Blood circulation effect of fermented citrus bioconversion product (FCBP) in EA.hy926 endothelial cells and high-fat diet-fed mouse model

  • Eun-Chae Cho Department of Convergence Science, Sahmyook University, Seoul, Republic of Korea
  • Hyuck Se Kwon R&D Team, Food & Supplement Health Claims, Vitech Co., Ltd., Wanju, Republic of Korea
  • Na Young Lee R&D Team, Food & Supplement Health Claims, Vitech Co., Ltd., Wanju, Republic of Korea
  • Hyun Jeong Oh R&D Team, Food & Supplement Health Claims, Vitech Co., Ltd., Wanju, Republic of Korea
  • Yean-Jung Choi Department of Food and Nutrition, Sahmyook University, Seoul, Republic of Korea
Keywords: fermented citrus, bioconversion product, cardiovascular health, high-fat diet, endothelial function, bioactive flavonoids

Abstract

Background: The escalating global burden of cardiovascular diseases, largely driven by unhealthy lifestyle choices and dietary patterns, has intensified the search for effective and safe interventions. With current treatments often marred by significant side effects, the exploration of natural compounds such as flavonoids presents a compelling alternative.

Objective: This study investigated the effects of fermented citrus bioconversion product (FCBP), a fermented citrus bioflavonoid, on various markers of cardiovascular health in the context of a high-fat diet.

Design: In vivo, a high-fat diet-induced mouse model was used to assess the effects of FCBP on body weight, serum nitric oxide (NO) levels, activated partial thromboplastin time (aPTT), phosphatidylserine (PS) exposure on red blood cells, and the expression of inflammatory markers Intercellular Adhesion Molecule (ICAM)-1 and Vascular Cell Adhesion Molecule (VCAM)-1 in the thoracic aorta. In vitro, EA.hy926 endothelial cells were used to evaluate the compound’s effects on cell viability, NO production, endothelial nitric oxide synthase (eNOS) expression, and cell adhesion molecule (CAM) levels to further understand the mechanisms behind the in vivo findings.

Results: In vivo, FCBP supplementation led to a dose-dependent reduction in weight gain, a significant decrease in serum NO levels at 10 mg/kg, and reduced ICAM-1 and VCAM-1 expressions in the thoracic aorta, indicating anti-inflammatory properties. PS exposure on red blood cells was also reduced, suggesting decreased procoagulant activity, while aPTT remained unchanged. In vitro, FCBP was non-cytotoxic to endothelial cells, showed a trend toward increased NO production and eNOS expression, and reduced the expression of ICAM-1 and VCAM-1, supporting its potential anti-inflammatory effects.

Conclusions: FCBP demonstrates potential as a bioactive compound for managing cardiovascular health by reducing inflammation, mitigating weight gain, and influencing blood circulation-related parameters under high-fat diet conditions. Further studies, including diverse models and human trials, are warranted to elucidate its mechanisms and compare its efficacy with established cardiovascular therapeutics.

Downloads

Download data is not yet available.

References


1.
Armstrong ADC, de Souza CDF, Santos JMD, Carmo RFD, Armstrong DMFO, Pereira VC, et al. Urbanization and cardiovascular health among Indigenous groups in Brazil. Commun Med (Lond) 2023; 3(1): 17. doi: 10.1038/s43856-023-00239-3


2.
García-Montero C, Fraile-Martínez O, Gómez-Lahoz AM, Pekarek L, Castellanos AJ, Noguerales-Fraguas F, et al. Nutritional components in western diet versus Mediterranean diet at the gut microbiota-immune system interplay. Implications for health and disease. Nutrients 2021; 13(2): 699. doi: 10.3390/nu13020699


3.
Magnussen C, Ojeda FM, Leong DP, Alegre-Diaz J, Amouyel P, Aviles-Santa L, et al. Global effect of modifiable risk factors on cardiovascular disease and mortality. N Engl J Med 2023; 389(14): 1273–85. doi: 10.1056/NEJMoa2206916


4.
Vogel B, Acevedo M, Appelman Y, Bairey Merz CN, Chieffo A, Figtree GA, et al. The Lancet women and cardiovascular disease commission: reducing the global burden by 2030. Lancet 2021; 397(10292): 2385–438. doi: 10.1016/S0140-6736(21)00684-X


5.
Schoeneck M, Iggman D. The effects of foods on LDL cholesterol levels: a systematic review of the accumulated evidence from systematic reviews and meta-analyses of randomized controlled trials. Nutr Metab Cardiovasc Dis 2021; 31(5): 1325–38. doi: 10.1016/j.numecd.2020.12.032


6.
Skouras AZ, Antonakis-Karamintzas D, Tsantes AG, Triantafyllou A, Papagiannis G, Tsolakis C, et al. The acute and chronic effects of resistance and aerobic exercise in hemostatic balance: a brief review. Sports (Basel) 2023; 11(4): 74. doi: 10.3390/sports11040074


7.
Hu T, Li YH, Han WQ, Maduray K, Chen TS, Hao L, et al. Direct oral anticoagulants versus vitamin K antagonists in cirrhotic patients with atrial fibrillation: update of systematic review and meta-analysis. Am J Cardiovasc Drugs 2023; 23(6): 683–94. doi: 10.1007/s40256-023-00598-1


8.
Simak J, De Paoli S. The effects of nanomaterials on blood coagulation in hemostasis and thrombosis. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2017; 9(5): e1448. doi: 10.1002/wnan.1448


9.
Tao Q, Ma N, Fan L, Ge W, Zhang Z, Liu X, et al. Multi-omics approaches for liver reveal the thromboprophylaxis mechanism of aspirin eugenol ester in rat thrombosis model. Int J Mol Sci 2024; 25(4): 2141. doi: 10.3390/ijms25042141


10.
Alkarithi G, Duval C, Shi Y, Macrae FL, Ariëns RAS. Thrombus structural composition in cardiovascular disease. Arterioscler Thromb Vasc Biol 2021; 41(9): 2370–83. doi: 10.1161/ATVBAHA.120.315754


11.
Popescu NI, Lupu C, Lupu F. Disseminated intravascular coagulation and its immune mechanisms. Blood 2022; 139(13): 1973–86. doi: 10.1182/blood.2020007208


12.
Yasmin F, Najeeb H, Naeem U, Moeed A, Atif AR, Asghar MS, et al. Adverse events following COVID-19 mRNA vaccines: a systematic review of cardiovascular complication, thrombosis, and thrombocytopenia. Immun Inflamm Dis 2023; 11(3): e807. doi: 10.1002/iid3.807


13.
Rossi FH, Osse FJ, Thorpe PE. The paradigm shift in treatment of severe venous thromboembolism. J Vasc Bras 2024; 24: e20230095. doi: 10.1590/1677-5449.202300952


14.
Ząbczyk M, Ariëns RAS, Undas A. Fibrin clot properties in cardiovascular disease: from basic mechanisms to clinical practice. Cardiovasc Res 2023; 119(1): 94–111. doi: 10.1093/cvr/cvad017


15.
Yang Q, Wang X, Wang R, Li A. Diagnosis and treatment of venous thromboembolism during pregnancy relate to genetic polymorphism. Vascular 2024; 0: 17085381241240554. doi: 10.1177/17085381241240554


16.
Robinson AA, Trankle CR, Eubanks G, Schumann C, Thompson P, Wallace RL, et al. Off-label use of direct oral anticoagulants compared with warfarin for left ventricular thrombi. JAMA Cardiol 2020; 5(6): 685–92. doi: 10.1001/jamacardio.2020.0652


17.
Murphy E, Curneen JMG, McEvoy JW. Aspirin in the modern era of cardiovascular disease prevention. Methodist Debakey Cardiovasc J 2021; 17(4): 36–47. doi: 10.14797/mdcvj.293


18.
Kramkowski K, Leszczynska A, Buczko W. Pharmacological modulation of fibrinolytic response – in vivo and in vitro studies. Pharmacol Rep 2015; 67(4): 695–703. doi: 10.1016/j.pharep.2015.05.022


19.
Attardo S, Musumeci O, Velardo D, Toscano A. Statins neuromuscular adverse effects. Int J Mol Sci 2022; 23(15): 8364. doi: 10.3390/ijms23158364


20.
Asgary S, Rastqar A, Keshvari M. Functional food and cardiovascular disease prevention and treatment: a review. J Am Coll Nutr 2018; 37(5): 429–55. doi: 10.1080/07315724.2017.1410867


21.
Alu’datt MH, Rababah T, Al-Ali S, Tranchant CC, Gammoh S, Alrosan M, et al. Current perspectives on fenugreek bioactive compounds and their potential impact on human health: a review of recent insights into functional foods and other high value applications. J Food Sci 2024; 89(4): 1835–64. doi: 10.1111/1750-3841.16970


22.
Yamada M, Tanabe F, Arai N, Mitsuzumi H, Miwa Y, Kubota M, et al. Bioavailability of glucosyl hesperidin in rats. Biosci Biotechnol Biochem 2006; 70(6): 1386–94. doi: 10.1271/bbb.50657


23.
Boonpawa R, Spenkelink A, Punt A, Rietjens IMCM. Physiologically based kinetic modeling of hesperidin metabolism and its use to predict in vivo effective doses in humans. Mol Nutr Food Res 2017; 61(8): 1600894. doi: 10.1002/mnfr.201600894


24.
Yap KM, Sekar M, Wu YS, Gan SH, Rani NNIM, Seow LJ, et al. Hesperidin and its aglycone hesperetin in breast cancer therapy: a review of recent developments and future prospects. Saudi J Biol Sci 2021; 28(12): 6730–47. doi: 10.1016/j.sjbs.2021.07.046


25.
Gu SF, Wang LY, Tian YJ, Zhou ZX, Tang JB, Liu XR, et al. Enhanced water solubility, antioxidant activity, and oral absorption of hesperetin by D-alpha-tocopheryl polyethylene glycol 1000 succinate and phosphatidylcholine. J Zhejiang Univ Sci B 2019; 20(3): 273–81. doi: 10.1631/jzus.B1800346


26.
Pereira-Caro G, Fernández-Quirós B, Ludwig IA, Pradas I, Crozier A, Moreno-Rojas JM. Catabolism of citrus flavanones by the probiotics Bifidobacterium longum and Lactobacillus rhamnosus. Eur J Nutr 2018; 57(1): 231–42. doi: 10.1007/s00394-016-1312-z


27.
Sun J, Li W, Liao H, Li L, Ni H, Chen F, et al. Adding sorbitol improves the thermostability of alpha-l-rhamnosidase from Aspergillus niger and increases the conversion of hesperidin. J Food Biochem 2022; 46(2): e14055. doi: 10.1111/jfbc.14055


28.
Ji Z, Deng W, Chen D, Liu Z, Shen Y, Dai J, et al. Recent understanding of the mechanisms of the biological activities of hesperidin and hesperetin and their therapeutic effects on diseases. Heliyon 2024; 10(5): e26862. doi: 10.1016/j.heliyon.2024.e26862


29.
Choi SS, Lee SH, Lee KA. A comparative study of hesperetin, hesperidin and hesperidin glucoside: antioxidant, anti- inflammatory, and antibacterial activities in vitro. Antioxidants (Basel) 2022; 11(8): 1618. doi: 10.3390/antiox11081618


30.
Zhong G, Shen J, Chen Z, Lin Z, Long L, Wu J, et al. Antioxidant and antitumor activities of newly synthesized hesperetin derivatives. Molecules 2022; 27(3): 879. doi: 10.3390/molecules27030879


31.
Pla-Pagà L, Companys J, Calderón-Pérez L, Llauradó E, Solà R, Valls RM, et al. Effects of hesperidin consumption on cardiovascular risk biomarkers: a systematic review of animal studies and human randomized clinical trials. Nutr Rev 2019; 77(12): 845–64. doi: 10.1093/nutrit/nuz036


32.
Ahles S, Cuijpers I, Hartgens F, Troost FJ. The effect of a citrus and pomegranate complex on physical fitness and mental well-being in healthy elderly: a randomized placebo-controlled trial. J Nutr Health Aging 2022; 26(9): 839–46. doi: 10.1007/s12603-022-1834-4


33.
Verny MA, Milenkovic D, Macian N, Pereira B, Evrard R, Gilcher C, et al. Evaluating the role of orange juice, HESPERidin in vascular HEALTH benefits (HESPER-HEALTH study): protocol for a randomised controlled trial. BMJ Open 2021; 11(11): e053321. doi: 10.1136/bmjopen-2021-053321


34.
Wang ST, Chen JA, Hsu C, Su NW. Microbial phosphorylation product of hesperetin by Bacillus subtilis BCRC 80517 improves oral bioavailability in rats. J Agric Food Chem 2021; 69(35): 10184–93. doi: 10.1021/acs.jafc.1c04298


35.
Hsu C, Tsai HY, Chang CF, Yang CC, Su NW. Discovery of a novel phosphotransferase from Bacillus subtilis that phosphorylates a broad spectrum of flavonoids. Food Chem 2023; 400: 134001. doi: 10.1016/j.foodchem.2022.134001


36.
Escudero-López B, Cerrillo I, Herrero-Martín G, Hornero-Méndez D, Gil-Izquierdo A, Medina S, et al. Fermented orange juice: source of higher carotenoid and flavanone contents. J Agric Food Chem 2013; 61(37): 8773–82. doi: 10.1021/jf401240p


37.
König A, Sadova N, Dornmayr M, Schwarzinger B, Neuhauser C, Stadlbauer V, et al. Combined acid hydrolysis and fermentation improves bioactivity of citrus flavonoids in vitro and in vivo. Commun Biol 2023; 6(1): 1083. doi: 10.1038/s42003-023-05424-7


38.
Fujitaka Y, Hamada H, Uesugi D, Kuboki A, Shimoda K, Iwaki T, et al. Synthesis of daidzein glycosides, alpha-tocopherol glycosides, hesperetin glycosides by bioconversion and their potential for anti-allergic functional-foods and cosmetics. Molecules 2019; 24(16): 2975. doi: 10.3390/molecules24162975


39.
Chen IJ, Liu CY, Chiu JP, Hsu CH. Therapeutic effect of high-dose green tea extract on weight reduction: a randomized, double-blind, placebo-controlled clinical trial. Clin Nutr 2016; 35(3): 592–9. doi: 10.1016/j.clnu.2015.05.003


40.
Pérez-Burillo S, Navajas-Porras B, López-Maldonado A, Hinojosa-Nogueira D, Pastoriza S, Rufián-Henares JÁ. Green tea and its relation to human gut microbiome. Molecules 2021; 26(13): 3907. doi: 10.3390/molecules26133907


41.
Salman HB, Salman MA, Yildiz Akal E. The effect of omega-3 fatty acid supplementation on weight loss and cognitive function in overweight or obese individuals on weight-loss diet. Nutr Hosp 2022; 39(4): 803–13. doi: 10.20960/nh.03992


42.
Zhang Z, Liu C, Fang W, Tang Q, Zhan L, Shi Y, et al. Research progress on the lipid-lowering and weight loss effects of tea and the mechanism of its functional components. J Nutr Biochem 2023; 112: 109210. doi: 10.1016/j.jnutbio.2022.109210


43.
Mehic D, Colling M, Pabinger I, Gebhart J. Natural anticoagulants: a missing link in mild to moderate bleeding tendencies. Haemophilia 2021; 27(5): 701–9. doi: 10.1111/hae.14356


44.
Ryu JH, Kang D. Physicochemical properties, biological activity, health benefits, and general limitations of aged black garlic: a review. Molecules 2017; 22(6): 919. doi: 10.3390/molecules22060919


45.
Ryu R, Kim HJ, Moon B, Jung UJ, Lee MK, Lee DG, et al. Ethanol extract of persimmon tree leaves improves blood circulation and lipid metabolism in rats fed a high-fat diet. J Med Food 2015; 18(7): 715–23. doi: 10.1089/jmf.2014.3307


46.
González Y, Mojica-Flores R, Moreno-Labrador D, Cubilla-Rios L, Rao KSJ, Fernández PL, et al. Polyphenols with anti-inflammatory properties: synthesis and biological activity of novel curcumin derivatives. Int J Mol Sci 2023; 24(4): 3691. doi: 10.3390/ijms24043691


47.
Pisaniello AD, Psaltis PJ, King PM, Liu G, Gibson RA, Tan JT, et al. Omega-3 fatty acids ameliorate vascular inflammation: a rationale for their atheroprotective effects. Atherosclerosis 2021; 324: 27–37. doi: 10.1016/j.atherosclerosis.2021.03.003


48.
Moudgil KD, Venkatesha SH. The anti-inflammatory and immunomodulatory activities of natural products to control autoimmune inflammation. Int J Mol Sci 2022; 24(1): 95. doi: 10.3390/ijms24010095


49.
Azab A, Nassar A, Azab AN. Anti-inflammatory activity of natural products. Molecules 2016; 21(10): 1321. doi: 10.3390/molecules21101321


50.
Malekmohammad K, Sewell RDE, Rafieian-Kopaei M. Antioxidants and atherosclerosis: mechanistic aspects. Biomolecules 2019; 9(8): 301. doi: 10.3390/biom9080301


51.
Dzobo KE, Kraaijenhof JM, Stroes ESG, Nurmohamed NS, Kroon J. Lipoprotein(a): an underestimated inflammatory mastermind. Atherosclerosis 2022; 349: 101–9. doi: 10.1016/j.atherosclerosis.2022.04.004


52.
Mastrogiacomo L, Ballagh R, Venegas-Pino DE, Kaur H, Shi P, Werstuck GH. The effects of hyperglycemia on early endothelial activation and the initiation of atherosclerosis. Am J Pathol 2023; 193(1): 121–33. doi: 10.1016/j.ajpath.2022.09.004


53.
Mangoni AA, Zinellu A. A systematic review and meta-analysis of circulating adhesion molecules in rheumatoid arthritis. Inflamm Res 2024; 73(3): 305–27. doi: 10.1007/s00011-023-01837-6


54.
Xia N, Förstermann U, Li H. Resveratrol and endothelial nitric oxide. Molecules 2014; 19(10): 16102–21. doi: 10.3390/molecules191016102


55.
Shen Y, Croft KD, Hodgson JM, Kyle R, Lee IL, Wang Y, et al. Quercetin and its metabolites improve vessel function by inducing eNOS activity via phosphorylation of AMPK. Biochem Pharmacol 2012; 84(8): 1036–44. doi: 10.1016/j.bcp.2012.07.016


56.
Chen X, Li H, Wang Z, Zhou Q, Chen S, Yang B, et al. Quercetin protects the vascular endothelium against iron overload damages via ROS/ADMA/DDAH/eNOS/NO pathway. Eur J Pharmacol 2020; 868: 172885. doi: 10.1016/j.ejphar.2019.172885


57.
Wang P, Luo C, Zhu D, Song Y, Cao L, Luan H, et al. Pericardial adipose tissue-derived leptin promotes myocardial apoptosis in high-fat diet-induced obese rats through janus kinase 2/reactive oxygen species/Na+/K+-ATPase signaling pathway. J Am Heart Assoc 2021; 10(18): e021369. doi: 10.1161/JAHA.121.021369


58.
Lee GH, Hoang TH, Jung ES, Jung SJ, Chae SW, Chae HJ. Mulberry extract attenuates endothelial dysfunction through the regulation of uncoupling endothelial nitric oxide synthase in high fat diet rats. Nutrients 2019; 11(5): 978. doi: 10.3390/nu11050978


59.
Moreno-Fernández S, Garcés-Rimón M, Vera G, Astier J, Landrier JF, Miguel M. High fat/high glucose diet induces metabolic syndrome in an experimental rat model. Nutrients 2018; 10(10): 1502. doi: 10.3390/nu10101502


60.
Incalza MA, D’Oria R, Natalicchio A, Perrini S, Laviola L, Giorgino F. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascul Pharmacol 2018; 100: 1–19. doi: 10.1016/j.vph.2017.05.005


61.
Mohammadipoor N, Shafiee F, Rostami A, Kahrizi MS, Soleimanpour H, Ghodsi M, et al. Resveratrol supplementation efficiently improves endothelial health: a systematic review and meta-analysis of randomized controlled trials. Phytother Res 2022; 36(9): 3529–39. doi: 10.1002/ptr.7562


62.
Biegańska-Hensoldt S, Rosołowska-Huszcz D. Polyphenols in preventing endothelial dysfunction. Postepy Hig Med Dosw (Online) 2017; 71(0): 227–35. doi: 10.5604/01.3001.0010.3808


63.
Macêdo APA, Gonçalves MDS, Barreto Medeiros JM, David JM, Villarreal CF, Macambira SG, et al. Potential therapeutic effects of green tea on obese lipid profile – a systematic review. Nutr Health 2022; 28(3): 401–15. doi: 10.1177/02601060211073236


64.
Djuricic I, Calder PC. Beneficial outcomes of Omega-6 and Omega-3 polyunsaturated fatty acids on human health: an update for 2021. Nutrients 2021; 13(7): 2421. doi: 10.3390/nu13072421


65.
Peng Y, Ao M, Dong B, Jiang Y, Yu L, Chen Z, et al. Anti-inflammatory effects of curcumin in the inflammatory diseases: status, limitations and countermeasures. Drug Des Devel Ther 2021; 15: 4503–25. doi: 10.2147/DDDT.S327378


66.
Xiong H, Wang J, Ran Q, Lou G, Peng C, Gan Q, et al. HesperidIn: a therapeutic agent for obesity. Drug Des Devel Ther 2019; 13: 3855–66. doi: 10.2147/DDDT.S227499


67.
Wang W, Qu L, Cui Z, Lu F, Li L, Liu F. Citrus flavonoid hesperetin inhibits alpha-synuclein fibrillogenesis, disrupts mature fibrils, and reduces their cytotoxicity: in vitro and in vivo studies. J Agric Food Chem 2023; 71(43): 16174–83. doi: 10.1021/acs.jafc.3c06816


68.
Zhang Q, Liu J, Duan H, Li R, Peng W, Wu C. Activation of Nrf2/HO-1 signaling: an important molecular mechanism of herbal medicine in the treatment of atherosclerosis via the protection of vascular endothelial cells from oxidative stress. J Adv Res 2021; 34: 43–63. doi: 10.1016/j.jare.2021.06.023
Published
2024-11-07
How to Cite
Cho E.-C., Kwon H. S., Lee N. Y., Oh H. J., & Choi Y.-J. (2024). Blood circulation effect of fermented citrus bioconversion product (FCBP) in EA.hy926 endothelial cells and high-fat diet-fed mouse model. Food & Nutrition Research, 68. https://doi.org/10.29219/fnr.v68.10682
Section
Original Articles