Natural antagonistic flavones for AhR inhibit indoxyl sulfate-induced inflammatory gene expression in vitro and renal pathological damages in vivo

  • Tomomi Iwashima Department of Food and Nutritional Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
  • Yui Takemura Department of Food and Nutritional Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
  • Yoshimi Kishimoto Department of Food Science and Human Nutrition, Setsunan University, Osaka, Japan
  • Chihiro Ono Department of Food and Nutritional Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
  • Ayano Watanabe Department of Food and Nutritional Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
  • Kaoruko Iida Department of Food and Nutritional Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan; and Institute of Human Life Science, Ochanomizu University, Tokyo, Japan
Keywords: aryl hydrocarbon receptor, indoxyl sulfate, inflammation, flavone, renal failure, vasucular endothelium

Abstract

Background: Uremic toxin indoxyl sulfate (IS) induces vascular inflammation, a crucial event in renal failure, and vascular complications in patients with chronic kidney disease (CKD). In endothelial cells, IS increases the production of inflammatory cytokines partially via the activation of the aryl hydrocarbon receptor (AhR), and several food flavonoids have been reported to act as antagonists of AhR.

Objective: This study aimed to investigate whether antagonistic flavonoids can attenuate IS-induced inflammatory responses in vascular endothelial cells in vitro and renal failure in vivo.

Design: Human umbilical vein endothelial cells (HUVECs) pretreated with the flavones apigenin, chrysin, or luteolin were stimulated with IS. Expression levels of genes involved in AhR signaling, inflammatory cytokine production, and reactive oxygen species (ROS) production were analyzed. Uninephrectomized mice were orally administered chrysin and received daily intraperitoneal injections of IS for 4 weeks.

Results: In HUVECs, IS upregulated the mRNA expression of AhR-targeted genes (CYP1A1 and AhRR), and genes involved in inflammation (NOX4MCP-1IL-6, and COX2) and monocyte invasion/adhesion (ICAM1). All three flavones attenuated the IS-induced increase in the expression of these mRNAs. They also suppressed the IS-induced nuclear translocation of AhR and intracellular ROS production. Furthermore, IS-induced phosphorylation of the signal transducer and activator of transcription 3 (STAT3) was inhibited by treatment with these flavones. The results of in-vivo experiments showed that administration with chrysin attenuated the elevation of blood urea nitrogen levels and AhR-target gene expression and the pathological impairment of renal tissues in mice, regardless of higher serum levels of IS.

Conclusions: Natural food flavones antagonizing AhR exerted protective effects against IS-induced inflammation through the inhibition of the AhR–STAT3 pathway in HUVECs. Moreover, chrysin ameliorated IS-induced renal dysfunction in a mouse model of CKD. These flavonoids could be a therapeutic strategy for vascular inflammation in CKD.

Downloads

Download data is not yet available.

References


1.
Stevens PE, O’Donoghue DJ, de Lusignan S, Van Vlymen J, Klebe B, Middleton R, et al. Chronic kidney disease management in the United Kingdom: NEOERICA project results. Kidney Int 2007; 72(1): 92–9. doi:10.1038/sj.ki.5002273


2.
Ravid JD, Chitalia VC. Molecular mechanisms underlying the cardiovascular toxicity of specific uremic solutes. Cells 2020; 9(9): 2024. doi: 10.3390/cells9092024


3.
Lim YJ, Sidor NA, Tonial NC, Che A, Urquhart BL. Uremic toxins in the progression of chronic kidney disease and cardiovascular disease: mechanisms and therapeutic targets. Toxins (Basel) 2021; 13(2): 142. doi: 10.3390/toxins13020142


4.
Vanholder R, Schepers E, Pletinck A, Nagler EV, Glorieux G. The uremic toxicity of indoxyl sulfate and p-cresyl sulfate: a systematic review. J Am Soc Nephrol 2014; 25(9): 1897–907. doi: 10.1681/ASN.2013101062


5.
Barreto FC, Barreto DV, Liabeuf S, Meert N, Glorieux G, Temmar M, et al. Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients. Clin J Am Soc Nephrol 2009; 4(10): 1551–8. doi: 10.2215/CJN.03980609


6.
Wu IW, Hsu KH, Hsu HJ, Lee CC, Sun CY, Tsai CJ, et al. Serum free p-cresyl sulfate levels predict cardiovascular and all-cause mortality in elderly hemodialysis patients – a prospective cohort study. Nephrol Dial Transplant 2012; 27(3): 1169–75. doi: 10.1093/ndt/gfr453


7.
Jing YJ, Ni JW, Ding FH, Fang YH, Wang XQ, Wang HB, et al. p-Cresyl sulfate is associated with carotid arteriosclerosis in hemodialysis patients and promotes atherogenesis in apoE-/- mice. Kidney Int 2016; 89(2): 439–49. doi: 10.1038/ki.2015.287


8.
Wang CH, Lai YH, Kuo CH, Lin YL, Tsai JP, Hsu BG. Association between serum indoxyl sulfate levels and endothelial function in non-dialysis chronic kidney disease. Toxins (Basel) 2019; 11(10): 589. doi: 10.3390/toxins11100589


9.
Jourde-Chiche N, Dou L, Cerini C, Dignat-George F, Brunet P. Vascular incompetence in dialysis patients – protein-bound uremic toxins and endothelial dysfunction. Semin Dial 2011; 24(3): 327–37. doi: 10.1111/j.1525-139X.2011.00925.x


10.
Eloueyk A, Osta B, Alameldinne R, Awad D. Uremic serum induces inflammation in cultured human endothelial cells and triggers vascular repair mechanisms. Inflammation 2019; 42(6): 2003–10. doi: 10.1007/s10753-019-01061-7


11.
Masai N, Tatebe J, Yoshino G, Morita T. Indoxyl sulfate stimulates monocyte chemoattractant protein-1 expression in human umbilical vein endothelial cells by inducing oxidative stress through activation of the NADPH oxidase-nuclear factor-kappaB pathway. Circ J 2010; 74(10): 2216–24. doi: 10.1253/circj.cj-10-0117


12.
Tumur Z, Shimizu H, Enomoto A, Miyazaki H, Niwa T. Indoxyl sulfate upregulates expression of ICAM-1 and MCP-1 by oxidative stress-induced NF-kappaB activation. Am J Nephrol 2010; 31(5): 435–41. doi: 10.1159/000299798


13.
Adelibieke Y, Yisireyili M, Ng HY, Saito S, Nishijima F, Niwa T. Indoxyl sulfate induces IL-6 expression in vascular endothelial and smooth muscle cells through OAT3-mediated uptake and activation of AhR/NF-kappaB pathway. Nephron Exp Nephrol 2014; 128(1–2): 1–8. doi: 10.1159/000365217


14.
Watanabe H, Miyamoto Y, Enoki Y, Ishima Y, Kadowaki D, Kotani S, et al. p-Cresyl sulfate, a uremic toxin, causes vascular endothelial and smooth muscle cell damages by inducing oxidative stress. Pharmacol Res Perspect 2015; 3(1): e00092. doi: 10.1002/prp2.92


15.
Maciel RA, Rempel LC, Bosquetti B, Finco AB, Pecoits-Filho R, Souza WM, et al. p-cresol but not p-cresyl sulfate stimulate MCP-1 production via NF-kappaB p65 in human vascular smooth muscle cells. J Bras Nefrol 2016; 38(2): 153–60. doi: 10.5935/0101-2800.20160024


16.
Li S, Xie Y, Yang B, Huang S, Zhang Y, Jia Z, et al. MicroRNA-214 targets COX-2 to antagonize indoxyl sulfate (IS)-induced endothelial cell apoptosis. Apoptosis 2020; 25(1–2): 92–104. doi: 10.1007/s10495-019-01582-4


17.
Ito S, Osaka M, Higuchi Y, Nishijima F, Ishii H, Yoshida M. Indoxyl sulfate induces leukocyte-endothelial interactions through up-regulation of E-selectin. J Biol Chem 2010; 285(50): 38869–75. doi: 10.1074/jbc.M110.166686


18.
Lee CT, Lee YT, Ng HY, Chiou TT, Cheng CI, Kuo CC, et al. Lack of modulatory effect of simvastatin on indoxyl sulfate-induced activation of cultured endothelial cells. Life Sci 2012; 90(1–2): 47–53. doi: 10.1016/j.lfs.2011.10.014


19.
Jourde-Chiche N, Fakhouri F, Dou L, Bellien J, Burtey S, Frimat M, et al. Endothelium structure and function in kidney health and disease. Nat Rev Nephrol 2019; 15(2): 87–108. doi: 10.1038/s41581-018-0098-z


20.
Okey AB, Bondy GP, Mason ME, Kahl GF, Eisen HJ, Guenthner TM, et al. Regulatory gene product of the Ah locus. Characterization of the cytosolic inducer-receptor complex and evidence for its nuclear translocation. J Biol Chem 1979; 254(22): 11636–48.


21.
Della Porta G, Dragani TA, Sozzi G. Carcinogenic effects of infantile and long-term 2,3,7,8-tetrachlorodibenzo-p-dioxin treatment in the mouse. Tumori 1987; 73(2): 99–107. doi: 10.1177/030089168707300203


22.
Mimura J, Yamashita K, Nakamura K, Morita M, Takagi TN, Nakao K, et al. Loss of teratogenic response to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in mice lacking the Ah (dioxin) receptor. Genes Cells 1997; 2(10): 645–54. doi: 10.1046/j.1365-2443.1997.1490345.x


23.
Mimura J, Fujii-Kuriyama Y. Functional role of AhR in the expression of toxic effects by TCDD. Biochim Biophys Acta 2003; 1619(3): 263–8. doi: 10.1016/s0304-4165(02)00485-3


24.
Schroeder JC, Dinatale BC, Murray IA, Flaveny CA, Liu Q, Laurenzana EM, et al. The uremic toxin 3-indoxyl sulfate is a potent endogenous agonist for the human aryl hydrocarbon receptor. Biochemistry 2010; 49(2): 393–400. doi: 10.1021/bi901786x


25.
Watanabe I, Tatebe J, Namba S, Koizumi M, Yamazaki J, Morita T. Activation of aryl hydrocarbon receptor mediates indoxyl sulfate-induced monocyte chemoattractant protein-1 expression in human umbilical vein endothelial cells. Circ J 2013; 77(1): 224–30. doi: 10.1253/circj.cj-12-0647


26.
Gondouin B, Cerini C, Dou L, Sallee M, Duval-Sabatier A, Pletinck A, et al. Indolic uremic solutes increase tissue factor production in endothelial cells by the aryl hydrocarbon receptor pathway. Kidney Int 2013; 84(4): 733–44. doi: 10.1038/ki.2013.133


27.
Kolachalama VB, Shashar M, Alousi F, Shivanna S, Rijal K, Belghasem ME, et al. Uremic solute-aryl hydrocarbon receptor-tissue factor axis associates with thrombosis after vascular injury in humans. J Am Soc Nephrol 2018; 29(3): 1063–72. doi: 10.1681/ASN.2017080929


28.
Dou L, Poitevin S, Sallee M, Addi T, Gondouin B, McKay N, et al. Aryl hydrocarbon receptor is activated in patients and mice with chronic kidney disease. Kidney Int 2018; 93(4): 986–99. doi: 10.1016/j.kint.2017.11.010


29.
Ito S, Osaka M, Edamatsu T, Itoh Y, Yoshida M. Crucial role of the Aryl Hydrocarbon Receptor (AhR) in indoxyl sulfate-induced vascular inflammation. J Atheroscler Thromb 2016; 23(8): 960–75. doi: 10.5551/jat.34462


30.
Shen WC, Liang CJ, Huang TM, Liu CW, Wang SH, Young GH, et al. Indoxyl sulfate enhances IL-1beta-induced E-selectin expression in endothelial cells in acute kidney injury by the ROS/MAPKs/NFkappaB/AP-1 pathway. Arch Toxicol 2016; 90(11): 2779–92. doi: 10.1007/s00204-015-1652-0


31.
Addi T, Poitevin S, McKay N, El Mecherfi KE, Kheroua O, Jourde-Chiche N, et al. Mechanisms of tissue factor induction by the uremic toxin indole-3 acetic acid through aryl hydrocarbon receptor/nuclear factor-kappa B signaling pathway in human endothelial cells. Arch Toxicol 2019; 93(1): 121–36. doi: 10.1007/s00204-018-2328-3


32.
Wakamatsu T, Yamamoto S, Ito T, Sato Y, Matsuo K, Takahashi Y, et al. Indoxyl Sulfate promotes macrophage IL-1beta production by activating aryl hydrocarbon receptor/NF-kappa/MAPK cascades, but the NLRP3 inflammasome was not activated. Toxins (Basel) 2018; 10(3): 124. doi: 10.3390/toxins10030124


33.
Kim HY, Yoo TH, Cho JY, Kim HC, Lee WW. Indoxyl sulfate-induced TNF-alpha is regulated by crosstalk between the aryl hydrocarbon receptor, NF-kappaB, and SOCS2 in human macrophages. FASEB J 2019; 33(10): 10844–58. doi: 10.1096/fj.201900730R


34.
Amakura Y, Tsutsumi T, Nakamura M, Kitagawa H, Fujino J, Sasaki K, et al. Preliminary screening of the inhibitory effect of food extracts on activation of the aryl hydrocarbon receptor induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Biol Pharm Bull 2002; 25(2): 272–4. doi: 10.1248/bpb.25.272


35.
Ashida H, Fukuda I, Yamashita T, Kanazawa K. Flavones and flavonols at dietary levels inhibit a transformation of aryl hydrocarbon receptor induced by dioxin. FEBS Lett 2000; 476(3): 213–7. doi: 10.1016/s0014-5793(00)01730-0


36.
Amakura Y, Tsutsumi T, Sasaki K, Yoshida T, Maitani T. Screening of the inhibitory effect of vegetable constituents on the aryl hydrocarbon receptor-mediated activity induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Biol Pharm Bull 2003; 26(12): 1754–60. doi: 10.1248/bpb.26.1754


37.
Kim H, Xue X. Detection of total reactive oxygen species in adherent cells by 2’,7’-dichlorodihydrofluorescein diacetate staining. J Vis Exp 2020;160. doi: 10.3791/60682


38.
Yang K, Nie L, Huang Y, Zhang J, Xiao T, Guan X, et al. Amelioration of uremic toxin indoxyl sulfate-induced endothelial cell dysfunction by Klotho protein. Toxicol Lett 2012; 215(2): 77–83. doi: 10.1016/j.toxlet.2012.10.004


39.
Shimizu H, Yisireyili M, Nishijima F, Niwa T. Stat3 contributes to indoxyl sulfate-induced inflammatory and fibrotic gene expression and cellular senescence. Am J Nephrol 2012; 36(2): 184–9. doi: 10.1159/000341515


40.
Ng HY, Yisireyili M, Saito S, Lee CT, Adelibieke Y, Nishijima F, et al. Indoxyl sulfate downregulates expression of Mas receptor via OAT3/AhR/Stat3 pathway in proximal tubular cells. PLoS One 2014; 9(3): e91517. doi: 10.1371/journal.pone.0091517


41.
Harlacher E, Wollenhaupt J, Baaten C, Noels H. Impact of uremic toxins on endothelial dysfunction in chronic kidney disease: a systematic review. Int J Mol Sci 2022; 23(1): 531. doi: 10.3390/ijms23010531


42.
Dou L, Sallee M, Cerini C, Poitevin S, Gondouin B, Jourde-Chiche N, et al. The cardiovascular effect of the uremic solute indole-3 acetic acid. J Am Soc Nephrol 2015; 26(4): 876–87. doi: 10.1681/ASN.2013121283


43.
Larigot L, Juricek L, Dairou J, Coumoul X. AhR signaling pathways and regulatory functions. Biochim Open 2018; 7: 1–9. doi: 10.1016/j.biopen.2018.05.001


44.
Saito S, Shimizu H, Yisireyili M, Nishijima F, Enomoto A, Niwa T. Indoxyl sulfate-induced activation of (pro)renin receptor is involved in expression of TGF-beta1 and alpha-smooth muscle actin in proximal tubular cells. Endocrinology 2014; 155(5): 1899–907. doi: 10.1210/en.2013-1937


45.
Bao YW, Yuan Y, Chen JH, Lin WQ. Kidney disease models: tools to identify mechanisms and potential therapeutic targets. Zool Res 2018; 39(2): 72–86. doi: 10.24272/j.issn.2095-8137.2017.055


46.
Sun CY, Chang SC, Wu MS. Uremic toxins induce kidney fibrosis by activating intrarenal renin-angiotensin-aldosterone system associated epithelial-to-mesenchymal transition. PLoS One 2012; 7(3): e34026. doi: 10.1371/journal.pone.0034026


47.
Song S, Meyer M, Turk TR, Wilde B, Feldkamp T, Assert R, et al. Serum cystatin C in mouse models: a reliable and precise marker for renal function and superior to serum creatinine. Nephrol Dial Transplant 2009; 24(4): 1157–61. doi: 10.1093/ndt/gfn626


48.
Li M, Kong J, Chen Y, Li Y, Xuan H, Liu M, et al. Comparative interaction study of soy protein isolate and three flavonoids (Chrysin, Apigenin and Luteolin) and their potential as natural preservatives. Food Chem 2023; 414: 135738. doi: 10.1016/j.foodchem.2023.135738


49.
Samarghandian S, Farkhondeh T, Azimi-Nezhad M. Protective effects of chrysin against drugs and toxic agents. Dose Response 2017; 15(2): 1559325817711782. doi: 10.1177/1559325817711782


50.
Sultana S, Verma K, Khan R. Nephroprotective efficacy of chrysin against cisplatin-induced toxicity via attenuation of oxidative stress. J Pharm Pharmacol 2012; 64(6): 872–81. doi: 10.1111/j.2042-7158.2012.01470.x


51.
Rashid S, Ali N, Nafees S, Hasan SK, Sultana S. Mitigation of 5-Fluorouracil induced renal toxicity by chrysin via targeting oxidative stress and apoptosis in wistar rats. Food Chem Toxicol 2014; 66: 185–93. doi: 10.1016/j.fct.2014.01.026


52.
Ali BH, Adham SA, Al Za’abi M, Waly MI, Yasin J, Nemmar A, et al. Ameliorative effect of chrysin on adenine-induced chronic kidney disease in rats. PLoS One 2015; 10(4): e0125285. doi: 10.1371/journal.pone.0125285


53.
Nguyen C, Edgley AJ, Kelly DJ, Kompa AR. Aryl hydrocarbon receptor inhibition restores indoxyl sulfate-mediated endothelial dysfunction in rat aortic rings. Toxins (Basel) 2022; 14(2): 100. doi: 10.3390/toxins14020100
Published
2024-07-31
How to Cite
Iwashima T., Takemura Y., Kishimoto Y., Ono C., Watanabe A., & Iida K. (2024). Natural antagonistic flavones for AhR inhibit indoxyl sulfate-induced inflammatory gene expression in vitro and renal pathological damages<em> in vivo</em&gt;. Food & Nutrition Research, 68. https://doi.org/10.29219/fnr.v68.10032
Section
Original Articles