damage in mice. Lipids Health Dis 2017; 16(1): 65. doi: 10.1186/s12944-017-0461-2

Green CJ, Hodson L. The influence of dietary fat on liver fat accumulation. Nutrients 2014; 6(11): 5018–33. doi: 10.3390/nu6115018

Zhou D, Pan Q, Xin FZ, Zhang RN, He CX, Chen GY, et al. Sodium butyrate attenuates high-fat diet-induced steatohepatitis in mice by improving gut microbiota and gastrointestinal barrier. World J Gastroenterol 2017; 23(1): 60–75. doi: 10.3748/wjg.v23.i1.60

Hu Z, Du R, Xiu L, Bian Z, Ma C, Sato N, et al. Protective effect of triterpenes of Ganoderma lucidum on lipopolysaccharide-induced inflammatory responses and acute liver injury. Cytokine 2020; 127: 154917. doi: 10.1016/j.cyto.2019.154917

Koo MH, Chae HJ, Lee JH, Suh SS, Youn UJ. Antiinflammatory lanostane triterpenoids from Ganoderma lucidum. Nat Prod Res 2021; 35(22): 4295–302. doi: 10.1080/14786419.2019.1705815

Zhang Y, Li H, Song L, Xue J, Wang X, Song S, et al. Polysaccharide from Ganoderma lucidum ameliorates cognitive impairment by regulating the inflammation of the brain-liver axis in rats. Food Funct 2021; 12(15): 6900–14. doi: 10.1039/D1FO00355K

An JP, Choi JH, Huh J, Lee HJ, Han S, Noh JR, et al. Anti-hepatic steatosis activity of Sicyos angulatus extract in high-fat diet-fed mice and chemical profiling study using UHPLC-qTOF-MS/MS spectrometry. Phytomedicine 2019; 63: 152999. doi: 10.1016/j.phymed.2019.152999

Ke R, Xu Q, Li C, Luo L, Huang D. Mechanisms of AMPK in the maintenance of ATP balance during energy metabolism. Cell Biol Int 2018; 42(4): 384–92. doi: 10.1002/cbin.10915

Schindler M, Pendzialek M, Grybel KJ, Seeling T, Gurke J, Fischer B, et al. Adiponectin stimulates lipid metabolism via AMPK in rabbit blastocysts. Hum Reprod 2017; 32(7): 1382–92. doi: 10.1093/humrep/dex087

Okamoto K, Kakuma T, Fukuchi S, Masaki T, Sakata T, Yoshimatsu H. Sterol regulatory element binding protein (SREBP)-1 expression in brain is affected by age but not by hormones or metabolic changes. Brain Res 2006; 1081(1): 19–27. doi: 10.1016/j.brainres.2006.01.081

Zhong D, Xie Z, Huang B, Zhu S, Wang G, Zhou H, et al. Ganoderma lucidum polysaccharide peptide alleviates hepatoteatosis via modulating bile acid metabolism dependent on FXR-SHP/FGF. Cell Physiol Biochem 2018; 49(3): 1163–79. doi: 10.1159/000493297

Soliman E, Behairy SF, El-Maraghy NN, Elshazly SM. PPAR-gamma agonist, pioglitazone, reduced oxidative and endoplasmic reticulum stress associated with L-NAME-induced hypertension in rats. Life Sci 2019; 239: 117047. doi: 10.1016/j.lfs.2019.117047

Thyagarajan-Sahu A, Lane B, Sliva D. ReishiMax, mushroom based dietary supplement, inhibits adipocyte differentiation, stimulates glucose uptake and activates AMPK. BMC Complement Altern Med 2011; 11: 74. doi: 10.1186/1472-6882-11-74

Souza-Mello V. Peroxisome proliferator-activated receptors as targets to treat non-alcoholic fatty liver disease. World J Hepatol 2015; 7(8): 1012–9. doi: 10.4254/wjh.v7.i8.1012

Thomas SS, Kim M, Lee SJ, Cha YS. Antiobesity effects of purple perilla (Perilla frutescens var. acuta) on adipocyte differentiation and mice fed a high-fat diet. J Food Sci 2018; 83(9): 2384–93. doi: 10.1111/1750-3841.14288

Ip E, Farrell GC, Robertson G, Hall P, Kirsch R, Leclercq I. Central role of PPARalpha-dependent hepatic lipid turnover in dietary steatohepatitis in mice. Hepatology 2003; 38(1): 123–32. doi: 10.1053/jhep.2003.50307
How to Cite
Zhong B., Li F.-L., Zhao J.-Y., Fu Y., & Peng C. (2022). Sporoderm-broken spore powder of <em>Ganoderma lucidum</em&gt; ameliorate obesity and inflammation process in high-fat diet-induced obese mice. Food & Nutrition Research, 66. https://doi.org/10.29219/fnr.v66.8745
Original Articles