Allium macrostemon whole extract ameliorates obesity-induced inflammation and endoplasmic reticulum stress in adipose tissue of high-fat diet-fed C57BL/6N mice

  • Juhae Kim Research Institute of Human Ecology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea
  • Joo-Yeon Lee Research Institute of Human Ecology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea; and Department of Food and Nutrition, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea
  • Choon Young Kim Research Institute of Human Ecology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea; and Department of Food and Nutrition, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea
Keywords: adipose tissue, inflammation, endoplasmic reticulum stress, Allium macrostemon extract

Abstract

Background: Obesity is a major risk factor for metabolic syndrome and a serious health concern worldwide. Various strategies exist to treat and prevent obesity, including dietary approaches using bioactive ingredients from natural sources.

Objective: This study aimed to investigate the anti-obesity effect of whole-plant Allium macrostemon (also called as long-stamen chive) extract (AME) as a potential new functional food.

Design: C57BL/6N mice were divided into three groups and fed either a control diet (CD), high-fat diet (HFD), or HFD with AME treatment (200 mg/kg BW daily) for 9 weeks. The mice in the CD and HFD groups were treated with vehicle control.

Results: AME supplementation reduced HFD-induced body weight gain, fat mass, and adipocyte size. AME suppressed peroxisome proliferator-activated receptor γ and fatty acid synthase mRNA expression, indicating reduced adipogenesis and lipogenesis in adipose tissue. In addition, AME lowered inflammation in adipose tissue, as demonstrated by the lower number of crown-like structures, mRNA, and/or protein expression of macrophage filtration markers, as well as pro-inflammatory cytokines, including F4/80 and IL-6. Endoplasmic reticulum stress was also alleviated by AME administration in adipose tissue. Several phenolic acids known to have anti-obesity effects, including ellagic acid, protocatechuic acid, and catechin, have been identified in AME.

Conclusion: By suppressing adipose tissue expansion and inflammation, AME is a potential functional food for the prevention and/or treatment of obesity and its complications.

Downloads

Download data is not yet available.

References

1. Dixon JB. The effect of obesity on health outcomes. Mol Cell Endocrinol 2010; 316(2): 104–8. doi: 10.1016/j.mce.2009.07.008
2. Choe SS, Huh JY, Hwang IJ, Kim JI, Kim JB. Adipose tissue remodeling: its role in energy metabolism and metabolic disorders. Front Endocrinol (Lausanne) 2016; 7: 30. doi: 10.3389/fendo.2016.00030
3. Ali AT, Hochfeld WE, Myburgh R, Pepper MS. Adipocyte and adipogenesis. Eur J Cell Biol 2013; 92(6–7): 229–36. doi: 10.1016/j.ejcb.2013.06.001
4. Morigny P, Boucher J, Arner P, Langin D. Lipid and glucose metabolism in white adipocytes: pathways, dysfunction and therapeutics. Nat Rev Endocrinol 2021; 17(5): 276–95. doi: 10.1038/s41574-021-00471-8
5. Cinti S, Mitchell G, Barbatelli G, Murano I, Ceresi E, Faloia E, et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res 2005; 46(11): 2347–55. doi: 10.1194/jlr.M500294-JLR200
6. Kawasaki N, Asada R, Saito A, Kanemoto S, Imaizumi K. Obesity-induced endoplasmic reticulum stress causes chronic inflammation in adipose tissue. Sci Rep 2012; 2: 799. doi: 10.1038/srep00799
7. Hotamisligil GS. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 2010; 140(6): 900–17. doi: 10.1016/j.cell.2010.02.034
8. Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 2007; 8(7): 519–29. doi: 10.1038/nrm2199
9. Fernandes-da-Silva A, Miranda CS, Santana-Oliveira DA, Oliveira-Cordeiro B, Rangel-Azevedo C, Silva-Veiga FM, et al. Endoplasmic reticulum stress as the basis of obesity and metabolic diseases: focus on adipose tissue, liver, and pancreas. Eur J Nutr 2021; 60(6): 2949–60. doi: 10.1007/s00394-021-02542-y
10. Suzuki T, Gao J, Ishigaki Y, Kondo K, Sawada S, Izumi T, et al. ER stress protein CHOP mediates insulin resistance by modulating adipose tissue macrophage polarity. Cell Rep 2017; 18(8): 2045–57. doi: 10.1016/j.celrep.2017.01.076
11. Boden G, Duan X, Homko C, Molina EJ, Song W, Perez O, et al. Increase in endoplasmic reticulum stress-related proteins and genes in adipose tissue of obese, insulin-resistant individuals. Diabetes 2008; 57(9): 2438–44. doi: 10.2337/db08-0604
12. Chung S, Park SH, Park JH, Hwang JT. Anti-obesity effects of medicinal plants from Asian countries and related molecular mechanisms: a review. Rev Cardiovasc Med 2021; 22(4): 1279–93. doi: 10.31083/j.rcm2204135
13. Shang A, Gan RY, Xu XY, Mao QQ, Zhang PZ, Li HB. Effects and mechanisms of edible and medicinal plants on obesity: an updated review. Crit Rev Food Sci Nutr 2021; 61(12): 2061–77. doi: 10.1080/10408398.2020.1769548
14. Petropoulos SA, Di Gioia F, Polyzos N, Tzortzakis N. Natural antioxidants, health effects and bioactive properties of wild allium species. Curr Pharm Des 2020; 26(16): 1816–37. doi: 10.2174/1381612826666200203145851
15. Jia W, Li Y, Wan J, Cui X, Lu J, Liu J, et al. Effects of Xuezhitong in patients with hypertriglyceridemia: a multicentre, randomized, double-blind, double simulation, positive drug and placebo parallel control study. Cardiovasc Drugs Ther 2020; 34(4): 525–34. doi: 10.1007/s10557-020-06965-3
16. Lee J-Y, Jeong Y, Kim J, Kim CY. Inhibitory effect of Allium macrostemon extracts on adipogenesis of 3T3-L1 preadipocytes. Korean J Food Sci Technol 2020; 52(5): 441–9. doi: 10.9721/KJFST.2020.52.5.441
17. Xie W, Zhang Y, Wang N, Zhou H, Du L, Ma X, et al. Novel effects of macrostemonoside A, a compound from Allium macrostemon Bung, on hyperglycemia, hyperlipidemia, and visceral obesity in high-fat diet-fed C57BL/6 mice. Eur J Pharmacol 2008; 599(1–3): 159–65. doi: 10.1016/j.ejphar.2008.09.042
18. Fu C, Jiang Y, Guo J, Su Z. Natural products with anti-obesity effects and different mechanisms of action. J Agric Food Chem 2016; 64(51): 9571–85. doi: 10.1021/acs.jafc.6b04468
19. Liu RH. Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. Am J Clin Nutr 2003; 78(3 Suppl): 517S–20S. doi: 10.1093/ajcn/78.3.517S
20. Phan MAT, Paterson J, Bucknall M, Arcot J. Interactions between phytochemicals from fruits and vegetables: effects on bioactivities and bioavailability. Crit Rev Food Sci Nutr 2018; 58(8): 1310–29. doi: 10.1080/10408398.2016.1254595
21. Lee S, Kim DH, Lee CH, Jung JW, Seo YT, Jang YP, et al. Antidepressant-like activity of the aqueous extract of allium macrostemon in mice. J Ethnopharmacol 2010; 131(2): 386–95. doi: 10.1016/j.jep.2010.07.015
22. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 1972; 18(6): 499–502. doi: 10.1093/clinchem/18.6.499
23. Diaz Marin R, Crespo-Garcia S, Wilson AM, Sapieha P. RELi protocol: optimization for protein extraction from white, brown and beige adipose tissues. MethodsX 2019; 6: 918–28. doi: 10.1016/j.mex.2019.04.010
24. Kim J-S, Kang O-J, Gweon O-C. Comparison of phenolic acids and flavonoids in black garlic at different thermal processing steps. J Funct Foods 2013; 5(1): 80–6. doi: 10.1016/j.jff.2012.08.006
25. Li X, Zhang Y, Wang S, Shi C, Wang S, Wang X, et al. A review on the potential use of natural products in overweight and obesity. Phytother Res 2022; 36(5): 1990–2015. doi: 10.1002/ptr.7426
26. Jack BU, Malherbe CJ, Mamushi M, Muller CJF, Joubert E, Louw J, et al. Adipose tissue as a possible therapeutic target for polyphenols: a case for cyclopia extracts as anti-obesity nutraceuticals. Biomed Pharmacother 2019; 120: 109439. doi: 10.1016/j.biopha.2019.109439
27. You L, Li F, Sun Y, Luo L, Qin J, Wang T, et al. Extract of Acalypha australis L. inhibits lipid accumulation and ameliorates HFD-induced obesity in mice through regulating adipose differentiation by decreasing PPARgamma and CEBP/alpha expression. Food Nutr Res 2021; 65: 1–16. doi: 10.29219/fnr.v65.4246
28. Zhang J, Fu M, Cui T, Xiong C, Xu K, Zhong W, et al. Selective disruption of PPARgamma 2 impairs the development of adipose tissue and insulin sensitivity. Proc Natl Acad Sci U S A 2004; 101(29): 10703–8. doi: 10.1073/pnas.0403652101
29. Sung YY, Yoon T, Kim SJ, Yang WK, Kim HK. Anti-obesity activity of Allium fistulosum L. extract by down-regulation of the expression of lipogenic genes in high-fat diet-induced obese mice. Mol Med Rep 2011; 4(3): 431–5. doi: 10.3892/mmr.2011.451
30. Loftus TM, Jaworsky DE, Frehywot GL, Townsend CA, Ronnett GV, Lane MD, et al. Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors. Science 2000; 288(5475): 2379–81. doi: 10.1126/science.288.5475.2379
31. Sun XB, Zhao J, Ma XF, Tian WX. Inhibitory effects of thioethers on fatty acid synthase and 3T3-L1 cells. J Enzyme Inhib Med Chem 2010; 25(2): 290–5. doi: 10.3109/14756360903179377
32. Oh DR, Kim Y, Choi EJ, Hunmi L, Jung MA, Bae D, et al. Antiobesity effects of unripe rubus coreanus miquel and its constituents: an in vitro and in vivo characterization of the underlying mechanism. Evid Based Complement Alternat Med 2016; 2016: 4357656. doi: 10.1155/2016/4357656
33. Berndt J, Kovacs P, Ruschke K, Kloting N, Fasshauer M, Schon MR, et al. Fatty acid synthase gene expression in human adipose tissue: association with obesity and type 2 diabetes. Diabetologia 2007; 50(7): 1472–80. doi: 10.1007/s00125-007-0689-x
34. Wu YL, Liu K, Qi JS, Jia ZH, Li YN. [Effect of Bulbus Allii Macrostemi on gene expression profile associated with vascular endothelium injure of Qi stagnation rats]. Zhong Yao Cai 2007; 30(10): 1266–70.
35. Keophiphath M, Priem F, Jacquemond-Collet I, Clement K, Lacasa D. 1,2-vinyldithiin from garlic inhibits differentiation and inflammation of human preadipocytes. J Nutr 2009; 139(11): 2055–60. doi: 10.3945/jn.109.105452
36. Quintero-Fabian S, Ortuno-Sahagun D, Vazquez-Carrera M, Lopez-Roa RI. Alliin, a garlic (Allium sativum) compound, prevents LPS-induced inflammation in 3T3-L1 adipocytes. Mediators Inflamm 2013; 2013: 381815. doi: 10.1155/2013/381815
37. Wu ZQ, Li K, Ma JK, Huang Q, Tian X, Li ZJ. Antioxidant activity of organic sulfides from fresh Allium macrostemon Bunge and their protective effects against oxidative stress in Caenorhabditis elegans. J Food Biochem 2020; 44(11): e13447. doi: 10.1111/jfbc.13447
38. Hussain T, Tan B, Yin Y, Blachier F, Tossou MC, Rahu N. Oxidative stress and inflammation: what polyphenols can do for us? Oxid Med Cell Longev 2016; 2016: 7432797. doi: 10.1155/2016/7432797
39. Zatterale F, Longo M, Naderi J, Raciti GA, Desiderio A, Miele C, et al. Chronic adipose tissue inflammation linking obesity to insulin resistance and type 2 diabetes. Front Physiol 2019; 10: 1607. doi: 10.3389/fphys.2019.01607
40. Hu H, Tian M, Ding C, Yu S. The C/EBP homologous protein (CHOP) transcription factor functions in endoplasmic reticulum stress-induced apoptosis and microbial infection. Front Immunol 2018; 9: 3083. doi: 10.3389/fimmu.2018.03083
41. Oyewusi AJ, Oridupa OA, Saba AB, Oyewusi IK, Olukunle JO. Anti-inflammatory and analgesic effects of methanol extract of red cultivar Allium cepa bulbs in rats and mice. J Basic Clin Physiol Pharmacol 2021; 32(6): 1087–92. doi: 10.1515/jbcpp-2020-0080
42. Amor S, Gonzalez-Hedstrom D, Martin-Carro B, Inarejos-Garcia AM, Almodovar P, Prodanov M, et al. Beneficial effects of an aged black garlic extract in the metabolic and vascular alterations induced by a high fat/sucrose diet in male rats. Nutrients 2019; 11(1): 153. doi: 10.3390/nu11010153
43. Menikdiwela KR, Torres Guimaraes JP, Ramalingam L, Kalupahana NS, Dufour JM, Washburn RL, et al. Mechanisms linking endoplasmic reticulum (ER) stress and microRNAs to adipose tissue dysfunction in obesity. Crit Rev Biochem Mol Biol 2021; 56(5): 455–81. doi: 10.1080/10409238.2021.1925219
44. de Jong JM, Larsson O, Cannon B, Nedergaard J. A stringent validation of mouse adipose tissue identity markers. Am J Physiol Endocrinol Metab 2015; 308(12): E1085–105. doi: 10.1152/ajpendo.00023.2015
45. Longo KA, Wright WS, Kang S, Gerin I, Chiang SH, Lucas PC, et al. Wnt10b inhibits development of white and brown adipose tissues. J Biol Chem 2004; 279(34): 35503–9. doi: 10.1074/jbc.M402937200
46. DeClercq VC, Goldsby JS, McMurray DN, Chapkin RS. Distinct adipose depots from mice differentially respond to a high-fat, high-salt diet. J Nutr 2016; 146(6): 1189–96. doi: 10.3945/jn.115.227496
47. Lucas N, Legrand R, Deroissart C, Dominique M, Azhar S, Le Solliec M-A, et al. Hafnia alvei HA4597 strain reduces food intake and body weight gain and improves body composition, glucose, and lipid metabolism in a mouse model of hyperphagic obesity. Microorganisms 2019; 8(1): 35. doi: 10.3390/microorganisms8010035
48. Bruder-Nascimento T, Ekeledo OJ, Anderson R, Le HB, Belin de Chantemele EJ. Long term high fat diet treatment: an appropriate approach to study the sex-specificity of the autonomic and cardiovascular responses to obesity in mice. Front Physiol 2017; 8: 32. doi: 10.3389/fphys.2017.00032
49. St-Amand R, Ngo Sock ET, Quinn S, Lavoie JM, St-Pierre DH. Two weeks of western diet disrupts liver molecular markers of cholesterol metabolism in rats. Lipids Health Dis 2020; 19(1): 192. doi: 10.1186/s12944-020-01351-2
50. Podrini C, Cambridge EL, Lelliott CJ, Carragher DM, Estabel J, Gerdin AK, et al. High-fat feeding rapidly induces obesity and lipid derangements in C57BL/6N mice. Mamm Genome 2013; 24(5–6): 240–51. doi: 10.1007/s00335-013-9456-0
51. Li Y, Liu X, Fan Y, Yang B, Huang C. Radix stellariae extract prevents high-fat-diet-induced obesity in C57BL/6 mice by accelerating energy metabolism. PeerJ 2017; 5: e3305. doi: 10.7717/peerj.3305
52. Yoon YI, Chung MY, Hwang JS, Han MS, Goo TW, Yun EY. Allomyrina dichotoma (Arthropoda: Insecta) larvae confer resistance to obesity in mice fed a high-fat diet. Nutrients 2015; 7(3): 1978–91. doi: 10.3390/nu7031978
53. Yin W, Carballo-Jane E, McLaren DG, Mendoza VH, Gagen K, Geoghagen NS, et al. Plasma lipid profiling across species for the identification of optimal animal models of human dyslipidemia. J Lipid Res 2012; 53(1): 51–65. doi: 10.1194/jlr.M019927
54. Kaabia Z, Poirier J, Moughaizel M, Aguesse A, Billon-Crossouard S, Fall F, et al. Plasma lipidomic analysis reveals strong similarities between lipid fingerprints in human, hamster and mouse compared to other animal species. Sci Rep 2018; 8(1): 15893. doi: 10.1038/s41598-018-34329-3
55. Kim I, Kim HR, Kim JH, Om AS. Beneficial effects of Allium sativum L. stem extract on lipid metabolism and antioxidant status in obese mice fed a high-fat diet. J Sci Food Agric 2013; 93(11): 2749–57. doi: 10.1002/jsfa.6094
56. Kang I, Buckner T, Shay NF, Gu L, Chung S. Improvements in metabolic health with consumption of ellagic acid and subsequent conversion into urolithins: evidence and mechanisms. Adv Nutr 2016; 7(5): 961–72. doi: 10.3945/an.116.012575
57. D’Archivio M, Scazzocchio B, Silenzi A, Giovannini C, Masella R. Role of protocatechuic acid in obesity-related pathologies: an update. In: Watson RR, Preedy VR, Zibadi S, eds. Polyphenols: mechanisms of action in human health and disease. 2nd ed. Cambridge: Academic Press; 2018, pp. 181–92.
58. Hogan S, Canning C, Sun S, Sun X, Zhou K. Effects of grape pomace antioxidant extract on oxidative stress and inflammation in diet induced obese mice. J Agric Food Chem 2010; 58(21): 11250–6. doi: 10.1021/jf102759e
59. Naowaboot J, Piyabhan P, Munkong N, Parklak W, Pannangpetch P. Ferulic acid improves lipid and glucose homeostasis in high-fat diet-induced obese mice. Clin Exp Pharmacol Physiol 2016; 43(2): 242–50. doi: 10.1111/1440-1681.12514
60. Wang Z, Lam KL, Hu J, Ge S, Zhou A, Zheng B, et al. Chlorogenic acid alleviates obesity and modulates gut microbiota in high-fat-fed mice. Food Sci Nutr 2019; 7(2): 579–88. doi: 10.1002/fsn3.868
61. Yoon DS, Cho SY, Yoon HJ, Kim SR, Jung UJ. Protective effects of p-coumaric acid against high-fat diet-induced metabolic dysregulation in mice. Biomed Pharmacother 2021; 142: 111969. doi: 10.1016/j.biopha.2021.111969
62. Liao CC, Ou TT, Wu CH, Wang CJ. Prevention of diet-induced hyperlipidemia and obesity by caffeic acid in C57BL/6 mice through regulation of hepatic lipogenesis gene expression. J Agric Food Chem 2013; 61(46): 11082–8. doi: 10.1021/jf4026647
63. Wu X, You Y, Qu G, Ma R, Zhang M. Simultaneous determination of ginsenoside Rb1, ginsenoside Rg1, paeoniflorin, albiflorin and oxypaeoniflorin in rat plasma by liquid chromatography-tandem mass spectrometry: application to a pharmacokinetic study of wen-Yang-Huo-Xue soft capsule. Biomed Chromatogr 2017; 31(12): e4019-n/a. doi: 10.1002/bmc.4019
64. Yang Y, Huang C, Su X, Zhu J, Chen X, Fu Y, et al. Deciphering the multicomponent synergy mechanism from a systems pharmacology perspective: application to Gualou Xiebai decoction for coronary heart disease. J Funct Foods 2018; 47: 143–55. doi: 10.1016/j.jff.2018.02.030
65. Paesa M, Nogueira DP, Velderrain-Rodriguez G, Esparza I, Jimenez-Moreno N, Mendoza G, et al. Valorization of onion waste by obtaining extracts rich in phenolic compounds and feasibility of its therapeutic use on colon cancer. Antioxidants (Basel) 2022; 11(4): 733. doi: 10.3390/antiox11040733
66. Paesa M, Ancin-Azpilicueta C, Velderrain-Rodriguez G, Martin-Belloso O, Gualillo O, Osada J, et al. Anti-inflammatory and chondroprotective effects induced by phenolic compounds from onion waste extracts in ATDC-5 chondrogenic cell line. Antioxidants (Basel) 2022; 11(12): 2381. doi: 10.3390/antiox11122381
67. Huang KP, Ronveaux CC, Knotts TA, Rutkowsky JR, Ramsey JJ, Raybould HE. Sex differences in response to short-term high fat diet in mice. Physiol Behav 2020; 221: 112894. doi: 10.1016/j.physbeh.2020.112894
Published
2023-05-18
How to Cite
Kim J., Lee J.-Y., & Kim C. Y. (2023). <em>Allium macrostemon</em&gt; whole extract ameliorates obesity-induced inflammation and endoplasmic reticulum stress in adipose tissue of high-fat diet-fed C57BL/6N mice. Food & Nutrition Research, 67. https://doi.org/10.29219/fnr.v67.9256
Section
Original Articles