Protein – a scoping review for Nordic Nutrition Recommendations 2023

  • Ólöf Guðný Geirsdóttir Faculty of Food Science and Nutrition, School of Health Science, University of Iceland, Reykjavik, Iceland
  • Anne-Maria Pajari Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
Keywords: dietary protein, amino acids, protein recommendations, essential amino acids, nitrogen balance, protein intake, protein turnover, protein bioavailability, protein quality

Abstract

Proteins are needed for providing essential amino acids, nitrogen, and fuel for the body’s needs in all age groups. Proteins are especially required during active growth in pregnancy, lactation, childhood, and tissue growth in general. An adequate protein intake is needed in old adults to avoid premature muscle loss. According to the current dietary surveys, protein intake in the Nordic and Baltic countries varies from 15 to 19% of the total energy intake in adults. Comprehensive data regarding children and older adults are lacking. No good measure for protein status exists, and the estimation of physiological requirements is based on N-balance studies having some weaknesses. Protein quality is assessed by considering the protein digestibility of individual indispensable amino acids and their utilization (bioavailability), which is affected by food antinutrients and processing. The evidence regarding the association of protein intake per se with health outcomes is limited or suggestive. It is difficult to separate from the effect of other nutrients or ingredients in protein-rich foods. Proteins are widespread in foods, deriving from both animal and plant sources. Animal-sourced protein production puts more strain on the environment than plant-sourced proteins and contributes significantly to greenhouse gas emissions, thereby enhancing climate change. In Nordic and Baltic countries, consumption of animal-sourced proteins is relatively high. A shift toward more plant-based protein diets would be advisable for promoting a healthy and sustainable diet.

Downloads

Download data is not yet available.

References


1.
Warensjö Lemming E, Pitsi T. The Nordic Nutrition Recommendations 2022 – food consumption and nutrient intake in the adult population of the Nordic and Baltic countries. Food Nutr Res. 2022; 66: e8572. doi: 10.29219/fnr.v66.8572

2.
Samuelsson J, Rothenberg E, Lissner L, Eiben G, Zettergren A, Skoog I. Time trends in nutrient intake and dietary patterns among five birth cohorts of 70-year-olds examined 1971–2016: results from the Gothenburg H70 birth cohort studies, Sweden. Nutr J. 2019; 18(1): 66. doi: 10.1186/s12937-019-0493-8

3.
Karlsson M, Becker W, Cederholm TE, Byberg L. A posteriori dietary patterns in 71-year-old Swedish men and the prevalence of sarcopenia 16 years later. Br J Nutr. 2021; 128(5): 1–12. doi: 10.1017/S0007114521003901

4.
Wang R, Fratiglioni L, Liang Y, Welmer AK, Xu W, Mangialasche F, et al. Prevalence, pharmacological treatment, and control of cardiometabolic risk factors among older people in central Stockholm: a population-based study. PLoS One. 2015; 10(3): e0119582. doi: 10.1371/journal.pone.0119582

5.
Castro-Mejía JL, Khakimov B, Krych Ł, Bülow J, Bechshøft RL, Højfeldt G, et al. Physical fitness in community-dwelling older adults is linked to dietary intake, gut microbiota, and metabolomic signatures. Aging Cell. 2020; 19(3): e13105. doi: 10.1111/acel.13105

6.
Helgadottir H, Thorisdottir B, Gunnarsdottir I, Halldorsson TI, Palsson G, Thorsdottir I. Lower intake of saturated fatty acids is associated with improved lipid profile in a 6-year-old nationally representative population. Nutrients. 2022; 14(3): e671. doi: 10.3390/nu14030671

7.
World Health Organization, Food and Agriculture Organization of the United Nations. Nitrogen and protein content measurement and nitrogen to protein conversion factors for dairy and soy protein-based foods: a systematic review and modelling analysis. Geneva: World Health Organization; 2019.

8.
Krul E. Calculation of nitrogen–to–protein conversion factors: a review with a focus on soy protein. J Am Oil Chem Soc. 2019; 96: 339–64. doi: 10.1002/aocs.12196

9.
Reeds PJ. Dispensable and indispensable amino acids for humans. J Nutr. 2000; 130(7): 1835s–40s. doi: 10.1093/jn/130.7.1835S

10.
Uauy R, Greene HL, Heird W. Conditionally essential nutrients: cysteine, taurine, tyrosine, arginine, glutamine, choline, inositol and nucleotides. Nutritional needs of the preterm infant. Pawling NY: Caduceus Medical Publishers Inc.; 1993.

11.
Williams JZ, Abumrad N, Barbul A. Effect of a specialized amino acid mixture on human collagen deposition. Ann Surg. 2002; 236(3): 369–74; discussion 374–5. doi: 10.1097/00000658-200209000-00013

12.
Hendrickson NR, et al. Conditionally essential amino acid supplementation reduces postoperative complications and muscle wasting after fracture fixation: a randomized controlled trial. J Bone Joint Surg Am. 2022; 104(9): 759–66. doi: 10.2106/JBJS.21.01014

13.
Wang B, Wu G, Zhou Z, Dai Z, Sun Y, Ji Y, et al. Glutamine and intestinal barrier function. Amino Acids. 2015; 47(10): 2143–54. doi: 10.1007/s00726-014-1773-4

14.
Blomhoff R, Andersen R, Arnesen EK, Christensen JJ, Eneroth H, Erkkola M, et al. Nordic Nutrition Recommendations 2023: integrating environmental aspects. Nord. Copenhagen: Nordisk Ministerråd; 2023, p. 388.

15.
Christensen JJ, Arnesen EK, Andersen R, Eneroth H, Erkkola M, Høyer A, et al. The Nordic Nutrition Recommendations 2022 – principles and methodologies. Food Nutr Res. 2020; 64: e4402. doi: 10.29219/fnr.v64.4402

16.
Stipanuk MH, Caudill MA. Biochemical, physiological, and molecular aspects of human nutrition. 4 ed. New York, NY: Elsevire Publication; 2019.

17.
FAO Expert Consultation. Dietary protein quality evaluation in human nutrition. FAO Food Nutritional Paper. Auckland: FAO; 2013, p. 1–66.

18.
Lee WT, Weisell R, Albert J, Tomé D, Kurpad AV, Uauy R. Research approaches and methods for evaluating the protein quality of human foods proposed by an FAO expert working group in 2014. J Nutr. 2016; 146(5): 929–32. doi: 10.3945/jn.115.222109

19.
Bandyopadhyay S, Kashyap S, Calvez J, Devi S, Azzout-Marniche D, Tomé D, et al. Evaluation of protein quality in humans and insights on stable isotope approaches to measure digestibility – a review. Adv Nutr. 2022; 13(4): 1131–43. doi: 10.1093/advances/nmab134

20.
Herreman L, Nommensen P, Pennings B, Laus MC. Comprehensive overview of the quality of plant- And animal-sourced proteins based on the digestible indispensable amino acid score. Food Sci Nutr. 2020; 8(10): 5379–91. doi: 10.1002/fsn3.1809

21.
Sarwar Gilani G, Wu Xiao C, Cockell KA. Impact of antinutritional factors in food proteins on the digestibility of protein and the bioavailability of amino acids and on protein quality. Br J Nutr. 2012; 108 Suppl 2: S315–32. doi: 10.1017/S0007114512002371

22.
Joye I. Protein digestibility of cereal products. Foods. 2019; 8(6): e199. doi: 10.3390/foods8060199

23.
Päivärinta E, Itkonen ST, Pellinen T, Lehtovirta M, Erkkola M, Pajari AM. Replacing animal-based proteins with plant-based proteins changes the composition of a whole nordic diet – a randomised clinical trial in healthy finnish adults. Nutrients. 2020; 12(4): e943. doi: 10.3390/nu12040943

24.
Pellinen T, Päivärinta E, Isotalo J, Lehtovirta M, Itkonen ST, Korkalo L, et al. Replacing dietary animal-source proteins with plant-source proteins changes dietary intake and status of vitamins and minerals in healthy adults: a 12-week randomized controlled trial. Eur J Nutr. 2022; 61(3): 1391–404.

25.
Itkonen ST, Päivärinta E, Pellinen T, Viitakangas H, Risteli J, Erkkola M, et al. Partial replacement of animal proteins with plant proteins for 12 weeks accelerates bone turnover among healthy adults: a randomized clinical trial. J Nutr. 2021; 151(1): 11–19. doi: 10.1007/s00394-021-02729-3

26.
Kaartinen NE, Tapanainen H, Maukonen M, Päivärinta E, Valsta LM, Itkonen ST, et al. Partial replacement of red and processed meat with legumes: a modelling study of the impact on nutrient intakes and nutrient adequacy on the population level. Public Health Nutr. 2022; 7: 1–12. doi: 10.1017/S1368980022002440

27.
Ten Haaf DSM, van Dongen EJI, Nuijten MAH, Eijsvogels TMH, de Groot L, Hopman MTE. Protein intake and distribution in relation to physical functioning and quality of life in community-dwelling elderly people: acknowledging the role of physical activity. Nutrients. 2018; 10(4): nu10040506. doi: 10.3390/nu10040506

28.
Loenneke JP, Loprinzi PD, Murphy CH, Phillips SM. Per meal dose and frequency of protein consumption is associated with lean mass and muscle performance. Clin Nutr. 2016; 35(6): 1506–11. doi: 10.1016/j.clnu.2016.04.002

29.
Waterlow JC. Whole-body protein turnover in humans – past, present, and future. Annu Rev Nutr. 1995; 15: 57–92. doi: 10.1146/annurev.nu.15.070195.000421

30.
Millward DJ. Nutrition and sarcopenia: evidence for an interaction. Proc Nutr Soc. 2012; 71(4): 566–75. doi: 10.1017/S0029665112000201

31.
Eckart A, Struja T, Kutz A, Baumgartner A, Baumgartner T, Zurfluh S, et al. Relationship of nutritional status, inflammation, and serum albumin levels during acute illness: a prospective study. Am J Med. 2020; 133(6): 713–22.e7. doi: 10.1016/j.amjmed.2019.10.031

32.
Bharadwaj S, Ginoya S, Tandon P, Gohel TD, Guirguis J, Vallabh H, et al. Malnutrition: laboratory markers vs nutritional assessment. Gastroenterol Rep 2016; 4(4): 272–80. doi: 10.1093/gastro/gow013

33.
Zhang Z, Pereira SL, Luo M, Matheson EM. Evaluation of blood biomarkers associated with risk of malnutrition in older adults: a systematic review and meta-analysis. Nutrients. 2017; 9(8): e829. doi: 10.3390/nu9080829

34.
Joint WHO/FAO/UNU Expert Consultation. Protein and amino acid requirements in human nutrition: report of a joint FAO/WHO/UNU expert consultation. Geneva: World Health Organization; 2007.

35.
Van Elswyk ME, Weatherford CA, McNeill SH. A systematic review of renal health in healthy individuals associated with protein intake above the US recommended daily allowance in randomized controlled trials and observational studies. Adv Nutr. 2018; 9(4): 404–18. doi: 10.1093/advances/nmy026

36.
Van Elswyk ME, Weatherford CA, McNeill SH. Evaluation of protein requirements for trained strength athletes. J Appl Physiol (1985). 1992; 73(5): 1986–95. doi: 10.1152/jappl.1992.73.5.1986

37.
Gunnarsdóttir S, Þorgeirsdóttir H, Torfadóttir JE, Steingrímsdóttir L, Tryggvadóttir EA, Geirsdóttir ÓG, et al. Könnun á mataræði Íslendinga 2019–2021 – Helstu niðurstöður og samanburður við könnun frá 2010–2011, in Könnun á mataræði Íslendinga. Reykjavík: Embætti landlæknis og Rannsóknastofa ínæringarfræði við Háskóla Íslands; 2022.

38.
Moon J, Koh G. Clinical evidence and mechanisms of high-protein diet-induced weight loss. J Obes Metab Syndr. 2020; 29(3): 166–73. doi: 10.7570/jomes20028

39.
Schwingshackl L, Hoffmann G. Long-term effects of low-fat diets either low or high in protein on cardiovascular and metabolic risk factors: a systematic review and meta-analysis. Nutr J. 2013; 12: 48. doi: 10.1186/1475-2891-12-48

40.
Rolland-Cachera MF, Deheeger M, Akrout M, Bellisle F. Influence of macronutrients on adiposity development: a follow up study of nutrition and growth from 10 months to 8 years of age. Int J Obes Relat Metab Disord. 1995; 19(8): 573–8.

41.
Madsen AL, Larnkjær A, Mølgaard C, Michaelsen KF. IGF-I and IGFBP-3 in healthy 9 month old infants from the SKOT cohort: breastfeeding, diet, and later obesity. Growth Horm IGF Res. 2011; 21(4): 199–204. doi: 10.1016/j.ghir.2011.05.003

42.
Larnkjaer A, Ingstrup HK, Schack-Nielsen L, Hoppe C, Mølgaard C, Skovgaard IM, et al. Early programming of the IGF-I axis: negative association between IGF-I in infancy and late adolescence in a 17-year longitudinal follow-up study of healthy subjects. Growth Horm IGF Res. 2009; 19(1): 82–6. doi: 10.1016/j.ghir.2008.06.003

43.
Hörnell A, Lagström H, Lande B, Thorsdottir I. Protein intake from 0 to 18 years of age and its relation to health: a systematic literature review for the 5th Nordic Nutrition Recommendations. Food Nutr Res. 2013; 57: e21083. doi: 10.3402/fnr.v57i0.21083

44.
Tian S, Xu Q, Jiang R, Han T, Sun C, Na L. Dietary protein consumption and the risk of type 2 diabetes: a systematic review and meta-analysis of cohort studies. Nutrients. 2017; 9(9): 982. doi: 10.3390/nu9090982

45.
Virtanen HEK, Koskinen TT, Voutilainen S, Mursu J, Tuomainen TP, Kokko P, et al. Intake of different dietary proteins and risk of type 2 diabetes in men: the Kuopio Ischaemic Heart Disease Risk Factor Study. Br J Nutr. 2017; 117(6): 882–93. doi: 10.1017/S0007114517000745

46.
Chen Z, Franco OH, Lamballais S, Ikram MA, Schoufour JD, Muka T, et al. Associations of specific dietary protein with longitudinal insulin resistance, prediabetes and type 2 diabetes: The Rotterdam Study. Clin Nutr. 2020; 39(1): 242–9. doi: 10.1016/j.clnu.2019.01.021

47.
Laffel LM, Kanapka LG, Beck RW, Bergamo K, Clements MA, Criego A, et al. Effect of continuous glucose monitoring on glycemic control in adolescents and young adults with type 1 diabetes: a randomized clinical trial. JAMA. 2020; 323(23): 2388–96. doi: 10.1001/jama.2020.6940

48.
Naghshi S, Sadeghi O, Willett WC, Esmaillzadeh A. Dietary intake of total, animal, and plant proteins and risk of all cause, cardiovascular, and cancer mortality: systematic review and dose-response meta-analysis of prospective cohort studies. BMJ. 2020; 370: m2412. doi: 10.1136/bmj.m2412

49.
Thorpe MP, Evans EM. Dietary protein and bone health: harmonizing conflicting theories. Nutr Rev. 2011; 69(4): 215–30. doi: 10.1111/j.1753-4887.2011.00379.x

50.
Lamberg-Allardt C, Bärebring L, Arnesen EK, Nwaru BI, Thorisdottir B, Ramel A, et al. Animal versus plant-based protein and risk of cardiovascular disease and type 2 diabetes: a systematic review of randomized controlled trials and prospective cohort studies. Food Nutr Res. 2023; 67: e9003. doi: 10.29219/fnr.v67.9003

51.
Sahni S, Cupples LA, McLean RR, Tucker KL, Broe KE, Kiel DP, et al. Protective effect of high protein and calcium intake on the risk of hip fracture in the Framingham offspring cohort. J Bone Miner Res. 2010; 25(12): 2770–6. doi: 10.1002/jbmr.194

52.
EFSA Panel on Dietetic Products, Nutrition and Allergies. Scientific opinion on dietary reference values for protein. EFSA J. 2012; 10(2): 2557. doi: 10.2903/j.efsa.2012.2557

53.
Dawson-Hughes B, Harris SS. Calcium intake influences the association of protein intake with rates of bone loss in elderly men and women. Am J Clin Nutr. 2002; 75(4): 773–9. doi: 10.1093/ajcn/75.4.773

54.
Pedersen AN, Kondrup J, Børsheim E. Health effects of protein intake in healthy adults: a systematic literature review. Food Nutr Res. 2013; 57: e21245. doi: 10.3402/fnr.v57i0.21245

55.
Munger RG, Cerhan JR, Chiu BC. Prospective study of dietary protein intake and risk of hip fracture in postmenopausal women. Am J Clin Nutr. 1999; 69(1): 147–52. doi: 10.1093/ajcn/69.1.147

56.
Devries MC, Sithamparapillai A, Brimble KS, Banfield L, Morton RW, Phillips SM. Changes in kidney function do not differ between healthy adults consuming higher- compared with lower- or normal-protein diets: a systematic review and meta-analysis. J Nutr. 2018; 148(11): 1760–75.

57.
Pedersen AN, Cederholm T. Health effects of protein intake in healthy elderly populations: a systematic literature review. Food Nutr Res. 2014; 11(58): e23364. doi: 10.3402/fnr.v58.23364

58.
Bruci A, Tuccinardi D, Tozzi R, Balena A, Santucci S, Frontani R, et al. Very low-calorie ketogenic diet: a safe and effective tool for weight loss in patients with obesity and mild kidney failure. Nutrients. 2020; 12(2): e333.

59.
Acharya P, Acharya C, Thongprayoon C, Hansrivijit P, Kanduri SR, Kovvuru K, et al. Incidence and characteristics of kidney stones in patients on ketogenic diet: a systematic review and meta-analysis. Diseases. 2021; 9(2): 39. doi: 10.3390/diseases9020039

60.
Lai R, Bian Z, Lin H, Ren J, Zhou H, Guo H. The association between dietary protein intake and colorectal cancer risk: a meta-analysis. World J Surg Oncol. 2017; 15(1): 169. doi: 10.1186/s12957-017-1241-1

61.
Liao LM, Loftfield E, Etemadi A, Graubard BI, Sinha R. Substitution of dietary protein sources in relation to colorectal cancer risk in the NIH-AARP cohort study. Cancer Causes Control. 2019; 30(10): 1127–35. doi: 10.1007/s10552-019-01210-1

62.
Clinton SK, Giovannucci EL, Hursting SD. The World Cancer Research Fund/American Institute for Cancer Research Third Expert Report on diet, nutrition, physical activity, and cancer: impact and future directions. J Nutr. 2020; 150(4): 663–71. doi: 10.1093/jn/nxz268

63.
Kong F, Geng E, Ning J, Liu Z, Wang A, Zhang S, et al. The association between dietary protein intake and esophageal cancer risk: a meta-analysis. Biosci Rep. 2020; 40(1): BSR20193692.

64.
Mao Y, Tie Y, Du J. Association between dietary protein intake and prostate cancer risk: evidence from a meta-analysis. World J Surg Oncol. 2018; 16(1): 152. doi: 10.1186/s12957-018-1452-0

65.
Wu J, Zeng R, Huang J, Li X, Zhang J, Ho J, et al. Dietary protein sources and incidence of breast cancer: a dose-response meta-analysis of prospective studies. Nutrients. 2016; 8(11): 730. doi: 10.3390/nu8110730

66.
Song M, Fung TT, Hu FB, Willett WC, Longo VD, Chan AT, et al. Association of animal and plant protein intake with all-cause and cause-specific mortality. JAMA Intern Med. 2016; 176(10): 1453–63.

67.
Schwingshackl L, Schwedhelm C, Hoffmann G, Lampousi AM, Knüppel S, Iqbal K, et al. Food groups and risk of all-cause mortality: a systematic review and meta-analysis of prospective studies. Am J Clin Nutr. 2017; 105(6): 1462–73. doi: 10.3945/ajcn.117.153148

68.
Qi X-X, Shen P. Associations of dietary protein intake with all-cause, cardiovascular disease, and cancer mortality: a systematic review and meta-analysis of cohort studies. Nutr Metab Cardiovasc Dis. 2020; 30(7): 1094–105.

69.
Nachvak SM, Moradi S, Anjom-Shoae J, Rahmani J, Nasiri M, Maleki V, et al. Soy, soy isoflavones, and protein intake in relation to mortality from all causes, cancers, and cardiovascular diseases: a systematic review and dose-response meta-analysis of prospective cohort studies. J Acad Nutr Diet. 2019; 119(9): 1483–500.e17. doi: 10.1016/j.jand.2019.04.011

70.
Huang J, Liao LM, Weinstein SJ, Sinha R, Graubard BI, Albanes D, et al. Association between plant and animal protein intake and overall and cause-specific mortality. JAMA Intern Med. 2020; 180(9): 1173–84. doi: 10.1001/jamainternmed.2020.2790

71.
Langsetmo L, Harrison S, Jonnalagadda S, Pereira SL, Shikany JM, Farsijani S, et al. Low protein intake irrespective of source is associated with higher mortality among older community-dwelling men. J Nutr Health Aging. 2020; 24(8): 900–5. doi: 10.1007/s12603-020-1422-4

72.
Chen Z, Glisic M, Song M, Aliahmad HA, Zhang X, Moumdjian AC, et al. Dietary protein intake and all-cause and cause-specific mortality: results from the Rotterdam Study and a meta-analysis of prospective cohort studies. Eur J Epidemiol. 2020; 35(5): 411–29. doi: 10.1007/s10654-020-00607-6

73.
Wu G. Amino acids: biochemistry and nutrition. 2 ed. Boca Raton, FL: CRC Press; 2021, p. 816.

74.
Trumbo P, Schlicker S, Yates AA, Poos M. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J Am Diet Assoc. 2002; 102(11): 1621–30. doi: 10.1016/S0002-8223(02)90346-9

75.
Rand WM, Pellett PL, Young VR. Meta-analysis of nitrogen balance studies for estimating protein requirements in healthy adults. Am J Clin Nutr. 2003; 77(1): 109–27. doi: 10.1093/ajcn/77.1.109

76.
Li SS, Blanco Mejia S, Lytvyn L, Stewart SE, Viguiliouk E, Ha V, et al. Effect of plant protein on blood lipids: a systematic review and meta-analysis of randomized controlled trials. J Am Heart Assoc. 2017; 6(12): e006659.

77.
Koletzko B, Demmelmair H, Grote V, Totzauer M. Optimized protein intakes in term infants support physiological growth and promote long-term health. Semin Perinatol. 2019; 43(7): 151153. doi: 10.1053/j.semperi.2019.06.001

78.
Dietary protein quality evaluation in human nutrition. Report of an FAQ Expert Consultation. FAO Food Nutr Pap. 2013; 92: 1–66.

79.
Koletzko B, von Kries R, Closa R, Escribano J, Scaglioni S, Giovannini M, et al. Lower protein in infant formula is associated with lower weight up to age 2 y: a randomized clinical trial. Am J Clin Nutr. 2009; 89(6): 1836–45. doi: 10.3945/ajcn.2008.27091

80.
Patro-Gołąb B, Zalewski BM, Kouwenhoven SM, Karaś J, Koletzko B, Bernard van Goudoever J, et al. Protein concentration in milk formula, growth, and later risk of obesity: a systematic review. J Nutr. 2016; 146(3): 551–64. doi: 10.3945/jn.115.223651

81.
Voortman T, Vitezova A, Bramer WM, Ars CL, Bautista PK, Buitrago-Lopez A, et al. Effects of protein intake on blood pressure, insulin sensitivity and blood lipids in children: a systematic review. Br J Nutr. 2015; 113(3): 383–402. doi: 10.1017/S0007114514003699

82.
Günther AL, Karaolis-Danckert N, Kroke A, Remer T, Buyken AE. Dietary protein intake throughout childhood is associated with the timing of puberty. J Nutr. 2010; 140(3): 565–71. doi: 10.3945/jn.109.114934

83.
Moslehi N, Asghari G, Mirmiran P, Azizi F. Longitudinal association of dietary sources of animal and plant protein throughout childhood with menarche. BMC Pediatr. 2021; 21(1): 206.

84.
German Society for Nutrition. Protein [Internet]. German Society for Nutrition; 2017. Available from: webmaster@dge.de [cited 29 October 2023].

85.
Nowson C, O’Connell S. Protein requirements and recommendations for older people: a review. Nutrients. 2015; 7(8): 6874–99. doi: 10.3390/nu7085311

86.
Esmarck B, Anersen JL, Olsen S, Richter EA, Mizuno M, Kjaer M. Timing of postexercise protein intake is important for muscle hypertrophy with resistance training in elderly humans. J Physiol. 2001; 535(Pt 1): 301–11.

87.
Hughes VA, et al. Longitudinal changes in body composition in older men and women: role of body weight change and physical activity. Am J Clin Nutr. 2002; 76(2): 473–81. doi: 10.1093/ajcn/76.2.473

88.
Hogan DB. Chapter 3 – models, definitions, and criteria for frailty. In: Ram JL, Conn PM, eds. Conn’s handbook of models for human aging (Second Edition). Oxford: Academic Press; 2018, pp. 35–44.

89.
Bhasin S, Travison TG, Manini TM, Patel S, Pencina KM, Fielding RA, et al. Sarcopenia definition: the position statements of the sarcopenia definition and outcomes consortium. J Am Geriatr Soc. 2020; 68(7): 1410–8. doi: 10.1111/jgs.16372

90.
Abellan van Kan G, Rolland Y, Bergman H, Morley JE, Kritchevsky SB, Vellas B. The I.A.N.A Task Force on frailty assessment of older people in clinical practice. J Nutr Health Aging. 2008; 12(1): 29–37. doi: 10.1007/BF02982161

91.
Coelho-Júnior HJ, Milano-Teixeira L, Rodrigues B, Bacurau R, Marzetti E, Uchida M. Relative protein intake and physical function in older adults: a systematic review and meta-analysis of observational studies. Nutrients. 2018; 10(9): nu10091330. doi: 10.3390/nu10091330

92.
Liao CD, Tsauo JY, Wu YT, Cheng CP, Chen HC, Huang YC, et al. Effects of protein supplementation combined with resistance exercise on body composition and physical function in older adults: a systematic review and meta-analysis. Am J Clin Nutr. 2017; 106(4): 1078–91. doi: 10.3945/ajcn.116.143594

93.
Mendonça N, Hengeveld LM, Visser M, Presse N, Canhão H, Simonsick EM, et al. Low protein intake, physical activity, and physical function in European and North American community-dwelling older adults: a pooled analysis of four longitudinal aging cohorts. Am J Clin Nutr. 2021; 114(1): 29–41. doi: 10.1093/ajcn/nqab051

94.
Finger D, Goltz FR, Umpierre D, Meyer E, Rosa LH, Schneider CD. Effects of protein supplementation in older adults undergoing resistance training: a systematic review and meta-analysis. Sports Med. 2015; 45(2): 245–55. doi: 10.1007/s40279-014-0269-4

95.
Xu ZR, Tan ZJ, Zhang Q, Gui QF, Yang YM. Clinical effectiveness of protein and amino acid supplementation on building muscle mass in elderly people: a meta-analysis. PLoS One. 2014; 9(9): e109141. doi: 10.1371/journal.pone.0109141

96.
Nordic Nutrition Recommendations 2012: Integrating nutrition and physical activity. 5 ed. Nord. Copenhagen: Nordisk Ministerråd; 2014, p. 627.

97.
Rizzoli R, Stevenson JC, Bauer JM, van Loon LJ, Walrand S, Kanis JA, et al. The role of dietary protein and vitamin D in maintaining musculoskeletal health in postmenopausal women: a consensus statement from the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO). Maturitas. 2014; 79(1): 122–32. doi: 10.1016/j.maturitas.2014.07.005

98.
Volkert D, Beck AM, Cederholm T, Cruz-Jentoft A, Goisser S, Hooper L, et al. ESPEN guideline on clinical nutrition and hydration in geriatrics. Clin Nutr. 2019; 38(1): 10–47.

99.
Hengeveld LM, de Goede J, Afman LA, Bakker SJL, Beulens JWJ, Blaak EE, et al. Health effects of increasing protein intake above the current population reference intake in older adults: a systematic review of the Health Council of the Netherlands. Adv Nutr. 2022; 13(4): 1083–117. doi: 10.1093/advances/nmab140

100.
Fenton TR, Tough SC, Lyon AW, Eliasziw M, Hanley DA. Causal assessment of dietary acid load and bone disease: a systematic review & meta-analysis applying Hill’s epidemiologic criteria for causality. Nutr J. 2011; 10: 41. doi: 10.1186/1475-2891-10-41

101.
Altorf-van der Kuil W, Engberink MF, Brink EJ, van Baak MA, Bakker SJ, Navis G, et al. Dietary protein and blood pressure: a systematic review. PLoS One. 2010; 5(8): e12102. doi: 10.1371/journal.pone.0012102

102.
Bankir L, Bouby N, Trinh-Trang-Tan MM, Ahloulay M, Promeneur D. Direct and indirect cost of urea excretion. Kidney Int. 1996; 49(6): 1598–607. doi: 10.1038/ki.1996.232

103.
Walrand S, Short KR, Bigelow ML, Sweatt AJ, Hutson SM, Nair KS. Functional impact of high protein intake on healthy elderly people. Am J Physiol Endocrinol Metab. 2008; 295(4): E921–8. doi: 10.1152/ajpendo.90536.2008

104.
Bosch JP, Lew S, Glabman S, Lauer A. Renal hemodynamic changes in humans. Response to protein loading in normal and diseased kidneys. Am J Med. 1986; 81(5): 809–15.

105.
Knight EL, Stampfer MJ, Hankinson SE, Spiegelman D, Curhan GC. The impact of protein intake on renal function decline in women with normal renal function or mild renal insufficiency. Ann Intern Med. 2003; 138(6): 460–7. doi: 10.7326/0003-4819-138-6-200303180-00009

106.
Friedman AN. High-protein diets: potential effects on the kidney in renal health and disease. Am J Kidney Dis. 2004; 44(6): 950–62. doi: 10.1053/j.ajkd.2004.08.020

107.
Thomas DT, Erdman KA, Burke LM. Position of the academy of nutrition and dietetics, dietitians of canada, and the american college of sports medicine: nutrition and athletic performance. J Acad Nutr Diet. 2016; 116(3): 501–28. doi: 10.1016/j.jand.2015.12.006

108.
Rodriguez NR, Vislocky LM, Gaine PC. Dietary protein, endurance exercise, and human skeletal-muscle protein turnover. Curr Opin Clin Nutr Metab Care. 2007; 10(1): 40–5. doi: 10.1097/MCO.0b013e3280115e3b

109.
Morton RW, Murphy KT, McKellar SR, Schoenfeld BJ, Henselmans M, Helms E, et al. A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. Br J Sports Med. 2018; 52(6): 376–84. doi: 10.1136/bjsports-2017-097608

110.
Messina M, Lynch H, Dickinson JM, Reed KE. No difference between the effects of supplementing with soy protein versus animal protein on gains in muscle mass and strength in response to resistance exercise. Int J Sport Nutr Exerc Metab. 2018; 28(6): 674–85. doi: 10.1123/ijsnem.2018-0071

111.
Lim MT, Pan BJ, Toh DWK, Sutanto CN, Kim JE. Animal protein versus plant protein in supporting lean mass and muscle strength: a systematic review and meta-analysis of randomized controlled trials. Nutrients. 2021; 13(2): nu13020661. doi: 10.3390/nu13020661
Published
2023-12-12
How to Cite
Geirsdóttir Ólöf G., & Pajari A.-M. (2023). Protein – a scoping review for Nordic Nutrition Recommendations 2023. Food & Nutrition Research, 67. https://doi.org/10.29219/fnr.v67.10261
Section
Nordic Nutrition Recommendations

Most read articles by the same author(s)