Effect of oleocanthal-rich olive oil on postprandial oxidative stress markers of patients with type 2 diabetes mellitus

  • Maria Efthymia Katsa Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University of Athens, Athens, Greece
  • Andrea Paola Rojas Gil Laboratory of Biology and Biochemistry, Department of Nursing, Faculty of Health Sciences, University of Peloponnese, Tripoli, Greece
  • Evangelia-Mantelena Makri Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University of Athens, Athens, Greece
  • Spyridon Papadogiannis Laboratory of Biology and Biochemistry, Department of Nursing, Faculty of Health Sciences, University of Peloponnese, Tripoli, Greece
  • Anastasios Ioannidis Laboratory of Biology and Biochemistry, Department of Nursing, Faculty of Health Sciences, University of Peloponnese, Tripoli, Greece
  • Marianna Kalliostra Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University of Athens, Athens, Greece
  • Kleopatra Ketselidi Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University of Athens, Athens, Greece
  • Panagiotis Diamantakos Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Ka-podistrian University of Athens, Athens, Greece
  • Eleni Melliou Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Ka-podistrian University of Athens, Athens, Greece
  • Prokopios Magiatis Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Ka-podistrian University of Athens, Athens, Greece
  • Tzortzis Nomikos Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University of Athens, Athens, Greece
Keywords: thiobarbituric acid-reactive substances, glutathione peroxidases, red blood cells, protein carbonyls, ibuprofen, platelets, inflammation, postprandial dysmetabolism

Abstract

Background: Type 2 diabetes mellitus (T2DM) is characterized by postprandial dysmetabolism, which has been linked to post-meal redox disturbances. Oleocanthal (OO), one of the most potent bioactive phenols of extra virgin olive oil, has shown redox modulating properties in vitro. However, its acute, in vivo antioxidant properties have never been studied before.

Objective: The aim of this study was to investigate the kinetics of five redox markers (Thiobarbituric acid-reactive substances [TBARS] and glutathione peroxidase activity in serum-GPx3 and erythrocytes (GPx1), protein carbonyls in serum) after the consumption different meals.

Design: Five different isocaloric meals comprised of white bread and butter (BU) or butter plus ibuprofen (BU-IBU) or olive oil poor in OO or olive oils containing 250 and 500 mg/Kg of oleocanthal (OO250 and OO500, respectively). We hypothesized that OO-rich olive oil will reduce postprandial oxidative stress in T2DM patients compared to other lipid sources. This study involved 10 patients with T2DM and had a cross-over design.

Results: The comparison of incremental Area Under Curves (iAUCs) has shown that OO-rich olive oils were able to alleviate the increments of thiobarbituric acid-reactive substances (TBARS) and GPx3 and induce a higher red blood cells (RBCs) GPx1 activity compared to OO (P < 0.05). The effect was dose and redox marker depended. Correlation analysis in the pooled sample demonstrated a positive association between postprandial ex vivo platelet sensitivity to ADP and iAUC TBARS. In conclusion, our study has shown that OO-rich olive oils can favorably modulate lipid peroxidation and RBC GPx activity in T2DM patients when consumed as part of a carbohydrate meal.

Discussion: This study demonstrates for the first time that, apart from its anti-inflammatory and antiplatelet properties, OO can also exert acute antioxidant effects.

Conclusion: This finding emphasizes the health benefits of extra virgin olive oil, particularly those with a high OO content, for T2DM patients.

Downloads

Download data is not yet available.

References


1.
Darenskaya MA, Kolesnikova LI, Kolesnikov SI. Oxidative stress: pathogenetic role in diabetes mellitus and its complications and therapeutic approaches to correction. Bull Exp Biol Med 2021; 171: 179–89. doi: 10.1007/s10517-021-05191-7


2.
Bigagli E, Lodovici M. Circulating oxidative stress biomarkers in clinical studies on type 2 diabetes and its complications. Oxidat Med Cell Longevity 2019; 2019: 1–17. doi: 10.1155/2019/5953685


3.
Sottero B, Gargiulo S, Russo I, Barale C, Poli G, Cavalot F. Postprandial dysmetabolism and oxidative stress in type 2 diabetes: pathogenetic mechanisms and therapeutic strategies. Med Res Rev 2015; 35: 968–1031. doi: 10.1002/med.21349


4.
Katsa ME, Kostopoulou E, Nomikos T, Ioannidis A, Sarris V, Papadogiannis S, et al. The response of antioxidant enzymes and antiapoptotic markers to an pral Glucose Tolerance Test (OGTT) in children and adolescents with excess body weight. Int J Mol Sci 2023; 24: 16517. doi: 10.3390/ijms242216517


5.
Giri B, Dey S, Das T, Sarkar M, Banerjee J, Dash SK. Chronic hyperglycemia mediated physiological alteration and metabolic distortion leads to organ dysfunction, infection, cancer progression and other pathophysiological consequences: an update on glucose toxicity. Biomed Pharmacother 2018; 107: 306–28. doi: 10.1016/j.biopha.2018.07.157


6.
Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction? Diabetes 2003; 52: 1–8. doi: 10.2337/diabetes.52.1.1


7.
Betteridge DJ. What is oxidative stress? Metabolism 2000; 49: 3–8. doi: 10.1016/S0026-0495(00)80077-3


8.
Schwartz SS, Epstein S, Corkey BE, Grant SFA, Gavin Iii JR, Aguilar RB, et al. A unified pathophysiological construct of diabetes and its complications. Trends Endocrinol Metab 2017; 28: 645–55. doi: 10.1016/j.tem.2017.05.005


9.
Tan BL, Norhaizan ME, Liew W-P-P. Nutrients and oxidative stress: friend or foe? Oxidat Med Cell Longevity 2018; 2018: 1–24. doi: 10.1155/2018/9719584


10.
Catena C, Cavarape A, Novello M, Giacchetti G, Sechi LA. Insulin receptors and renal sodium handling in hypertensive fructose-fed rats. Kidney Int 2003; 64: 2163–71. doi: 10.1046/j.1523-1755.2003.00313.x


11.
Henriksen EJ, Diamond-Stanic MK, Marchionne EM. Oxidative stress and the etiology of insulin resistance and type 2 diabetes. Free Radical Biol Med 2011; 51: 993–9. doi: 10.1016/j.freeradbiomed.2010.12.005


12.
Pretini V, Koenen MH, Kaestner L, Fens MHAM, Schiffelers RM, Bartels M, et al. Red blood cells: chasing interactions. Front Physiol 2019; 10: 945. doi: 10.3389/fphys.2019.00945


13.
Gwozdzinski K, Pieniazek A, Gwozdzinski L. Reactive oxygen species and their involvement in red blood cell damage in chronic kidney disease. Oxid Med Cell Longev 2021; 2021: 6639199. doi: 10.1155/2021/6639199


14.
Guan R, Van Le Q, Yang H, Zhang D, Gu H, Yang Y, et al. A review of dietary phytochemicals and their relation to oxidative stress and human diseases. Chemosphere 2021; 271: 129499. doi: 10.1016/j.chemosphere.2020.129499.


15.
Muscolo A, Mariateresa O, Giulio T, Mariateresa R. Oxidative stress: the role of antioxidant phytochemicals in the prevention and treatment of diseases. Int J Mol Sci 2024; 25: 3264. doi: 10.3390/ijms25063264


16.
Bucciantini M, Leri M, Nardiello P, Casamenti F, Stefani M. Olive polyphenols: antioxidant and anti-inflammatory properties. Antioxidants (Basel) 2021; 10: 1044. doi: 10.3390/antiox10071044


17.
Aparicio-Soto M, Sánchez-Fidalgo S, González-Benjumea A, Maya I, Fernández-Bolaños JG, Alarcón-de-la-Lastra C. Naturally occurring hydroxytyrosol derivatives: hydroxytyrosyl acetate and 3,4-dihydroxyphenylglycol modulate inflammatory response in murine peritoneal macrophages. Potential utility as new dietary supplements. J Agric Food Chem 2015; 63: 836–46. doi: 10.1021/jf503357s


18.
Lozano-Castellón J, López-Yerena A, Rinaldi de Alvarenga JF, Romero Del Castillo-Alba J, Vallverdú-Queralt A, Escribano-Ferrer E, et al. Health-promoting properties of oleocanthal and oleaceIn: two secoiridoids from extra-virgin olive oil. Crit Rev Food Sci Nutr 2020; 60: 2532–48. doi: 10.1080/10408398.2019.1650715


19.
Menendez J. Crude phenolic extracts from extra virgin olive oil circumvent de novo breast cancer resistance to HER1/HER2-targeting drugs by inducing GADD45-sensed cellular stress, G2/M arrest and hyperacetylation of Histone H3. Int J Oncol 2011; 38(6): 1533–47. doi: 10.3892/ijo.2011.993


20.
González-Rodríguez M, Ait Edjoudi D, Cordero-Barreal A, Farrag M, Varela-García M, Torrijos-Pulpón C, et al. Oleocanthal, an antioxidant phenolic compound in extra virgin olive oil (EVOO): a comprehensive systematic review of its potential in inflammation and cancer. Antioxidants 2023; 12: 2112. doi: 10.3390/antiox12122112


21.
Covas M-I, Nyyssönen K, Poulsen HE, Kaikkonen J, Zunft H-JF, Kiesewetter H, et al. The effect of polyphenols in olive oil on heart disease risk factors: a randomized trial. Ann Intern Med 2006; 145: 333. doi: 10.7326/0003-4819-145-5-200609050-00006


22.
Infante R, Infante M, Pastore D, Pacifici F, Chiereghin F, Malatesta G, et al. An appraisal of the oleocanthal-rich extra virgin olive oil (EVOO) and its potential anticancer and neuroprotective properties. Int J Mol Sci 2023; 24: 17323. doi: 10.3390/ijms242417323


23.
Katsa ME, Ketselidi K, Kalliostra M, Ioannidis A, Rojas Gil AP, Diamantakos P, et al. Acute antiplatelet effects of an oleocanthal-rich olive oil in type II diabetic patients: a postprandial study. Int J Mol Sci 2024; 25: 908. doi: 10.3390/ijms25020908


24.
American Diabetes Association. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2021. Diabetes Care 2021; 44: S15–33. doi: 10.2337/dc21-S002


25.
American Diabetes Association Professional Practice Committee. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes—2022. Diabetes Care 2022; 45: S17–38. doi: 10.2337/dc22-S002


26.
Diamantakos P, Giannara T, Skarkou M, Melliou E, Magiatis P. Influence of harvest time and malaxation conditions on the concentration of individual phenols in extra virgin olive oil related to its healthy properties. Molecules 2020; 25: 2449. doi: 10.3390/molecules25102449


27.
Papakonstantinou A, Koumarianou P, Rigakou A, Diamantakos P, Frakolaki E, Vassilaki N, et al. New affordable methods for large-scale isolation of major olive secoiridoids and systematic comparative study of their antiproliferative/cytotoxic effect on multiple cancer cell lines of different cancer origins. Int J Mol S 2022; 24: 3. doi: 10.3390/ijms24010003


28.
Ma Y, Olendzki BC, Pagoto SL, Hurley TG, Magner RP, Ockene IS, et al. Number of 24-hour diet recalls needed to estimate energy intake. Ann Epidemiol 2009; 19: 553–9. doi: 10.1016/j.annepidem.2009.04.010


29.
Bountziouka V, Bathrellou E, Giotopoulou A, Katsagoni C, Bonou M, Vallianou N, et al. Development, repeatability and validity regarding energy and macronutrient intake of a semi-quantitative food frequency questionnaire: methodological considerations. Nutr Metab Cardiovasc Dis 2012; 22: 659–67. doi: 10.1016/j.numecd.2010.10.015


30.
Kavouras SA, Maraki MI, Kollia M, Gioxari A, Jansen LT, Sidossis LS. Development, reliability and validity of a physical activity questionnaire for estimating energy expenditure in Greek adults. Sci Sports 2016; 31: e47–53. doi: 10.1016/j.scispo.2016.01.007


31.
Jentzsch AM, Bachmann H, Fürst P, Biesalski HK. Improved analysis of malondialdehyde in human body fluids. Free Radic Biol Med 1996; 20: 251–6. doi: 10.1016/0891-5849(95)02043-8


32.
Fragopoulou E, Gavriil L, Argyrou C, Malagaris I, Choleva M, Antonopoulou S, et al. Suppression of DNA/RNA and protein oxidation by dietary supplement which contains plant extracts and vitamins: a randomized, double-blind, placebo-controlled trial. Lipids Health Dis 2018; 17: 187. doi: 10.1186/s12944-018-0836-z


33.
Kanias T, Wong K, Acker JP. Determination of lipid peroxidation in desiccated red blood cells. Cell Preserv Technol 2007; 5: 165–74. doi: 10.1089/cpt.2007.0513


34.
Drabkin DL, Schmidt CF. Spectrophotometric studies. J Biol Chem 1945; 157: 69–83. doi: 10.1016/S0021-9258(17)41627-9


35.
Wendel A. Enzymatic basis of detoxication. vol. 1. New York, NY: Academic Press; 1980.


36.
Pleban PA, Munyani A, Beachum J. Determination of selenium concentration and glutathione peroxidase activity in plasma and erythrocytes. Clin Chem 1982; 28: 311–6. doi: 10.1093/clinchem/28.2.311


37.
Pappas C, Kandaraki EA, Tsirona S, Kountouras D, Kassi G, Diamanti-Kandarakis E. Postprandial dysmetabolism: too early or too late? Hormones (Athens) 2016; 15: 321–44. doi: 10.14310/horm.2002.1697


38.
Ceriello A, Genovese S. Atherogenicity of postprandial hyperglycemia and lipotoxicity. Rev Endocr Metab Disord 2016; 17: 111–6. doi: 10.1007/s11154-016-9341-8


39.
Nakajima K, Tanaka A. Atherogenic postprandial remnant lipoproteins; VLDL remnants as a causal factor in atherosclerosis. Clin Chim Acta 2018; 478: 200–15. doi: 10.1016/j.cca.2017.12.039


40.
Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes 2005; 54: 1615–25. doi: 10.2337/diabetes.54.6.1615


41.
Baig S, Parvaresh Rizi E, Chia C, Shabeer M, Aung N, Loh TP, et al. Genes involved in oxidative stress pathways are differentially expressed in circulating mononuclear cells derived from obese insulin-resistant and lean insulin-sensitive individuals following a single mixed-meal challenge. Front Endocrinol 2019; 10: 256. doi: 10.3389/fendo.2019.00256


42.
Monnier L, Mas E, Ginet C, Michel F, Villon L, Cristol J-P, et al. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA 2006; 295: 1681–7. doi: 10.1001/jama.295.14.1681


43.
Saxena R, Madhu SV, Shukla R, Prabhu KM, Gambhir JK. Postprandial hypertriglyceridemia and oxidative stress in patients of type 2 diabetes mellitus with macrovascular complications. Clin Chim Acta 2005; 359: 101–8. doi: 10.1016/j.cccn.2005.03.036


44.
Ceriello A, Quagliaro L, Catone B, Pascon R, Piazzola M, Bais B, et al. Role of hyperglycemia in nitrotyrosine postprandial generation. Diabetes Care 2002; 25: 1439–43. doi: 10.2337/diacare.25.8.1439


45.
Ikonomidis I, Pavlidis G, Tsoumani M, Kousathana F, Katogiannis K, Tsilivarakis D, et al. Endothelial dysfunction is associated with decreased nitric oxide bioavailability in dysglycaemic subjects and first-degree relatives of type 2 diabetic patients. J Clin Med 2022; 11: 3299. doi: 10.3390/jcm11123299


46.
Mah E, Bruno RS. Postprandial hyperglycemia on vascular endothelial function: mechanisms and consequences. Nutr Res 2012; 32: 727–40. doi: 10.1016/j.nutres.2012.08.002


47.
Ceriello A, Bortolotti N, Motz E, Lizzio S, Catone B, Assaloni R, et al. Red wine protects diabetic patients from meal-induced oxidative stress and thrombosis activation: a pleasant approach to the prevention of cardiovascular disease in diabetes. Eur J Clin Invest 2001; 31: 322–8. doi: 10.1046/j.1365-2362.2001.00818.x


48.
Özyurt H, Luna C, Estévez M. Redox chemistry of the molecular interactions between tea catechins and human serum proteins under simulated hyperglycemic conditions. Food Funct 2016; 7: 1390–400. doi: 10.1039/c5fo01525a


49.
Annuzzi G, Bozzetto L, Costabile G, Giacco R, Mangione A, Anniballi G, et al. Diets naturally rich in polyphenols improve fasting and postprandial dyslipidemia and reduce oxidative stress: a randomized controlled trial. Am J Clin Nutr 2014; 99: 463–71. doi: 10.3945/ajcn.113.073445


50.
Reverri EJ, Randolph JM, Steinberg FM, Kappagoda CT, Edirisinghe I, Burton-Freeman BM. Black beans, fiber, and antioxidant capacity pilot study: examination of whole foods vs. functional components on postprandial metabolic, oxidative stress, and inflammation in adults with metabolic syndrome. Nutrients 2015; 7: 6139–54. doi: 10.3390/nu7085273


51.
Jiménez-Sánchez A, Martínez-Ortega AJ, Remón-Ruiz PJ, Piñar-Gutiérrez A, Pereira-Cunill JL, García-Luna PP. Therapeutic properties and use of extra virgin olive oil in clinical nutrition: a narrative review and literature update. Nutrients 2022; 14: 1440. doi: 10.3390/nu14071440


52.
Scientific Opinion on the substantiation of health claims related to polyphenols in olive and protection of LDL particles from oxidative damage (ID 1333, 1638, 1639, 1696, 2865), maintenance of normal blood HDL-cholesterol concentrations (ID 1639), maintenance of normal blood pressure (ID 3781), “anti-inflammatory properties” (ID 1882), “contributes to the upper respiratory tract health” (ID 3468), “can help to maintain a normal function of gastrointestinal tract” (3779), and “contributes to body defences against external agents” (ID 3467) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J 2011;9(4):2033 [25 pp.]. doi: 10.2903/j.efsa.2011.2033


53.
Cuffaro D, Pinto D, Silva AM, Bertolini A, Bertini S, Saba A, et al. Insights into the antioxidant/antiradical effects and in vitro intestinal permeation of oleocanthal and its metabolites tyrosol and oleocanthalic acid. Molecules 2023; 28: 5150. doi: 10.3390/molecules28135150


54.
Gabbia D, Carpi S, Sarcognato S, Cannella L, Colognesi M, Scaffidi M, et al. The extra virgin olive oil polyphenol oleocanthal exerts antifibrotic effects in the liver. Front Nutr 2021; 8: 715183. doi: 10.3389/fnut.2021.715183


55.
Takashima T, Sakata Y, Iwakiri R, Shiraishi R, Oda Y, Inoue N, et al. Feeding with olive oil attenuates inflammation in dextran sulfate sodium-induced colitis in rat. J Nutr Biochem 2014; 25: 186–92. doi: 10.1016/j.jnutbio.2013.10.005


56.
Carpi S, Scoditti E, Massaro M, Polini B, Manera C, Digiacomo M, et al. The extra-virgin olive oil polyphenols oleocanthal and oleacein counteract inflammation-related gene and miRNA expression in adipocytes by attenuating NF-κB activation. Nutrients 2019; 11: 2855. doi: 10.3390/nu11122855


57.
Park M, Hong K-I, Kang M, Kim T-W, Lee H, Jang W-D, et al. Hierarchical hybrid nanostructures constructed by fullerene and molecular tweezer. ACS Nano 2019; 13: 6101–12. doi: 10.1021/acsnano.9b02893


58.
Montoya T, Sánchez-Hidalgo M, Castejón ML, Rosillo MÁ, González-Benjumea A, Alarcón-de-la-Lastra C. Dietary oleocanthal supplementation prevents inflammation and oxidative stress in collagen-induced arthritis in mice. Antioxidants (Basel) 2021; 10: 650. doi: 10.3390/antiox10050650


59.
López-Yerena A, Vallverdú-Queralt A, Mols R, Augustijns P, Lamuela-Raventós RM, Escribano-Ferrer E. Absorption and intestinal metabolic profile of oleocanthal in rats. Pharmaceutics 2020; 12: 134. doi: 10.3390/pharmaceutics12020134


60.
Tsikas D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: analytical and biological challenges. Anal Biochem 2017; 524: 13–30. doi: 10.1016/j.ab.2016.10.021


61.
Aguilar Diaz De Leon J, Borges CR. Evaluation of oxidative stress in biological samples using the thiobarbituric acid reactive substances assay. J Vis Exp 2020; 159: e61122. doi: 10.3791/61122


62.
Rosignoli P, Fuccelli R, Fabiani R, Servili M, Morozzi G. Effect of olive oil phenols on the production of inflammatory mediators in freshly isolated human monocytes. J Nutr Biochem 2013; 24: 1513–9. doi: 10.1016/j.jnutbio.2012.12.011


63.
De La Cruz Cortés JP, Pérez de Algaba I, Martín-Aurioles E, Arrebola MM, Ortega-Hombrados L, Rodríguez-Pérez MD, et al. Extra virgin oil polyphenols improve the protective effects of hydroxytyrosol in an in vitro model of hypoxia-reoxygenation of rat brain. Brain Sci 2021; 11: 1133. doi: 10.3390/brainsci11091133


64.
Orrico F, Lopez AC, Saliwonczyk D, Acosta C, Rodriguez-Grecco I, Mouro-Chanteloup I, et al. The permeability of human red blood cell membranes to hydrogen peroxide is independent of aquaporins. J Biol Chem 2022; 298: 101503. doi: 10.1016/j.jbc.2021.101503


65.
Fu N-Y, Zhang E-X, Lin Z-F, Yu L-J. Relationship between superoxide anion radical and anion transport protein of red blood cell membrane. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 1999; 31: 328–30.


66.
Wang Y, Yang P, Yan Z, Liu Z, Ma Q, Zhang Z, et al. The relationship between erythrocytes and diabetes mellitus. J Diabetes Res 2021; 2021: 1–9. doi: 10.1155/2021/6656062


67.
Vulturar R, Chiș A, Pintilie S, Farcaș IM, Botezatu A, Login CC, et al. One molecule for mental nourishment and more: glucose transporter type 1—biology and deficiency syndrome. Biomedicines 2022; 10: 1249. doi: 10.3390/biomedicines10061249


68.
Jewell SA, Petrov PG, Winlove CP. The effect of oxidative stress on the membrane dipole potential of human red blood cells. Biochim Biophys Acta – Biomembranes 2013; 1828: 1250–8. doi: 10.1016/j.bbamem.2012.12.019


69.
Ighodaro OM. Molecular pathways associated with oxidative stress in diabetes mellitus. Biomed Pharmacother 2018; 108: 656–62. doi: 10.1016/j.biopha.2018.09.058


70.
Morrison AD, Clements RS, Travis SB, Oski F, Winegrad AI. Glucose utilization by the polyol pathway in human erythrocytes. Biochem Biophys Res Commun 1970; 40: 199–205. doi: 10.1016/0006-291X(70)91066-1


71.
Montes-Nieto R, Insenser M, Murri M, Fernández-Durán E, Ojeda-Ojeda M, Martínez-García MÁ, et al. Plasma thiobarbituric acid reactive substances (TBARS) in young adults: obesity increases fasting levels only in men whereas glucose ingestion, and not protein or lipid intake, increases postprandial concentrations regardless of sex and obesity. Mol Nutr Food Res 2017; 61(11): 1700425. doi: 10.1002/mnfr.201700425


72.
Lacroix S, Rosiers CD, Tardif J-C, Nigam A. The role of oxidative stress in postprandial endothelial dysfunction. Nutr Res Rev 2012; 25: 288–301. doi: 10.1017/S0954422412000182


73.
Choleva M, Matalliotaki E, Antoniou S, Asimomyti E, Drouka A, Stefani M, et al. Postprandial metabolic and oxidative stress responses to grape pomace extract in healthy normal and overweight/obese women: a randomized, double-blind, placebo-vontrolled crossover study. Nutrients 2022; 15: 156. doi: 10.3390/nu15010156


74.
Phillips LK, Peake JM, Zhang X, Hickman IJ, Briskey DR, Huang BE, et al. Postprandial total and HMW adiponectin following a high-fat meal in lean, obese and diabetic men. Eur J Clin Nutr 2013; 67: 377–84. doi: 10.1038/ejcn.2013.49


75.
Zheng F, Lu W, Jia C, Li H, Wang Z, Jia W. Relationships between glucose excursion and the activation of oxidative stress in patients with newly diagnosed type 2 diabetes or impaired glucose regulation. Endocrine 2010; 37: 201–8. doi: 10.1007/s12020-009-9296-6


76.
Kouka P, Tekos F, Papoutsaki Z, Stathopoulos P, Halabalaki M, Tsantarliotou M, et al. Olive oil with high polyphenolic content induces both beneficial and harmful alterations on rat redox status depending on the tissue. Toxicol Rep 2020; 7: 421–32. doi: 10.1016/j.toxrep.2020.02.007


77.
Flohé L, Toppo S, Orian L. The glutathione peroxidase family: discoveries and mechanism. Free Radic Biol Med 2022; 187: 113–22. doi: 10.1016/j.freeradbiomed.2022.05.003


78.
Yubero-Serrano EM, Gonzalez-Guardia L, Rangel-Zuñiga O, Delgado-Casado N, Delgado-Lista J, Perez-Martinez P, et al. Postprandial antioxidant gene expression is modified by Mediterranean diet supplemented with coenzyme Q(10) in elderly men and women. Age (Dordr) 2013; 35: 159–70. doi: 10.1007/s11357-011-9331-4


79.
Malinska H, Klementová M, Kudlackova M, Veleba J, Hoskova E, Oliyarnyk O, et al. A plant-based meal reduces postprandial oxidative and dicarbonyl stress in men with diabetes or obesity compared with an energy- and macronutrient-matched conventional meal in a randomized crossover study. Nutr Metab (Lond) 2021; 18: 84. doi: 10.1186/s12986-021-00609-5


80.
Cortes R, Martinez-Hervas S, Ivorra C, De Marco G, Gonzalez-Albert V, Rojo-Martínez G, et al. Enhanced reduction in oxidative stress and altered glutathione and thioredoxin system response to unsaturated fatty acid load in familial hypercholesterolemia. Clin Biochem 2014; 47: 291–7. doi: 10.1016/j.clinbiochem.2014.09.006


81.
Sivandzade F, Prasad S, Bhalerao A, Cucullo L. NRF2 and NF-κB interplay in cerebrovascular and neurodegenerative disorders: molecular mechanisms and possible therapeutic approaches. Redox Biol 2019; 21: 101059. doi: 10.1016/j.redox.2018.11.017


82.
Chatzinikolaou PN, Margaritelis NV, Paschalis V, Theodorou AA, Vrabas IS, Kyparos A, et al. Erythrocyte metabolism. Acta Physiol (Oxf) 2024; 240(3): e14081. doi: 10.1111/apha.14081


83.
Melo D, Coimbra S, Rocha S, Santos-Silva A. Inhibition of erythrocyte’s catalase, glutathione peroxidase or peroxiredoxin 2 – impact on cytosol and membrane. Arch Biochem Biophys 2023; 739: 109569. doi: 10.1016/j.abb.2023.109569


84.
Oliveras-López M-J, Molina JJM, Mir MV, Rey EF, Martín F, de la Serrana HL-G. Extra virgin olive oil (EVOO) consumption and antioxidant status in healthy institutionalized elderly humans. Arch Gerontol Geriatr 2013; 57: 234–42. doi: 10.1016/j.archger.2013.04.002


85.
El Haouari M. Platelet oxidative stress and its relationship with cardiovascular diseases in type 2 diabetes mellitus patients. Curr Med Chem 2019; 26: 4145–65. doi: 10.2174/0929867324666171005114456
Published
2024-11-11
How to Cite
Katsa M. E., Rojas Gil A. P., Makri E.-M., Papadogiannis S., Ioannidis A., Kalliostra M., Ketselidi K., Diamantakos P., Melliou E., Magiatis P., & Nomikos T. (2024). Effect of oleocanthal-rich olive oil on postprandial oxidative stress markers of patients with type 2 diabetes mellitus. Food & Nutrition Research, 68. https://doi.org/10.29219/fnr.v68.10882
Section
Original Articles