Maternal methyl donor supplementation regulates the effects of cafeteria diet on behavioral changes and nutritional status in male offspring

  • Heriberto Castro García Universidad Autonoma de Nuevo Leon, Unidad de Neurometabolismo, Centro de Investigación y Desarrollo en Ciencias de la Salud. Monterrey, Nuevo León, México; and Universidad Autonoma de Nuevo Leon, Facultad de Medicina, Departamento de Bioquímica. Monterrey, Nuevo León, México
  • Katya Herrera Universidad Autonoma de Nuevo León, Facultad de Salud Pública y Nutrición, Centro de Investigación en Nutrición y Salud Pública. Monterrey, Nuevo León, México
  • Roger Maldonado-Ruíz Universidad Autonoma de Nuevo Leon, Unidad de Neurometabolismo, Centro de Investigación y Desarrollo en Ciencias de la Salud. Monterrey, Nuevo León, México
  • Alberto Camacho Morales Universidad Autonoma de Nuevo Leon, Unidad de Neurometabolismo, Centro de Investigación y Desarrollo en Ciencias de la Salud. Monterrey, Nuevo León, México; and Universidad Autonoma de Nuevo Leon, Facultad de Medicina, Departamento de Bioquímica. Monterrey, Nuevo León, México
  • Ana Laura de la Garza Universidad Autonoma de Nuevo Leon, Unidad de Nutrición, Centro de Investigación y Desarrollo en Ciencias de la Salud. Monterrey, Nuevo León, México
Keywords: Autism spectrum disorders, fetal programming, high fat diet, social behavior, anxiety-like behavior, weight gain, food intake

Abstract

Background: Nutritional status and maternal feeding during the perinatal and postnatal periods can program the offspring to develop long-term health alterations. Epidemiologic studies have demonstrated an association between maternal obesity and intellectual disability/cognitive deficits like autism spectrum disorders (ASDs) in offspring. Experimental findings have consistently been indicating that maternal supplementation with methyl donors, attenuated the social alterations and repetitive behavior in offspring.

Objective: This study aims to analyze the effect of maternal cafeteria diet and methyl donor-supplemented diets on social, anxiety-like, and repetitive behavior in male offspring, besides evaluating weight gain and food intake in both dams and male offspring.

Design: C57BL/6 female mice were randomized into four dietary formulas: control Chow (CT), cafeteria (CAF), control + methyl donor (CT+M), and cafeteria + methyl donor (CAF+M) during the pre-gestational, gestational, and lactation period. Behavioral phenotyping in the offspring was performed by 2-month-old using Three-Chamber Test, Open Field Test, and Marble Burying Test.

Results: We found that offspring prenatally exposed to CAF diet displayed less social interaction index when compared with subjects exposed to Chow diet (CT group). Notably, offspring exposed to CAF+M diet recovered social interaction when compared to the CAF group.

Discussion: These findings suggest that maternal CAF diet is efficient in promoting reduced social interaction in murine models. In our study, we hypothesized that a maternal methyl donor supplementation could improve the behavioral alterations expected in maternal CAF diet offspring.

Conclusions: The CAF diet also contributed to a social deficit and anxiety-like behavior in the offspring. On the other hand, a maternal methyl donor-supplemented CAF diet normalized the social interaction in the offspring although it led to an increase in anxiety-like behaviors. These findings suggest that a methyl donor supplementation could protect against aberrant social behavior probably targeting key genes related to neurotransmitter pathways.

Downloads

Download data is not yet available.

References


1.
Cardenas-Perez RE, Fuentes-Mera L, de la Garza AL, Torre-Villalvazo I, Reyes-Castro LA, Rodriguez-Rocha H, et al. Maternal overnutrition by hypercaloric diets programs hypothalamic mitochondrial fusion and metabolic dysfunction in rat male offspring. Nutr Metabol 2018; 15(1): 1–16. doi: 10.1186/s12986-018-0279-6


2.
Cruz-Carrillo G, Montalvo-Martínez L, Cárdenas-Tueme M, Bernal-Vega S, Maldonado-Ruiz R, Reséndez-Pérez D, et al. Fetal programming by methyl donors modulates central inflammation and prevents food addiction-like behavior in rats. Front Neurosci 2020; 14: 1–15. doi: 10.3389/fnins.2020.00452


3.
Maldonado-Ruiz R, Fuentes-Mera L, Camacho A. Central modulation of neuroinflammation by neuropeptides and energy-sensing hormones during obesity. BioMed Res Int 2017; 2017: 1–12. doi: 10.1155/2017/7949582


4.
Rivera HM, Christiansen KJ, Sullivan EL. The role of maternal obesity in the risk of neuropsychiatric disorders. Front Neurosci 2015; 9: 1–16. doi: 10.3389/fnins.2015.00194


5.
Zilkha N, Kuperman Y, Kimchi T. High-fat diet exacerbates cognitive rigidity and social deficiency in the BTBR mouse model of autism. Neuroscience 2017; 345: 142–54. doi: 10.1016/j.neuroscience.2016.01.070


6.
Talita Sayuri Higa, Acauã Vida Spinola, Fonseca-Alaniz MH, Evangelista FS. Comparison between cafeteria and high-fat diets in the induction of metabolic dysfunction in mice. Int J Physiol Pathophysiol Pharmacol 2014; 6(1): 47–54.


7.
Castro H, Pomar CA, Picó C, Sánchez J, Palou A. Cafeteria diet overfeeding in young male rats impairs the adaptive response to fed/fasted conditions and increases adiposity independent of body weight. Int J Obes 2014; 39(3): 430–7. doi: 10.1038/ijo.2014.125


8.
Andersen CH, Thomsen PH, Nohr EA, Lemcke S. Maternal body mass index before pregnancy as a risk factor for ADHD and autism in children. Eur Child Adolesc Psychiatry 2017; 27(2): 139–48. doi: 10.1007/s00787-017-1027-6


9.
Li M, Fallin MD, Riley A, Landa R, Walker SO, Silverstein M, et al. The association of maternal obesity and diabetes with autism and other developmental disabilities. Pediatrics 2016; 137(2): e20152206. doi: 10.1542/peds.2015-2206


10.
Maldonado-Ruiz R, Garza-Ocañas L, Camacho A. Inflammatory domains modulate autism spectrum disorder susceptibility during maternal nutritional programming. Neurochem Int 2019; 126: 109–17. doi: 10.1016/j.neuint.2019.03.009


11.
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 5th ed. Washington, DC: American Psychiatric Association; 2013. doi: 10.1108/rr-10-2013-0256


12.
Tye C, Runicles A, Whitehouse AJO, Alvares GA. Corrigendum: characterizing the interplay between autism spectrum disorder and comorbid medical conditions: an integrative review. Front Psychiatry 2019; 10: 1–21. doi: 10.3389/fpsyt.2019.00438


13.
Teixeira AE, Rocha-Gomes A, Pereira dos Santos T, Amaral BLS, da Silva AA, Malagutti AR, et al. Cafeteria diet administered from lactation to adulthood promotes a change in risperidone sensitivity on anxiety, locomotion, memory, and social interaction of Wistar rats. Physiol Behav 2020; 220: 112874. doi: 10.1016/j.physbeh.2020.112874


14.
Zhang QZ, Wu H, Zou M, Li L, Li Q, Sun C, et al. Folic acid improves abnormal behavior via mitigation of oxidative stress, inflammation, and ferroptosis in the BTBR T+ tf/J mouse model of autism. J Nutr Biochem 2019; 71: 98–109. doi: 10.1016/j.jnutbio.2019.05.002


15.
Niculescu MD, Zeisel SH. Diet, methyl donors and DNA methylation: interactions between dietary folate, methionine and choline. J Nutr 2002; 132(8): 2333S2335S. doi: 10.1093/jn/132.8.2333s


16.
Law PP, Holland ML. DNA methylation at the crossroads of gene and environment interactions. Essays Biochem 2019; 63(6): 717–26. https://doi.org/10.1042/EBC20190031


17.
Meng H, Cao Y, Qin J, Song X, Zhang Q, Shi Y, et al. DNA methylation, its mediators and genome integrity. Int J Biol Sci 2015; 11(5): 604–17. doi: 10.7150/ijbs.11218


18.
Tremblay MW, Jiang Y. DNA methylation and susceptibility to autism spectrum disorder. Ann Rev Med 2019; 70: 151–66. doi: 10.1146/annurev-med-120417-091431


19.
Labouesse MA, Dong E, Grayson DR, Guidotti A, Meyer U. Maternal immune activation induces GAD1 and GAD2 promoter remodeling in the offspring prefrontal cortex. Epigenetics 2015; 10(12): 1143–55. doi: 10.1080/15592294.2015.1114202


20.
Mor M, Nardone S, Sams DS, Elliott E. Hypomethylation of miR-142 promoter and upregulation of microRNAs that target the oxytocin receptor gene in the autism prefrontal cortex. Mol Autism 2015; 6(1): 46. doi: 10.1186/s13229-015-0040-1


21.
Hulbert SW, Jiang YH. Monogenic mouse models of autism spectrum disorders: common mechanisms and missing links. Neuroscience 2016; 321: 3–23. doi: 10.1016/j.neuroscience.2015.12.040


22.
Huang F, Chen X, Jiang X, Niu J, Cui C, Chen Z, et al. Betaine ameliorates prenatal valproic-acid-induced autism-like behavioral abnormalities in mice by promoting homocysteine metabolism. Psychiatry Clin Neurosci 2019; 73(6): 317–22. doi: 10.1111/pcn.12833


23.
Langley EA, Krykbaeva M, Blusztajn JK, Mellott TJ. High maternal choline consumption during pregnancy and nursing alleviates deficits in social interaction and improves anxiety-like behaviors in the BTBR T+Itpr3tf/J mouse model of autism. Behav Brain Res 2015; 278: 210–20. doi: 10.1096/fasebj.29.1_supplement.900.5


24.
McKee SE, Zhang S, Chen L, Rabinowitz JD, Reyes TM. Perinatal high fat diet and early life methyl donor supplementation alter one carbon metabolism and DNA methylation in the brain. J Neurochem 2018; 145(5): 362–73. doi: 10.1111/jnc.14319


25.
Carlin J, George R, Reyes TM. Methyl donor supplementation blocks the adverse effects of maternal high fat diet on offspring physiology. Jasoni C, editor. PLoS One 2013; 8(5): e63549. doi: 10.1371/journal.pone.0063549


26.
Cordero P, Milagro F, Campion J, Martinez J. Maternal methyl donors supplementation during lactation prevents the hyperhomocysteinemia induced by a high-fat-sucrose intake by dams. Int J Mol Sci 2013; 14(12): 24422–37. doi: 10.3390/ijms141224422


27.
Waterland RA, Travisano M, Tahiliani KG, Rached MT, Mirza S. Methyl donor supplementation prevents transgenerational amplification of obesity. Int J Obes 2008; 32(9): 1373–9. doi: 10.1038/ijo.2008.100


28.
Wolff GA, Kodell RL, Moore SS, Cooney CA. Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. FASEB J 1998; 12(11): 949–57. doi: 10.1096/fasebj.12.11.949


29.
Grobe JL. Comprehensive assessments of energy balance in mice. Methods Mol Biol 2017; 1614: 123–46. doi: 10.1007/978-1-4939-7030-8_10


30.
Kaidanovich-Beilin O, Lipina T, Vukobradovic I, Roder J, Woodgett JR. Assessment of social interaction behaviors. J Visual Exp 2011; 48: 1–6. doi: 10.3791/2473


31.
Seibenhener ML, Wooten MC. Use of the open field Maze to measure locomotor and anxiety-like behavior in mice. J Visual Exp 2015; 96: 1–6. doi: 10.3791/52434


32.
Angoa-Pérez M, Kane MJ, Briggs DI, Francescutti DM, Kuhn DM. Marble burying and nestlet shredding as tests of repetitive, compulsive-like behaviors in mice. J Visual Exp 2013; 82: 1–7. doi: 10.3791/50978


33.
Maric-Bilkan C, Symonds M, Ozanne S, Alexander BT. Impact of maternal obesity and diabetes on long-term health of the offspring. Exp Diabetes Res 2011; 2011: 1–2. doi: 10.1155/2011/163438


34.
Grizales AM, Patti ME, Lin AP, Beckman JA, Sahni VA, Cloutier E, et al. Metabolic effects of betaine: a randomized clinical trial of betaine supplementation in prediabetes. J Clin Endocrinol Metabol 2018; 103(8): 3038–49. doi: 10.1210/jc.2018-00507


35.
Sie KKY, Li J, Ly A, Sohn KJ, Croxford R, Kim YI. Effect of maternal and postweaning folic acid supplementation on global and gene-specific DNA methylation in the liver of the rat offspring. Mol Nutr Food Res 2013; 57(4): 677–85. doi: 10.1002/mnfr.201200186


36.
Cho CE, Sánchez-Hernández D, Reza-López SA, Huot PSP, Kim YI, Anderson GH. High folate gestational and post-weaning diets alter hypothalamic feeding pathways by DNA methylation in Wistar rat offspring. Epigenetics 2013; 8(7): 710–9. doi: 10.4161/epi.24948


37.
Galen KA, Horst KW, Serlie MJ. Serotonin, food intake, and obesity. Obesity Rev 2021; 22(7): e13210. https://doi.org/10.1111/obr.13210


38.
Nakatani Y, Sato-Suzuki I, Tsujino N, Nakasato A, Seki Y, Fumoto M, et al. Augmented brain 5-HT crosses the blood-brain barrier through the 5-HT transporter in rat. Eur J Neurosci 2008; 27(9): 2466–72. doi: 10.1111/j.1460-9568.2008.06201.x


39.
Donovan MH, Tecott LH. Serotonin and the regulation of mammalian energy balance. Front Neurosci 2013; 7: 1–15. doi: 10.3389/fnins.2013.00036


40.
Kwon E, Jo YH. Activation of the ARCPOMC→MeA projection reduces food intake. Front Neural Circuits 2020; 14: 1–8. doi: 10.3389/fncir.2020.595783


41.
Jeong JH, Lee DK, Jo YH. Cholinergic neurons in the dorsomedial hypothalamus regulate food intake. Mol Metabol 2017; 6(3): 306–12. doi: 10.1016/j.molmet.2017.01.001


42.
Christine KA, Jens CB. Selective insulin and leptin resistance in metabolic disorders. Cell Metabol 2012; 16(2): 144–52. doi: 10.1016/j.cmet.2012.07.004


43.
Vithayathil MA, Gugusheff JR, Ong ZC, Langley-Evans SC, Gibson RA, Muhlhausler BS. Exposure to maternal cafeteria diets during the suckling period has greater effects on fat deposition and Sterol Regulatory Element Binding Protein-1c (SREBP-1c) gene expression in rodent offspring compared to exposure before birth. Nutr Metbol 2018; 15(1): 17. doi: 10.1186/s12986-018-0253-3


44.
Buffington SA, Di Prisco GV, Auchtung TA, Ajami NJ, Petrosino JF, Costa-Mattioli M. Microbial reconstitution reverses maternal diet-induced social and synaptic deficits in offspring. Cell 2016; 165(7): 1762–75. doi: 10.1016/j.cell.2016.06.001


45.
Fritsche KL. The science of fatty acids and inflammation. Adv Nutr 2015; 6(3): 293S301S. doi: 10.3945/an.114.006940


46.
Sies H, Stahl W, Sevanian A. Nutritional, dietary and postprandial oxidative stress. J Nutr 2005; 135(5): 969–72. doi: 10.1093/jn/135.5.969


47.
Bordeleau M, Chloé Lacabanne, Fernández L, Vernoux N, Savage JC, Fernando González Ibáñez, et al. Microglial and peripheral immune priming is partially sexually dimorphic in adolescent mouse offspring exposed to maternal high-fat diet. J Neuroinflamm 2020; 17(1): 264. doi: 10.1186/s12974-020-01914-1


48.
Graham NAJ, Wilson SK, Carr P, Hoey AS, Jennings S, MacNeil MA. Seabirds enhance coral reef productivity and functioning in the absence of invasive rats. Nature 2018; 559(7713): 250–3. doi: 10.1038/s41586-018-0202-3


49.
Rudolph MD, Graham AM, Feczko E, Miranda-Dominguez O, Rasmussen JM, Nardos R, et al. Maternal IL-6 during pregnancy can be estimated from newborn brain connectivity and predicts future working memory in offspring. Nat Neurosci 2018; 21(5): 765–72. doi: 10.1038/s41593-018-0128-y


50.
Menard C, Pfau ML, Hodes GE, Kana V, Wang VX, Bouchard S, et al. Social stress induces neurovascular pathology promoting depression. Nat Neurosci 2017; 20(12): 1752–2. doi: 10.1038/s41593-017-0010-3


51.
Camacho-Morales A, Montalvo-Martínez L, Cruz-Carrillo G, Maldonado-Ruiz R, Trujillo-Villarreal L, Garza-Villarreal E. Prenatal programing of motivated behaviors: can innate immunity prime behavior? Neural Regener Res 2023; 18(2): 280. doi: 10.4103/1673-5374.346475


52.
Orenbuch A, Fortis K, Taesuwan S, Yaffe R, Caudill MA, Golan HM. Prenatal nutritional intervention reduces autistic-like behavior rates among Mthfr-deficient mice. Front Neurosci 2019; 13: 1–15. doi: 10.3389/fnins.2019.00383


53.
O’Neill RJ, Vrana PB, Rosenfeld CS. Maternal methyl supplemented diets and effects on offspring health. Front Genet 2014; 5: 1–10. doi: 10.3389/fgene.2014.00289


54.
Speight A, Davey WJ, McKenna, ES, Voigt JP. Exposure to a maternal cafeteria diet changes open-field behaviour in the developing offspring. Int J Dev Neruosci 2016; 57(1): 34–40. doi: 10.1016/j.ijdevneu.2016.12.005


55.
Wright T, Langley-Evans SC, Voigt JP. The impact of maternal cafeteria diet on anxiety-related behaviour and exploration in the offspring. Physiol Behav 2011; 103(2): 164–72. doi: 10.1016/j.physbeh.2011.01.008


56.
Gutknecht L, Popp S, Waider J, Sommerlandt FMJ, Göppner C, Post A, et al. Interaction of brain 5-HT synthesis deficiency, chronic stress and sex differentially impact emotional behavior in Tph2 knockout mice. Psychopharmacology 2015; 232(14): 2429–41. doi: 10.1007/s00213-015-3879-0


57.
Ennaceur A. Tests of unconditioned anxiety – pitfalls and disappointments. Physiol Behav 2014; 135: 55–71. doi: 10.1016/j.physbeh.2014.05.032


58.
Barua S, Chadman KK, Kuizon S, Buenaventura D, Stapley NW, Ruocco F, et al. Increasing maternal or post-weaning folic acid alters gene expression and moderately changes behavior in the offspring. Rosenfeld CS, editor. PLoS One 2014; 9(7): e101674. doi: 10.1371/journal.pone.0101674


59.
Contu L, Hawkes CA. A review of the impact of maternal obesity on the cognitive function and mental health of the offspring. Int J Mol Sci 2017; 18(5): 1093. doi: 10.3390/ijms18051093


60.
Li M, D’Arcy C, Li X, Zhang T, Joober R, Meng X. What do DNA methylation studies tell us about depression? A systematic review. Transl Psychiatry 2019; 9(1): 68. doi: 10.1038/s41398-019-0412-y


61.
McKee M, Reeves A, Clair A, Stuckler D. Living on the edge: precariousness and why it matters for health. Arch Public Health 2017; 75(1): 13. doi: 10.1186/s13690-017-0183-y


62.
Yadon N, Owen A, Cakora P, Bustamante A, Hall-South A, Smith N, et al. A high methyl donor diet affects physiology and behavior in Peromyscus polionotus. Physiol Behav 2019; 209: 112615. doi: 10.1016/j.physbeh.2019.112615


63.
Miousse IR, Pathak R, Garg S, Skinner CM, Melnyk S, Pavliv O, et al. Short-term dietary methionine supplementation affects one-carbon metabolism and DNA methylation in the mouse gut and leads to altered microbiome profiles, barrier function, gene expression and histomorphology. Genes Nutr 2017; 12(1): 22. doi: 10.1186/s12263-017-0576-0


64.
Tsan L, Décarie-Spain L, Noble EE, Kanoski SE. Western diet consumption during development: setting the stage for neurocognitive dysfunction. Fronti Neurosci 2021; 15: 1–28. doi: 10.3389/fnins.2021.632312


65.
Bannerman DM, Rawlins JNP, McHugh SB, Deacon RMJ, Yee BK, Bast T, et al. Regional dissociations within the hippocampus – memory and anxiety. Neurosci Biobehav Rev 2004; 28(3): 273–83. doi: 10.1016/j.neubiorev.2004.03.004


66.
Peleg-Raibstein D, Luca E, Wolfrum C. Maternal high-fat diet in mice programs emotional behavior in adulthood. Behav Brain Res 2012; 233(2): 398–404. doi: 10.1016/j.bbr.2012.05.027


67.
Yee BK, Zhu SW, Mohammed A, Feldon J. Levels of neurotrophic factors in the hippocampus and amygdala correlate with anxiety- and fear-related behaviour in C57BL6 mice. J Nerual Trans 2006; 114(4): 431–44. doi: 10.1007/s00702-006-0548-9


68.
Winther G, Elfving B, Müller HK, Lund S, Wegener G. Maternal high-fat diet programs offspring emotional behavior in adulthood. Neuroscience 2018; 388: 87–101. doi: 10.1016/j.neuroscience.2018.07.014


69.
Wolmarans DW, Stein DJ, Harvey BH. Of mice and marbles: novel perspectives on burying behavior as a screening test for psychiatric illness. Cogn Affect Behav Neurosci 2016; 16(3): 551–60. doi: 10.3758/s13415-016-0413-8


70.
Wang R, Tan J, Guo J, Zheng Y, Han Q, So KF, et al. Aberrant development and synaptic transmission of cerebellar cortex in a VPA induced mouse autism model. Front Cell Neurosci 2018; 12: 1–13. doi: 10.3389/fncel.2018.00500


71.
Moreira Júnior RE, de Carvalho LM, dos Reis DC, Cassali GD, Faria AMC, Maioli TU, et al. Diet-induced obesity leads to alterations in behavior and gut microbiota composition in mice. J Nutr Biochem 2021; 92: 108622. doi: 10.1016/j.jnutbio.2021.108622


72.
Gawlińska K, Gawliński D, Kowal E, Jarmuz-Szymczak M, Filip M. Alteration of the early development environment by maternal diet and the occurrence of autistic-like phenotypes in rat offspring. Int J Mol Sci 2021; 22(18): 9662. doi: 10.3390/ijms22189662


73.
Hill DS, Cabrera R, Wallis Schultz D, Zhu H, Lu W, Finnell RH, et al. Autism-like behavior and epigenetic changes associated with autism as consequences ofIn UteroExposure to environmental pollutants in a mouse model. Behav Neurol 2015; 2015: 1–10. doi: 10.1155/2015/426263


74.
Tremaroli V, Bäckhed F. Functional interactions between the gut microbiota and host metabolism. Nature 2012; 489(7415): 242–9. doi: 10.1038/nature11552


75.
Bresnahan M, Hornig M, Schultz AF, Gunnes N, Hirtz D, Lie KK, et al. Association of maternal report of infant and Toddler gastrointestinal symptoms with autism. JAMA Psychiatry 2015; 72(5): 466–74. doi: 10.1001/jamapsychiatry.2014.3034


76.
Parracho HM. Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. J Med Microbiol 2005; 54(10): 987–91. doi: 10.1099/jmm.0.46101-0


77.
Mayer EA, Padua D, Tillisch K. Altered brain-gut axis in autism: comorbidity or causative mechanisms? BioEssays 2014; 36(10): 933–9. doi: 10.1002/bies.201400075
Published
2023-10-27
How to Cite
Castro García H., Herrera K., Maldonado-Ruíz R., Camacho Morales A., & de la Garza A. L. (2023). Maternal methyl donor supplementation regulates the effects of cafeteria diet on behavioral changes and nutritional status in male offspring. Food & Nutrition Research, 67. https://doi.org/10.29219/fnr.v67.9828
Section
Original Articles