Adipose tissue-derived extracellular vesicles from obese mice suppressed splenocyte-mediated pancreatic cancer cell death

  • Inae Jeong Division of Food and Nutrition, Chonnam National University, Gwangju, Republic of Korea
  • Shinjung Park Division of Food and Nutrition, Chonnam National University, Gwangju, Republic of Korea
  • Jinbum Park Division of Food and Nutrition, Chonnam National University, Gwangju, Republic of Korea
  • Ok-Kyung Kim Division of Food and Nutrition, Chonnam National University, Gwangju, Republic of Korea
Keywords: obesity, adipose tissue, extracellular vesicles, pancreatic cancer, immunity

Abstract

Background: Obesity is a risk factor for pancreatic cancer and negatively contributes to the immune system. However, the mechanisms by which obesity mediates these actions are still poorly understood. Recent studies have demonstrated that extracellular vesicles (EVs) are key mediators of communication between cells and may influence various aspects of cancer progression.

Objectives: We aim to explore the influence of EVs derived from adipose tissue of obese mice on cytokine production within the interactions between cancer cells and immune cells.

Design: We isolated EVs from the adipose tissue of both C57BL6/J mice and Ob/Ob mice. Subsequently, we treated EVs with Panc02 cells, the murine ductal pancreatic cancer cell line, which were co-cultured with splenocytes. Viability and SMAD4 gene expression were examined in Panc02 cells, and cytokine concentrations of IL-6, IL-4, IL-12, and IL-12p70 were measured in the cultured medium.

Results: Interestingly, we observed a significant reduction in splenocyte-mediated Panc02 cell death when treated with EVs derived from the adipose tissue of Ob/Ob mice, compared to those from C57BL6/J mice. Additionally, EVs from Ob/Ob mice-derived adipose tissue significantly increased the levels of IL-4, IL-2, and IL-12p70 in the culture media of Panc02 cells co-cultured with splenocytes, compared to EVs from C57BL6/J mice-derived adipose tissue.

Conclusion: Adipose tissue-derived EVs from obese mice suppressed splenocyte-mediated Panc02 cell death and upregulated IL-4, IL-2, and IL-12p70 in cultured medium.

Downloads

Download data is not yet available.

References


1.
Ahmed B, Sultana R, Greene MW. Adipose tissue and insulin resistance in obese. Biomed Pharmacother 2021; 137: 111315. doi: 10.1016/j.biopha.2021.111315


2.
Blüher M. Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol 2019; 15(5): 288–98. doi: 10.1038/s41574-019-0176-8


3.
Wen X, Zhang B, Wu B, Xiao H, Li Z, Li R, et al. Signaling pathways in obesity: mechanisms and therapeutic interventions. Signal Transduct Target The 2022; 7(1): 298. doi: 10.1038/s41392-022-01149-x


4.
Pati S, Irfa W, Jameel A, Ahmed S, Shahid RK. Obesity and cancer: a current overview of epidemiology, pathogenesis, outcomes, and management. Cancers 2023; 15(2): 485. doi: 10.3390/cancers15020485


5.
Aune D, Greenwood DC, Chan DS, Vieira R, Vieira AR, Navarro Rosenblatt DA, et al. Body mass index, abdominal fatness and pancreatic cancer risk: a systematic review and non-linear dose-response meta-analysis of prospective studies. Ann Oncol 2012; 23(4): 843–52. doi: 10.1093/annonc/mdr398


6.
Petrelli F, Cortellini A, Indini A, Tomasello G, Ghidini M, Nigro O, et al. Association of obesity with survival outcomes in patients with cancer: a systematic review and meta-analysis. JAMA Netw Open 2021; 4(3): e213520. doi: 10.1001/jamanetworkopen.2021.3520


7.
Kamisawa T, Wood LD, Itoi T, Takaori K. Pancreatic cancer. Lancet 2016; 388(10039): 73–85. doi: 10.1016/S0140-6736(16)00141-0


8.
Cai J, Chen H, Lu M, Zhang Y, Lu B, You L, et al. Advances in the epidemiology of pancreatic cancer: trends, risk factors, screening, and prognosis. Cancer Lett 2021; 520: 1–11. doi: 10.1016/j.canlet.2021.06.027


9.
Lu W, Li X, Luo Y. FGF21 in obesity and cancer: new insights. Cancer Lett 2021; 499: 5–13. doi: 10.1016/j.canlet.2020.11.026


10.
Philip B, Roland CL, Daniluk J, Liu Y, Chatterjee D, Gomez SB, et al. A high-fat diet activates oncogenic Kras and COX2 to induce development of pancreatic ductal adenocarcinoma in mice. Gastroenterology 2013; 145(6): 1449–58. doi: 10.1053/j.gastro.2013.08.018


11.
Harvey AE, Lashinger LM, Hays D, Harrison LM, Lewis K, Fischer SM, et al. Calorie restriction decreases murine and human pancreatic tumor cell growth, nuclear factor-κB activation, and inflammation-related gene expression in an insulin-like growth factor-1-dependent manner. PLoS One 2014; 9(5): e94151. doi: 10.1371/journal.pone.0094151


12.
Eibl G, Rozengurt E. Obesity and pancreatic cancer: insight into mechanisms. Cancers 2021; 13(20): 5067. doi: 10.3390/cancers13205067


13.
Brocco D, Florio R, De Lellis L, Veschi S, Grassadonia A, Tinari N, et al. The role of dysfunctional adipose tissue in pancreatic cancer: a molecular perspective. Cancers 2020; 12(7): 1849. doi: 10.3390/cancers12071849


14.
Messaggio F, Mendonsa AM, Castellanos J, Nagathihalli NS, Gorden L, Merchant NB, et al. Adiponectin receptor agonists inhibit leptin induced pSTAT3 and in vivo pancreatic tumor growth. Oncotarget 2017; 8(49): 85378–91. doi: 10.18632/oncotarget.19905


15.
Liu Y, Tan J, Ou S, Chen J, Chen L. Adipose-derived exosomes deliver miR-23a/b to regulate tumor growth in hepatocellular cancer by targeting the VHL/HIF axis. J Physiol Biochem 2019; 75(3): 391–401. doi: 10.1007/s13105-019-00692-6


16.
Lazar I, Clement E, Dauvillier S, Milhas D, Ducoux-Petit M, LeGonidec S, et al. Adipocyte exosomes promote melanoma aggressiveness through fatty acid oxidation: a novel mechanism linking obesity and cancer. Cancer Res 2016; 76(14): 4051–7. doi: 10.1158/0008-5472.CAN-16-0651


17.
Han QF, Li WJ, Hu KS, Gao J, Zhai WL, Yang JH, et al. Exosome biogenesis: machinery, regulation, and therapeutic implications in cancer. Mol Cancer 2022; 21(1): 207. doi: 10.1186/s12943-022-01671-0


18.
Becker A, Thakur BK, Weiss JM, Kim HS, Peinado H, Lyden D. Extracellular vesicles in cancer: cell-to-cell mediators of metastasis. Cancer Cell 2016; 30(6): 836–48. doi: 10.1016/j.ccell.2016.10.009


19.
Pingili AK, Chaib M, Sipe LM, Miller EJ, Teng B, Sharma R, et al. Immune checkpoint blockade reprograms systemic immune landscape and tumor microenvironment in obesity-associated breast cancer. Cell Rep 2021; 35(12): 109285. doi: 10.1016/j.celrep.2021.109285


20.
Cable J, Rathmell JC, Pearce EL, Ho PC, Haigis MC, Mamedov MR, et al. Immunometabolism at the crossroads of obesity and cancer-a Keystone Symposia report. Ann N Y Acad Sci 2023; 1523(1): 38–50. doi: 10.1111/nyas.14976


21.
Burkholder B, Huang RY, Burgess R, Luo S, Jones VS, Zhang W, et al. Tumor-induced perturbations of cytokines and immune cell networks. Biochim Biophys Acta 2014; 1845(2): 182–201. doi: 10.1016/j.bbcan.2014.01.004


22.
Du W, Nair P, Johnston A, Wu PH, Wirtz D. Cell trafficking at the intersection of the tumor-immune compartments. Annu Rev Biomed Eng 2022; 24: 275–305. doi: 10.1146/annurev-bioeng-110320-110749


23.
Waldmann TA. Cytokines in cancer immunotherapy. Cold Spring Harb Perspect Biol 2018; 10(12): a028472. doi: 10.1101/cshperspect.a028472


24.
Geginat J, Sallusto F, Lanzavecchia A. Cytokine-driven proliferation and differentiation of human naïve, central memory and effector memory CD4+ T cells. Pathol Biol 2003; 51(2): 64–6. doi: 10.1016/s0369-8114(03)00098-1


25.
Paul S, Lal G. The molecular mechanism of natural killer cells function and its importance in cancer immunotherapy. Front Immunol 2017; 8: 1124. doi: 10.3389/fimmu.2017.01124


26.
Arango Duque G, Descoteaux A. Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol 2014; 5: 491. doi: 10.3389/fimmu.2014.00491


27.
Rašková M, Lacina L, Kejík Z, Venhauerová A, Skaličková M, Kolář M, et al. The role of IL-6 in cancer cell invasiveness and metastasis-overview and therapeutic opportunities. Cells 2022; 11(22): 3698. doi: 10.3390/cells11223698


28.
Setrerrahmane S, Xu H. Tumor-related interleukins: old validated targets for new anti-cancer drug development. Mol Cancer 2017; 16(1): 153. doi: 10.1186/s12943-017-0721-9


29.
Bent EH, Millán-Barea LR, Zhuang I. Microenvironmental IL-6 inhibits anti-cancer immune responses generated by cytotoxic chemotherapy. Nat Commun 2021; 12(1): 6218. doi: 10.1038/s41467-021-26407-4


30.
Li Z, Chen L, Qin Z. Paradoxical roles of IL-4 in tumor immunity. Cell Mol Immunol 2009; 6(6): 415–22. doi: 10.1038/cmi.2009.53


31.
Parveen S, Siddharth S, Cheung LS, Kumar A, Shen J, Murphy JR, et al. Therapeutic targeting with DABIL-4 depletes myeloid suppressor cells in 4T1 triple-negative breast cancer model. Mol Oncol 2021; 15(5): 1330–44. doi: 10.1002/1878-0261.12938


32.
Gaffen SL, Liu KD. Overview of interleukin-2 function, production and clinical applications. Cytokine 2004; 28(3): 109–23. doi: 10.1016/j.cyto.2004.06.010


33.
Berraondo P, Sanmamed MF, Ochoa MC, Etxeberria I, Aznar MA, Pérez-Gracia JL, et al. Cytokines in clinical cancer immunotherapy. Br J Cancer 2019; 120(1): 6–15. doi: 10.1038/s41416-018-0328-y


34.
Kochumon S, Al Madhoun A, Al-Rashed F, Thomas R, Sindhu S, Al-Ozairi E, et al. Elevated adipose tissue associated IL-2 expression in obesity correlates with metabolic inflammation and insulin resistance. Sci Rep 2020; 10(1): 16364. doi: 10.1038/s41598-020-73347-y


35.
Suárez-Álvarez K, Solís-Lozano L, Leon-Cabrera S, González-Chávez A, Gómez-Hernández G, Quiñones-Álvarez MS, et al. Serum IL-12 is increased in Mexican obese subjects and associated with low-grade inflammation and obesity-related parameters. Mediators Inflamm 2013; 2013: 967067. doi: 10.1155/2013/967067


36.
Bouchlaka MN, Sckisel GD, Chen M, Mirsoian A, Zamora AE, Maverakis E, et al. Aging predisposes to acute inflammatory induced pathology after tumor immunotherapy. J Exp Med 2013; 210(11): 2223–37. doi: 10.1084/jem.20131219


37.
Mirsoian A, Murphy WJ. Obesity and cancer immunotherapy toxicity. Immunotherapy 2015; 7(4): 319–22. doi: 10.2217/imt.15.12
Published
2024-10-03
How to Cite
Jeong I., Park S., Park J., & Kim O.-K. (2024). Adipose tissue-derived extracellular vesicles from obese mice suppressed splenocyte-mediated pancreatic cancer cell death. Food & Nutrition Research, 68. https://doi.org/10.29219/fnr.v68.10545
Section
Original Articles